Paper SAS1814-2018

Optimization Modeling with Python and SAS® Viya®

Jared Erickson and Sertalp B. Cay, SAS Institute Inc.

ABSTRACT

Python has become a popular programming language for both data analytics and mathematical optimization. With
SAS® Viya® and its Python interface, Python programmers can use the state-of-the-art optimization solvers that
SAS® provides. This paper demonstrates an approach for Python programmers to naturally model their optimization
problems, solve them by using SAS® Optimization solver actions, and view and interact with the results. The common
tools for using the optimization solvers in SAS for these purposes are the OPTMODEL and IML procedures, but
programmers more familiar with Python might find this alternative approach easier to grasp.

INTRODUCTION

Algebraic modeling languages (AMLs) enable modelers to formulate optimization problems in a natural way that can
conveniently be solved by optimization solvers. Direct input for solvers, such as unlabeled lists of coefficients, is
generally not easily readable by humans. An AML lets users give constraints and variables names that make sense
to them, so it is easy to modify the model or build it in pieces. The OPTMODEL procedure is the AML available
in SAS/OR® software. PROC OPTMODEL is a very powerful tool that you can use to model a wide variety of
mathematical optimization problem types, including linear programming (LP), mixed integer linear programming
(MILP), quadratic programming (QP), constraint logic programming (CLP), nonlinear programming (NLP), and network
analysis.

Although PROC OPTMODEL is easy and intuitive for SAS users, many people who work on analytics and operations
research problems are more comfortable using the Python language. With SAS Viya, Python users can access some
of the SAS Optimization solvers in the optimization action set on the Cloud Analytic Services (CAS) server. The
CAS server holds data and can run analytics actions on the data. (For more information about CAS, see SAS Viya:
System Programming Guide.) The optimization action set includes actions for the LP, MILP, and QP solvers. The
purpose of this paper is to introduce the sasoptpy modeling package, which gives you the ability to write optimization
models in Python that it can solve using SAS Optimization solvers. This package provides a convenient modeling
framework for programmers who already use Python. These users can also benefit from integrating optimization
models into their Python code by using native Python functionality. The sasoptpy package is platform-independent, so
you can use it on Windows, Linux, and macOS operating systems.

You can find the full documentation with examples and installation instructions at https://sassoftware.github.io/sasoptpy/.
The sasoptpy package is an open-source Python package, and you can find the source code at
https://github.com/sassoftware/sasoptpy under Apache 2.0 License. This paper is based on version 0.1.1.

OVERVIEW OF MATHEMATICAL OPTIMIZATION

Mathematical optimization, also known as mathematical programming, is a way of modeling and solving problems that
require choosing the best option from a feasible set. The major components of an optimization model include the
following:

o Decision variables: Variables whose values are determined by the solution algorithm
e Objective: A function whose value is to be optimized

e Constraints: Equalities and inequalities that restrict the set of feasible solutions

Mathematical optimization is used in a wide variety of industries, including finance, health care, and marketing.
Applications include logistics, production planning, scheduling, location, and portfolio optimization problems. For
more information and examples, see SAS/OR User’s Guide: Mathematical Programming and SAS Optimization:
Mathematical Optimization Procedures.

FIRST EXAMPLE: CANDY MANUFACTURER PRODUCT-MIX PROBLEM

For a simple example, consider the model in the section “Model Building with PROC OPTMODEL” of SAS/OR User’s
Guide: Mathematical Programming. A candy manufacturer makes two products, chocolate and toffee. It uses four
processes that have a limited amount of time available per day (7.5 hours, or 27,000 seconds), and the production of
one pound of each product requires different amounts of time in each process. The manufacturer makes a profit of
$0.25 per pound of chocolate and $0.75 per pound of toffee, and it would like to maximize its total profit. You can write
the mathematical representation of the optimization problem as follows:

maximize 0.25 - chocolate + 0.75 - toffee

subject to 15 - chocolate 4+ 40 - toffee < 27000
56.25 - toffee < 27000
18.75 - chocolate < 27000
12 - chocolate + 50 - toffee < 27000
chocolate, toffee > 0

