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ABSTRACT  

SAS® Viya® offers the SAS® Cloud Analytic Services (CAS) Server as the in-memory analytics engine to 
serve the demands of powerful analytics, the scope and volume of which are ever increasing. However, 
before that analysis can occur, large quantities of data must often be loaded into the CAS memory space. 
Therefore, the transfer of huge amounts of data from source systems into CAS is a major consideration 
when planning the architecture of your SAS solution.  

High-performance data transfer is often provided by loading data using multiple parallel channels. This 
process uses many pathways simultaneously to transfer data at a rate several times faster than is typical 
using a single, serial path. High-performance data transfer is a natural complement to the speed and 
efficiency of in-memory analytics provided by CAS. CAS now provides five different major techniques for 
the parallel transfer of data over a wide range of potential data sources.  

This paper illustrates those techniques, explains the technology, and highlights the benefits of high-
performance data transfer across multiple parallel channels. 

INTRODUCTION  

The SAS® Cloud Analytic Services (CAS) Server can reach new heights in the pursuit to process ever-
growing volumes of data faster than ever. By leveraging massively parallel processing (MPP) concepts, 
we can scale up the analytic power of a CAS Server by adding more host machines to the cluster. In this 
way, large analytic problems can be broken down into chunks that are processed by CAS simultaneously 
across many machines. 

This approach for tackling analytic problems by breaking them into smaller parts processed in parallel can 
also be applied to the challenge of transferring large volumes of data into CAS. The faster we’re able to 
load data into CAS, then the sooner our users are able to investigate that data, discover new information, 
and share it with others. 

PARALLEL VERSUS SERIAL 

CAS can grow in processing capacity to meet the demands of the largest data processing challenges. If 
CAS was deployed to run on a single host machine, then its processing power would be limited by that 
machine’s maximum size in terms of RAM and CPU. 

Figure 1 shows CAS limited to the maximum size of a single host machine. 
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Figure 1. SAS Cloud Analytics Server Processing Data on a Single Host Machine 

CAS certainly can run in a single-server mode. This is useful mainly for situations with relatively small 
volumes of data and few concurrent users. However, CAS was built from the ground up to take on the 
largest problems so we can deploy CAS in MPP mode when we’re ready for the big jobs. 

SAS has built massively parallel processing (MPP) concepts into CAS. Therefore, we can deploy the CAS 
software to run across multiple host machines and yet still act as a single logical server for analytic 
processing. Scalability in this way is no longer limited by the maximum specifications of a single host, but 
is achieved instead by adding more hosts to the cluster running CAS software. 

In Figure 2, CAS is deployed to run as a single logical service hosted on many machines. 

 

Figure 2. SAS Cloud Analytics Server Processing Data on Many Machines Simultaneously 

 

With multiple host machines running CAS software, the conventional approach for loading data in for 
processing via a single stream is no longer efficient. And with the data volumes we aim to process driving 
us to the MPP paradigm, we need to look at using concurrent data streams for loading data into CAS 
more quickly and efficiently. 

SAS terminology typically refers to serial loading of a CAS Server in MPP mode when all of the data is 
sent through the CAS controller which then distributes the data evenly across its associated CAS 
workers. 

Figure 3 illustrates data that is transferred serially through the CAS controller. 
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Figure 3. Serial Loading from Source to the CAS Controller That Distributes Data to the CAS 
Workers 

 

Note, however, that SAS terminology aside, data transfer can still be limited to a single, effectively serial 
path by the environment itself. If a source table is saved as a file on single hard disk, then multiple 
readers of that file won’t speed things up significantly – the competition for that single resource might 
even slow overall response as compared to servicing just one individual request for the file. 

SAS has pioneered parallel approaches to data transfer for years, even before the SAS in-memory 
analytics products first debuted. The SAS Scalable Performance Data Server (SPD Server) is an example 
of a data storage technology that enabled multiple, concurrent I/O pathways for feeding data into Base 
SAS. Much of that technology eventually found its way into Foundation SAS as the SPD Engine. 

When parallel transfer is implemented for the CAS Server, each of the CAS workers directly participates 
in data transfer, usually with some coordination by the CAS controller. The total I/O throughput rate can 
be multiple times the maximum possible over serial using the same hardware.  

Figure 4 shows the CAS controller coordinating the transfer of data from source to each CAS worker. 
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Figure 4. Parallel Loading from Source Directly to the CAS Workers as Coordinated by the CAS 
Controller 

 

Keep in mind that although the SAS software might perform parallel data transfer successfully, it’s 
ultimately up to the hardware infrastructure to do its part to provide concurrent pathways for that parallel 
data transfer. There might be aspects of the infrastructure, unknown to SAS, that impede efficient data 
transfer. 

Serial loading offers the widest range of possible data sources for the CAS server. SAS data sets are one 
type of data source for CAS. This means that any data source that SAS 9 can read is ultimately available 
to CAS. SAS Viya introduces SAS Data Connectors which facilitate data transfer to and from the CAS 
server. Data connectors are analogous in concept to the SAS/ACCESS products for Base SAS. 

SAS Viya also introduces SAS Data Connect Accelerators for CAS. A data connect accelerator works 
directly with the SAS In-Database Embedded Process to perform accelerated data transfer to CAS. Of 
course, the EP can be used for much more than simply feeding data to CAS, providing in-database 
capabilities like scoring, data quality, queries, code execution, and more. 

Beyond the data connectors and data connect accelerators, CAS also has the ability to work directly with 
native data formats such as SASHDAT, SAS data sets, text-delimited files (CSV), event streams and 
more. 

№ 1: SASHDAT ON HDFS 

Our first high-performance data loading technique is an oldie but a goody. If you’ve worked with the SAS 
LASR Analytic Server and the Hadoop Distributed File System (HDFS) in the past, then you might be 
familiar with the SASHDAT format. SASHDAT is a SAS data storage structure that is designed 
specifically for high-performance, concurrent data access. With SASHDAT, your data is broken down into 
blocks. When saved to HDFS, those blocks are distributed across multiple hosts. When CAS loads 
SASHDAT from HDFS, the blocks that make up your table are read from the Hadoop DataNode hosts 
and re-assembled into a single logical table in the CAS memory space. The benefit of using SASHDAT is 
that it is often the fastest, most-efficient way to (re-)load data into CAS. 

For LASR, SASHDAT requires that the LASR root and worker nodes are placed symmetrically alongside 
the NameNode and DataNodes, respectively, of a supported distribution of HDFS. The SASHDAT table is 
accessed directly on disk as blocks in HDFS (using a technique known as short-circuit read and write). 
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We rely on HDFS to automatically manage the availability of those blocks of SASHDAT for failover and 
performance.  

We can use this same architecture approach with CAS, too. When we do, data stored in SASHDAT is 
lifted within each host from the HDFS disk directly to RAM, without any data transfer on the network 
between hosts.  

In Figure 5, CAS is symmetrically co-located alongside HDFS to directly lift SASHDAT blocks from direct-
attached disk into memory. 
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Figure 5. CAS Loads SASHDAT from Symmetrically Co-located HDFS 

 

But CAS can go beyond what LASR was capable of. Now with CAS, we can also work with SASHDAT 
tables that are stored in a remote HDFS cluster. We no longer need to require symmetric co-location with 
HDFS to take advantage of SASHDAT. CAS uses SSH (secure socket shell, an encrypted network 
communication protocol) to connect with remote Hadoop DataNode hosts and fetch SASHDAT from 
HDFS. 

Figure 6 illustrates the separation of CAS from HDFS where data is transferred across the network 
between machines. 
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Figure 6. CAS Loads SASHDAT from Remote HDFS over the Network 

 

The primary benefit of this separation is flexibility because the CAS and Hadoop clusters can be 
managed independently. The biggest drawback is that this approach isn’t likely to be as fast at 
transferring data when compared to CAS being placed symmetrically co-located with HDFS on the same 
hosts. Take care to plan for the anticipated load on your network as well.  

Of course, these and other tradeoffs should be weighed in consideration of your site’s requirements. 

 

Table 1. High Performance Data Transfer Attributes of CAS with SASHDAT in Hadoop 

Coordination CAS controller directs workers 

Caslib srctype HDFS 

Format SASHDAT blocks, CSV, SPD Engine 

Storage Hadoop Distributed File System 

Additional software 
required 

SAS approved HDFS  

 

№ 2: SAS DATA CONNECT ACCELERATORS WITH THE SAS IN-DATABASE 
EMBEDDED PROCESS 

What if you have large volumes of data in a database management system (DBMS) for which SAS offers 
its in-database technology? In this case, we can use the SAS In-Database Embedded Process in 
supported remote data providers to perform parallel loading of data directly to the CAS workers.  

For the SAS Viya platform, CAS can communicate with the EP by using its new SAS Data Connect 
Accelerator technology.  

Figure 7 shows the EP transferring data from each DBMS node to all of the CAS workers. 
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Figure 7. CAS Loads Data via the SAS In-Database Embedded Process from a Remote DBMS 
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In this illustration, we’re showing the EP that is deployed to a remote DBMS. This allows parallel data 
loading to occur directly so that the EP on each DBMS host distributes its subset data to all CAS workers.  