Here is the Python code to create the same model by using the sasoptpy package, which solves it with the CAS action
solvelp, and the corresponding PROC OPTMODEL code:

from swat import CAS #
import sasoptpy as so #
s = CAS (hostname, port) #
m = so.Model (name='candy', session=s) # proc optmodel;
choco = m.add_variable (1b=0, name='choco') # var choco >= 0;
toffee = m.add variable (1lb=0, name='toffee') # var toffee >= 0;
m.set_objective (0.25xchoco + 0.75*toffee, # maximize profit =

sense=so.MAX, # 0.25*choco + 0.75xtoffee;

name='profit') #
m.add_constraint (15+*choco + 40x*toffee <= 27000, # con processl:

name='processl') # 15*xchoco + 40xtoffee <= 27000;
m.add_constraint (56.25xtoffee <= 27000, # con process2:

name='process2') # 56.25xtoffee <= 27000;
m.add_constraint (18.75*xchoco <= 27000, # con process3:

name='process3') # 18.75%xchoco <= 27000;
m.add_constraint (12+*choco + 50*toffee <= 27000, # con processé:

name='process4') # 12xchoco + 50*toffee <= 27000;
result = m.solve () # solve;
print (so.get_solution_table(choco, toffee)) # print choco toffee;

quit;

As you can see, nearly every line of this Python code has a corresponding line of PROC OPTMODEL code.

SYNTAX

The syntax of the sasoptpy package should be natural for Python programmers, and existing Python data structures
are easily used in the modeling. You can use the Python list structure in the same way that you use sets in PROC
OPTMODEL. Pandas DataFrames and Series objects and Python dictionaries are easy ways to define the problem
data. There are specific approaches for adding variables, objectives, and constraints. The options for the solvers are
the same as the options for the actions and are directly passed as a dictionary. The sasoptpy package can currently
use the LP and MILP solvers, and it might soon use the QP solver.

The most common Python methods for writing a model are the add_variable and add_variables methods to
add new variables to the model, the add_objective method to add an objective function to minimize or maximize,
and the add_constraint and add_constraints methods to add new constraints to the model.

The syntax for writing expressions for objectives and constraints is familiar to Python programmers, with the exception
of summations. Although you can use Python’s native sum function in sasoptpy expressions, it is not efficient
for summing over variables or expressions. The sasopipy quick_sum function is more efficient for processing
summations of expressions. Also, the VariableGroup. sum method is a convenient way to sum all variables, or a
subset of variables, in a variable group without coefficients.

One difference to note between the sasoptpy package and PROC OPTMODEL is that PROC OPTMODEL allows the
declaration of the model to be completely independent from the data, whereas sasoptpy does not at this time. You

2

can use sasopipy to construct only concrete models. This means, for example, that the elements of a set must be
known before you declare a variable over it, and the values of coefficients in a constraint must be known when the
constraint is declared. The following examples demonstrate how you can use data in sasoptpy.

You can use data from a Python list:

= [1,2,4,8,16]

range (len(a))

= m.add_variables (S, name='X")

.set_objective (so.quick_sum(a[i] * X[i] for i in S), sense=so.MIN)

8 X 0w

You can use data from a Python dictionary:
cost = {'Steel': 100, 'Wood': 200, 'Wire': 30}
MATERIALS = cost.keys()
PurchaseAmount = m.add_variables (MATERIALS, name='PurchaseAmount')
m.set_objective (so.quick_sum(cost[i] * PurchaseAmount[i] for i in MATERIALS), sense=so.MIN)

You can use data from a Pandas DataFrame:
cookingdata = pd.DataFrame ([
['Processl', 27000, 15, 40],
['Process2', 27000, 0, 56.25],
['Process3', 27000, 18.75, 0],
['Process4', 27000, 12, 50]
], columns=['Process', 'Time', 'Chocolate', 'Toffee']).set_index(['Process'])
choco = m.add _variable (1lb=0, name='choco')
toffee = m.add variable (1lb=0, name='toffee')
m.add_constraints (cookingdata.at [process, 'Chocolate']=*choco
+ cookingdata.at [process, 'Toffee']xtoffee
<= cookingdata.at[process, 'Time'] for process in cookingdata.index.values)

You can modify the model coefficients at any time, including after you call the solver. You add variables or constraints
by using the same methods as before the solve, but the ability to remove variables or constraints is not currently
available. You can have multiple models available for manipulation at the same time when you use sasopipy.