 

Table 2. High Performance Data Transfer Attributes of CAS with the SAS Embedded Process 

Coordination CAS controller directs workers for writes 

Each EP distributes to all workers for reads 

Caslib srctype HADOOP, SPDE, TERADATA 

Format Native RDBMS, SPD Engine files in HDFS, CSV files 

Storage Native RDBMS 

Additional software 
required 

SAS compatible DBMS 

SAS/ACCESS Interface to (DBMS) 

SAS In-Database Embedded Process  

SAS Data Connect Accelerator for (DBMS) 

 

№ 3: SASHDAT ON DNFS 

We’re no longer limited to enjoying the benefits of the SASHDAT storage format on HDFS. SAS Viya 
provides a new parallel loading technology referred to as DNFS. This is a SAS specific acronym that 
references the generalized concept of a “distributed network file system.” To be clear, this case is not 
limited just to standard NFS style solutions. The idea is that all CAS workers will be configured to use 
some form of centralized storage mounted on each CAS host at the same directory path to get to data. 
It’s up to you (or your customer) if this means using network file system (NFS), network-attached storage 
(NAS), direct-attached storage (DAS), storage array network (SAN), redundant array of independent disks 
(RAID), just a bunch of disks (JBOD), and so on. The key is that all CAS hosts find data at the exact 
same local path. 

In Figure 8, CAS accesses SASHDAT data in a SASDNFS container using the DNFS caslib. 
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Storage Solution (NFS, NAS, DAS, SAN, JBOD, etc.)
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Figure 8. CAS Loads Data from SASHDAT via DNFS 

 

Data stored using DNFS is also kept as blocks of SASHDAT, but these blocks are embedded all together 
inside a single file in a container format called SASDNFS. Even though the container is SASDNFS, the 
file type you’ll see saved to disk is still “.sashdat”.  

The really cool thing about the SASDNFS container format is that it also works with the PATH type of 
caslib. When accessing SASDNFS files, the PATH type of caslib is for serial loading only – either for an 
SMP CAS Server or by the MPP CAS controller (for subsequent distribution to each of the CAS workers). 
This means that SASDNFS files can be copied using basic operating system commands – like cp, scp, 
rsync, and so on – to move or duplicate the data on disk between hosts of SMP and MPP CAS servers. 

Table 3. High Performance Data Transfer Attributes of CAS using DNFS 

Coordination CAS controller directs workers 

Caslib srctype DNFS (for MPP CAS only, parallel transfer) 

PATH (for SMP or MPP CAS, serial transfer only) 

Format SASHDAT (in SASDNFS container), CSV files  

Storage Any POSIX compliant filesystem mounted to identical directory paths on 
all hosts of a CAS cluster. (Different CAS deployments can have 
different paths). 

Additional software 
required 

None  
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№ 4: BASE SAS ENGINE DATA SETS  

For the first time, we now can read and write SAS data sets (SAS7BDAT files) in parallel. Like the 
infrastructure for DNFS, we need to ensure that all CAS hosts can directly access the SAS data sets: 

• Place the SAS data set on a shared filesystem mounted on all CAS workers; 

• Ensure that all CAS workers have direct access to the SAS7BDAT file at the same physical path; 

• Specify a caslib datasource with srctype=”PATH” and dataTransferMode=”PARALLEL” or 
“AUTO”. 

Figure 9 illustrates the concept that even SAS data sets can be loaded into CAS using parallel I/O 
channels. 
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Figure 9. CAS Loads Data in Parallel from SAS7BDAT 

 

If only the CAS controller has direct access to the SAS data set and if AUTO is the value for the 
DATATRANSFERMODE parameter, then the CAS controller can fall back to performing a serial transfer if 
the CAS workers don’t have the necessary direct access. Otherwise, you can use the more conventional 
route of using SAS to read the data set and send it over the network to the CAS controller. 

 

Table 4. High Performance Data Transfer Attributes of CAS with SAS Data Sets 

Coordination CAS controller directs workers 

Caslib srctype PATH  
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Format SAS Data Sets (.sas7bdat) 

Storage Any POSIX compliant filesystem mounted to identical directory 
paths on all hosts of a CAS cluster. (Different CAS deployments 
can have different paths). 