HOW THE sasoptpy MODELING PACKAGE WORKS

Currently, the only way to access the SAS Optimization solvers from Python is to call the solver action and provide it with
an MPS-format data table; this process is described in SAS Optimization: Mathematical Optimization Programming
Guide. The MPS-format data table is a way to store the problem instance on the CAS server, but it is difficult to
create manually. The sasopipy package provides Python functions to users for creating an MPS-format data table,
without the user even needing to know that the data table exists. It uses Python’s operator overloading feature to
parse expressions that are written in a natural form.

The sasoptpy package benefits from native Python structures and the Pandas library for fast deployment of models.
All the model components are stored inside Python objects until the solve method is called. When you call the
solve method, sasopipy converts the objects and expressions into a Pandas DataFrame in the MPS-format data
table and uploads it to the CAS server. Then it calls the desired solver, passing the newly made data table and any
parameters that you include. The parameters are passed as a dictionary—the same way that they would be in the
Python interface for the solveLp or solveMilp action in the optimization action set. For example, you can set
initial values for the primal and dual variables by using the primalIn and dualIn parameters. When a result is
returned, you can access primal and dual solution tables, set by the primalout and dualOut parameters, by using
the get_solution method. Data in CAS data tables can be used by sasoptpy only if the data are fetched (copied
from the CAS server to the client) to Python first.

EXAMPLE: KIDNEY EXCHANGE

The kidney exchange problem was presented along with PROC OPTMODEL code by Galati (2015). That source
describes the problem this way:

Suppose someone needs a kidney transplant and a family member is willing to donate one. If the donor
and recipient are incompatible (because of blood types, tissue mismatch, and so on), the transplant
cannot happen. Now suppose two donor-recipient pairs A and B are in this situation, but donor A is

compatible with recipient B and donor B is compatible with recipient A. Then two transplants can take
place in a two-way swap in which donor A gives to recipient B and donor B gives to recipient A. More
generally, with n such incompatible donor-recipient pairs you can sometimes do an n-way swap.

The objective is to maximize the weighted sum of donor-recipient pairs who are matched for an exchange. This
example shows you how to use the sasopipy package to model and solve the problem, and it shows you how other
Python packages can use the results to visualize the solution. Several features are shown in this example, but you
can refer to the documentation to see all the options and possible parameter values.

IMPORT PYTHON PACKAGES

The first step is to import the necessary Python packages. You need the CAS function from the SAS SWAT package
as described in Getting Started with SAS Viya for Python to connect to the CAS server. You also need the sasopipy
package to write the model. This example uses random data, so the random package needs to be imported. The
NetworkX and Matplotlib packages are used to plot the data and solution for the example.

from swat import CAS

import sasoptpy as so

import random

import networkx as nx

import matplotlib.pyplot as plt

CONNECT TO CAS

The next step is to connect to the CAS server:
s = CAS (host, port, username, password)

CREATE AND VISUALIZE DATA

The random data are then created using 100 recipient-donor pairs that have a 2% chance of compatibility with each
other pair. The random seed is set for reproducibility, and the ARCS dictionary is used to indicate whether a donor is
compatible with a recipient in a different pair. The max_length parameter is defined to limit cycles to a length of 10,
because large cycles are impractical. These statements create the data:

n = 100

p = 0.02

max_length = 10

random. seed (1)

ARCS = {}

for i in range(n):

for j in range(n):
if i '= j:
if random.random() < p:
ARCS[i, j] = random.random/()

Figure 1 shows a plot of the corresponding directed graph. The NetworkX package uses a thicker line at the destination
end of the arc to indicate the arc’s direction. These statements create and plot the graph:

G = nx.DiGraph /()

G.add_nodes_from(range(n))

G.add_edges_from (ARCS)

pos = nx.circular_layout (G)

nx.draw_networkx nodes (G, pos, with_labels=False, node_size=50, node_color='gray')

nx.draw_networkx_ edges (G, pos)

plt.axis ('off"')

plt.show()

Figure 1 Full Compatibility Graph

[N

DEFINE THE MODEL

Next, the sasoptpy package is used to define the model. First, the model object is initialized with a name and a CAS
session:
m = so.Model ("kidney_exchange", session=s)

Declare Sets

Then, in the following code, the Python set object NODES is defined according to the keys of the ARCS dictionary,
which takes the integer values between 0 and 99. The MATCHINGS set contains the names of each cycle in the
solution. Each cycle contains at least two nodes, so the solution has at most 50 cycles. They are defined as the
integers 1 through 50.

NODES = set () .union (*ARCS.keys())

MATCHINGS = range(l, int (len (NODES)/2)+1)

Declare Variables

Then the UseNode, UseArc, and Slack variables are declared, as the following code shows. The UseNode variable
indicates whether a particular node is in a particular matching. The UseArc variable indicates whether a particular
arc is in a particular matching. The Slack variable indicates whether a particular node is not in any matching.

Note that the first arguments of the add_variables method are the sets that the variable is defined over. Then the
optional vartype parameter is used to indicate whether the variable is continuous, binary, or integer. The optional
name parameter is used as a prefix for variables in the same group. You can also use the specified name to access
the object by using the get_ob3j_by_name function.

UseNode = m.add_variables (NODES, MATCHINGS, vartype=so.BIN, name="UseNode")

UseArc = m.add_variables (ARCS, MATCHINGS, vartype=so.BIN, name="UseArc")

Slack = m.add_variables (NODES, vartype=so.BIN, name="Slack")

Define Objective

Setting the objective shows how you can write expressions. The first argument of the set_objective method is the
expression, the name parameter specifies a name, and the sense parameter defines the objective as minimization or
maximization. This objective maximizes the total weight of the used arcs:
m.set_objective (
so.quick_sum((ARCS[i, j] * UseArc[i, j, m] for [i, j] in ARCS for m in MATCHINGS)),
name="total_weight", sense=so.MAX)

Define Constraints

You can add constraints in groups over sets by using the add_constraints method. The first argument is the
equality or inequality, which can include a for statement if it is over a set. The second argument is the name for the
group of constraints.

The Node_Packing constraint requires each node to appear in no more than one matching. The Donate constraint
requires there to be no more than one recipient for each donor. The Receive constraint requires there to be no more
than one donor for each recipient. The Cardinality constraint prevents long matching cycles.

The variableGroup. sum method for variable groups is used for efficient summations over index sets that have
"%’ in the index’s position. Using this method allows the expression to be written more compactly than using the
quick_sum function, which must be used in the objective because of the coefficients. The alternative is also shown
for the Node_Packing constraint in a comment in these statements:
Node_Packing = m.add_constraints(
(UseNode.sum(i, 'x') + Slack[i] == 1 for i in NODES),
name="node_packing")
Alternative summation method
Node_Packing = m.add_constraints(
(so.quick_sum(UseNode[i, k] for k in MATCHINGS) + Slack[i] == 1 for i in NODES),
name="node_packing")
Donate = m.add constraints(
(UseArc.sum(i, 'x', k) == UseNode[i, k] for i in NODES for k in MATCHINGS),
name="donate")
Receive = m.add constraints(
(UseArc.sum('x', j, k) == UseNode[j, k] for j in NODES for k in MATCHINGS),
name="receive")
Cardinality = m.add_constraints(
(UseArc.sum('+', 'x', k) <= max length for k in MATCHINGS),
name="cardinality")

Solve with DECOMP

If the Node_Packing constraint is relaxed, the problem becomes decomposable into independent subproblems, so
the model is a good candidate for the DECOMP algorithm in the MILP solver. The model is separable by matching,
so as the following code shows, the block assignment for each constraint is set to k. The solver is then called using
DECOMP, with the presolver level set to BASIC for the model to maintain symmetry.
for i in NODES:
for k in MATCHINGS:
Donate[i, k].set_block (k)

for j in NODES:
for k in MATCHINGS:
Receive[]j, k].set_block (k)

for k in MATCHINGS:
Cardinality[k] .set_block (k)

m.solve (milp={ 'maxtime': 300, 'decomp': {'method': 'user'}, 'presolver': 'basic'})

The output from the solver action is displayed after the solve method is called. However, the following sasoptpy
package notes precede the solver output. The first note indicates that the model has been initialized. Because the block
assignments are set for constraints, sasoptpy creates a data table, called “BLOCKSTABLE,” to pass this information to
the solver. The sasoptpy output then indicates that it is converting the model to a Pandas DataFrame. It uploads the
Pandas DataFrame to the CAS server as a data table with an arbitrary name and adds the optimization action
set.

NOTE: Initialized model kidney_ exchange

NOTE: Cloud Analytic Services made the uploaded file available as table BLOCKSTABLE in

caslib CASUSERHDFS (casuser) .