Additional parameters Specify caslib attribute  
DATATRANSFERMODE=<"AUTO" or "PARALLEL">   

 

 

№ 5: MULTI-NODE DATA TRANSFER  

SAS Viya 3.3 introduces another new feature with our SAS/ACCESS and SAS Data Connector products 
called multi-node data transfer. The idea with multi-node data transfer is that the CAS controller can direct 
each participating CAS worker to request its own subset of rows from a table in a remote data provider. 
Ideally, this means that data is effectively loaded across multiple concurrent channels into CAS (that is, in 
parallel). But not all sites are ideal. There are often situations where there is a single point bottleneck, so 
CAS is very flexible and can accommodate a range of topologies.  

In Error! Reference source not found., CAS workers are shown performing multi-node data transfer 
where each worker makes its own query for its assigned subset of data, as coordinated by the CAS 
controller. 
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Figure 10. CAS Performs Multi-node Data Transfer from DBMS 
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Each data provider has its own communication procedures. The point-of-contact portion of the preceding 
figure is meant to accommodate the various service APIs that are implemented by different DBMS 
vendors.  

To enable multi-node data transfer, ensure that your system has these features: 

• CAS running in MPP mode  

• A caslib defined to the remote data provider with DATATRANSFERMODE="SERIAL" (yes, serial) 

• SAS/ACCESS and the associated SAS Data Connector are in place for the remote data provider 
(Note that multi-node data transfer isn’t available for ODBC or PC file formats.) 

• The official client for the remote data provider is installed and configured on the CAS hosts 

• The remote data provider supports multiple concurrent connections 

• The source table contains a numeric variable of type INT, DECIMAL, NUMERIC, or DOUBLE  

Beyond those items, there are two more parameters in PROC CASUTIL we can set that will then direct 
CAS to attempt multi-node data transfer. 

PROC CASUTIL: 

NUMREADNODES= (for LOAD operations) 

NUMWRITENODES=  (for SAVE operations) 

o “1” – specifies serial transfer where the CAS controller reads all data from source and 
distributes it evenly across the CAS workers 

o “0” – specifies multi-node data transfer where the CAS controller directs all workers to 
participate, if possible. 

o “>1” – specifies multi-node data transfer where the CAS controller directs the specified 
number of workers to participate, if possible 

When CAS is directed to attempt a multi-node transfer of a table, the CAS controller contacts the data 
provider for information about the target table. Specifically, it’s looking for an appropriate numeric-type of 
field as a means to split the data across participating CAS workers. After the controller gives the workers 
their assignments, each worker connects to the data provider and queries for its allotted data.  

There is a lot of variation to be found from one customer site to another, even within implementations of a 
single vendor’s DBMS product. So, when attempting multi-node data transfer, CAS proceeds with the 
directives that are given, but then it tests the environment to confirm that all is as expected. If there’s an 
attribute of the environment that prevents CAS from performing multi-node exactly as directed, it attempts 
to gracefully fall back to the next best option. Here are some examples: 

• To perform multi-node data transfer, CAS requires the target table in the data provider to contain 
an accepted numeric variable. If no suitable numeric variable is found, SAS proceeds with 
standard serial data transfer. 

• For a CAS worker to participate in multi-node data transfer, it must have the associated data 
provider’s client software installed locally and configured. If not, then the CAS controller excludes 
that worker from participating in the multi-node transfer. 

• Some data providers limit the number of concurrent connections. So, for example, if the data 
provider only accepts five concurrent connections and we have directed PROC CASUTIL to use 
more than five CAS workers, then the CAS controller directs only five of its workers to make the 
transfer.  

One important caveat to keep in mind is that it’s the CAS client’s responsibility to ensure that data is 
loaded as desired. So, if the CAS controller directs a subset its workers to perform a multi-node load, then 
those participating are the only workers with the data in memory. If your intention is for the data to be 
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distributed across all of your CAS workers, then that’s an extra step. CAS does not automatically do it for 
you. 

To redistribute data so that it’s spread evenly across all of the CAS workers in your CAS session, use 
PROC CAS to submit the table.partition action: 

 

/* Direct CAS to balance data evenly across all CAS workers */ 

PROC CAS; 

  table.partition / table={caslib="cas_data",  

                           name="cas_table",  

                           groupByMode="REDISTRIBUTE"  

                          }; 

RUN; 

QUIT; 

 

 

Table 5. High Performance Data Transfer Attributes of CAS Using Multi-Node 

Coordination CAS controller directs workers 

Caslib srctype REDSHIFT, DB2, HADOOP, IMPALA, SQLSERVER, ORACLE, 
POSTGRES, HANA, SPDE, TERADATA 

Multi-node isn’t available for srctypes ODBC or PATH (PC files)   

Format Native DBMS  

Storage Native DBMS  

Additional software 
required 

SAS approved DBMS and DBMS client 

SAS/ACCESS Interface to (DBMS) 

SAS Data Connector to (DBMS) 

Additional parameters Specify caslib attribute DATATRANSFERMODE="SERIAL"    

Specify PROC CASUTIL attribute numREADnodes or 
numWRITEnodes with a value other than “1” 

 

ADDITIONAL CONSIDERATIONS 

There are a few more things it’s helpful to keep in mind when bringing data over into CAS. 