NOTE: The table BLOCKSTABLE has been created in caslib CASUSERHDFS (casuser) from binary

data uploaded to Cloud Analytic Services.

NOTE: Converting model kidney_ exchange to DataFrame

NOTE: Uploading the problem DataFrame to the server.

NOTE: Cloud Analytic Services made the uploaded file available as table TMPK04UM1ZU in

caslib CASUSERHDFS (casuser) .

NOTE: The table TMPK04UM1ZU has been created in caslib CASUSERHDFS (casuser) from binary

data uploaded to Cloud Analytic Services.

NOTE: Added action set 'optimization'.

The next part of the log is created by the solver and is not shown here. The following notes, which are displayed after
the objective value, indicate that sasoptpy drops (removes from the CAS session) the tables that it creates:
NOTE: Objective = 28.060783917.
NOTE: Cloud Analytic Services dropped table TMPK04UM1ZU from caslib CASUSERHDFS (casuser).
NOTE: Cloud Analytic Services dropped table BLOCKSTABLE from caslib CASUSERHDFS (casuser) .

VIEW SOLUTION

When you use the get_solution_table function, as in the following code, you can get the values of the UseArc
variable in a Pandas DataFrame.The rest of the code after the solution is extracted does not use sasopipy—only the
packages that you need in order to generate plots. Then a list of the used arcs and a list of the lists of nodes for each
cycle are created; they are used for a new NetworkX graph that displays only the used arcs.

UseArcDataFrame = so.get_solution_table (UseArc)

usedarcs = []
cycleassign = {}
cyclenodes = []

for index, row in UseArcDataFrame.iterrows() :
if row['UseArc'] > 0.5:
node_from = index[0]
node_to = index[1]
matching = index[2]
usedarcs.append ((node_from, node_to))
if matching in cycleassign:
cyclenodes[cycleassign[matching]] .append (node_from)
else:
cycleassign[matching] = len (cyclenodes)
cyclenodes. append ([node_from])

print (UseArcDataFrame)
print (usedarcs)

The beginning of the printed Pandas DataFrame output shows the values of the UseArc variable, starting with the first
edge from 0 to 14 for each element of MATCHINGS. The value of UseArc is 1 when the MATCHINGS element is 1, so
that edge is in the first cycle and appears in the usedarcs list output.

UseArc
1 2 3
0 14 1 1.0
0 14 2 0.0

0 14 3 0.0
0 14 4 0.0
0 14 5 0.0
0 14 6 0.0
0 14 7 0.0
0 14 8 0.0
0 14 9 0.0
0 14 10 0.0
0 14 11 0.0
99 76 43 0.0
99 76 44 0.0
99 76 45 0.0
99 76 46 0.0
99 76 47 0.0
99 76 48 0.0
99 76 49 0.0

[(O, 14), (1, 77), (2, 0O0), (5, 62), (8, 63), (10, 37), (11, 29), (12, 26), (13, 59),

(14, 42), (17, 49), (21, 85), (25, 13), (26, 47), (27, 8), (29, 5), (31, 33), (32, 10
), (33, 43), (34, 92), (36, 55), (37, 76), (38, 88), (40, 38), (42, 21), (43, 87), (4
4, 17), (46, 32), (47, 44), (49, 56), (51, 46), (55, 93), (56, 70), (59, 82), (62, 1)
, (63, 71), (64, 51), (66, 69), (69, 64), (70, 12), (71, 11), (75, 98), (76, 66), (77
, 27), (82, 94), (85, 40), (87, 34), (88, 2), (92, 36), (93, 31), (94, 75), (98, 25)]

The following statements assign colors so that the nodes and arcs in each cycle are the same color and unused nodes

are gray:
cyclenodes. sort (key=1len)
nodecolors = ['gray'] * n
colorlist = ['red', 'blue', 'green',K 'yellow',6 'orange',6 'purple']

coloridx = 0
for cycle in cyclenodes:
color = colorlist[coloridx%len(colorlist)]
for i in cycle:
nodecolors[i] = color
coloridx += 1

edgecolors = [0] * len(usedarcs)

edgenumber = 0

for i,j in usedarcs:
edgecolors[edgenumber] = nodecolors[i]
edgenumber += 1

The following statements plot the solution by using NetworkX, as shown in Figure 2:
G = nx.DiGraph ()
G.add_nodes_from(range(n))
G.add_edges_from(usedarcs)
nx.draw_networkx (G, pos, edges=G.edges, nodes=G.nodes, node_color=nodecolors,
edge_color=edgecolors, with_labels=False, node_size=75)
plt.axis('off"')
plt.show()