CAS DISK CACHE 

CAS has the ability to protect against the unexpected loss of a worker. One mechanism it uses for this 
purpose is the CAS Disk Cache. This cache is dedicated space on disk which CAS can use as a 
temporary backing store for data in-memory. If a CAS worker unexpected goes down, then the other 
workers can recover its lost allocation of data from the block copies in their own cache on disk. 

CAS, however, is selective about when it will use its disk cache. Generally speaking, CAS wants to 
memory-map to SASHDAT files on disk which represent the data it has in memory. If data comes from a 
non-SASHDAT source (like a remote DBMS), then CAS will load the data into memory and also place 
copies of that data in CAS Disk Cache as SASHDAT blocks.  

On the other hand, if the source is already SASHDAT on direct-attached disk (like DNFS or symmetrically 
co-located HDFS), then CAS will memory-map to those blocks directly – and not copy to its cache. If a 
table in memory is modified, then change blocks will be placed in CAS cache to represent the difference.  
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One notable exception as of Viya 3.3 is when the CAS deployment is remote to (or placed asymmetrically 
alongside) HDFS. When loading, the blocks of data for the table must be copied over the network from 
the HDFS nodes to the CAS workers. In this situation, CAS does not automatically replicate in-memory 
blocks like we might expect. This means that there is no failover protection by default – it must be 
programmatically enabled by the client. 

COMPATABILITY WITH SASHDAT FROM LASR 

CAS can read legacy SASHDAT tables created by LASR stored in HDFS – assuming that all column 
sizes are compatible for transcoding to UTF-8. If they’re not, then the table must be saved to the new 
CAS SASHDAT file format that increases the columns’ variable length and transcodes to UTF-8 so that 
the CAS actions can then work with the data. 

LASR cannot work with new SASHDAT files generated by CAS. 

SERIAL ISN’T ALWAYS SERIAL 

The DATATRANSFERMODE option for non-PATH type caslibs takes three values – and these may be 
the cause for confusion in determining if data is actually transferred in serial or in parallel to CAS. Those 
values are translated by CAS to drive its use of specific software products. Whether those products can 
deliver on the plain English meaning of the specified value is determined later. 

 

Table 6. DATATRANSFERMODE Determines SAS Product to Use 

DATATRANSFERMODE CAS will use Actual transfer method 

PARALLEL SAS Data Connect Accelerator Only parallel 

SERIAL SAS Data Connector Serial or multi-node if indicated. 

Automatically detect and 
gracefully fall back: 

Multi-node > Serial 

AUTO SAS Data Connect Accelerator. 

If fails, use SAS Data Connector. 

Parallel if possible. 

Automatically detect and 
gracefully fall back: 

Parallel > Multi-node > Serial 

 

When PARALLEL is specified as the DATATRANSFERMODE for caslibs other than the Path type, that 
explicitly locks CAS to working only with the SAS Data Connect Accelerator and the SAS Embedded 
Process. If the EP cannot perform multiple channel I/O to the CAS Workers, then the transfer attempt is 
stopped with an error in the SAS log. 

As you can see, in SAS’ technical terminology, multi-node data transfer falls under the SERIAL label. 
However, the ideal multi-node configuration will indeed allow for multiple, parallel I/O channels for 
transferring data from the data provider directly to each of the CAS Workers. Real-life implementations, 
as we all know, are not always ideal. When the NUMREADNODES (or NUMWRITENODES) attributes 
indicate multi-node transfer, CAS is programmed to verify multi-node capabilities and, if needed, it will 
reduce the number participating Workers to proceed with the transfer. 

Use AUTO as the DATATRANSFERMODE for the most flexibility. CAS will attempt to “do the right thing” 
by gracefully degrading from parallel to multi-node all the way down to serial if necessary. 

CONCLUSION 
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As data volumes continue to increase, the challenge to analyze it all quickly and efficiently is always 
present. Before that data can be analyzed in SAS Viya, it must be transferred from source systems into 
the memory space where CAS can work with it. Speeding up the time of this transfer helps realize the 
investment in massively parallel processing environments. SAS Viya and CAS offer new, unprecedented 
techniques to help achieve new options in pursuing faster data movement, analysis, and reporting.  
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