Figure 2 Solution Graph

v

The following statements plot an additional graph that shows an individual cycle, as shown in Figure 3:
singlecyclearcs = [arcs for arcs in usedarcs if arcs[0] in cyclenodes[0]]
edgecolor = nodecolors[cyclenodes[0] [0]]

G=nx.DiGraph ()

G.add_nodes_from(range (n))

G.add_edges_from(singlecyclearcs)

nx.draw_networkx (G, pos, edges=G.edges, nodes=G.nodes, node_color=nodecolors,
edge_color=edgecolor, with_labels=False, node_size=75)

plt.axis('off"')

plt.show()

Figure 3 Single-Cycle Graph

SUMMARY

This paper shows a new way to use SAS Optimization solvers from a Python interface. It combines the advantages of
Python as a popular programming environment for data scientists and the convenience of modeling your optimization
problem in an intuitive way. The ability to use the sasoptpy modeling package with familiar Python packages, as
demonstrated using Matplotlib and NetworkX; is also an attractive feature for Python programmers. The open-source
package is available at https://github.com/sassoftware/sasoptpy. For further reading about using Python with SAS
Viya, see Smith and Meng (2017).

REFERENCES

Galati, M. (2015). “The Kidney Exchange Problem.” February. https://blogs.sas.com/content/
operations/2015/02/06/the-kidney-exchange-problem/.

10

https://blogs.sas.com/content/operations/2015/02/06/the-kidney-exchange-problem/
https://blogs.sas.com/content/operations/2015/02/06/the-kidney-exchange-problem/

SAS Institute Inc. (2017a). Getting Started with SAS Viya 3.3 for Python. Cary, NC: SAS Institute
Inc. http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=
caspg3&docsetTarget=titlepage.htm&locale=en.

SAS Institute Inc. (2017b). An Introduction to SAS Viya 3.3 Programming. Cary, NC: SAS Institute
Inc. http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=
pgmdiff&docsetTarget=nl1t409khgsuOn8nl03122kk0bfzn.htm&locale=en

SAS Institute Inc. (2017c). SAS Optimization 8.2: Mathematical Optimization Procedures. Cary, NC: SAS Institute
Inc. http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=
casmopt&docsetTarget=titlepage.htm&locale=en

SAS Institute Inc. (2017d). SAS Optimization 8.2: Mathematical Optimization Programming Guide. Cary, NC:
SAS Institute Inc. http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&
docsetId=casactmopt&docsetTarget=titlepage.htm&locale=en

SAS Institute Inc. (2017e). SAS/OR 14.3 User’s Guide: Mathematical Programming. Cary, NC: SAS Institute
Inc. http://go.documentation.sas.com/?docsetId=ormpug&docsetTarget=titlepage.htmé&
docsetVersion=14.3&locale=en

Smith, K. D., and Meng, X. (2017). SAS Viya: The Python Perspective. Cary, NC: SAS Institute Inc.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors:

Jared Erickson

SAS Institute Inc.

SAS Campus Drive
Cary, NC 27513
jared.erickson@sas.com

Sertalp B. Cay

SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
sertalp.cay@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

11

http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=caspg3&docsetTarget=titlepage.htm&locale=en
http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=caspg3&docsetTarget=titlepage.htm&locale=en
http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=pgmdiff&docsetTarget=n1t409khqsu0n8n103122kk0bfzn.htm&locale=en
http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=pgmdiff&docsetTarget=n1t409khqsu0n8n103122kk0bfzn.htm&locale=en
http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=casmopt&docsetTarget=titlepage.htm&locale=en
http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=casmopt&docsetTarget=titlepage.htm&locale=en
http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=casactmopt&docsetTarget=titlepage.htm&locale=en
http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=casactmopt&docsetTarget=titlepage.htm&locale=en
http://go.documentation.sas.com/?docsetId=ormpug&docsetTarget=titlepage.htm&docsetVersion=14.3&locale=en
http://go.documentation.sas.com/?docsetId=ormpug&docsetTarget=titlepage.htm&docsetVersion=14.3&locale=en

