SAS Statistical Business Analysis Using SAS 9: Regression and Modeling Exam

ANOVA - 10%

Verify the assumptions of ANOVA

- Explain the central limit theorem and when it must be applied
- Examine the distribution of continuous variables (histogram, box-whisker, Q-Q plots)
- Describe the effect of skewness on the normal distribution
- Define H0, H1, Type I/II error, statistical power, p-value
- Describe the effect of sample size on p-value and power
- Interpret the results of hypothesis testing
- Interpret histograms and normal probability charts
- Draw conclusions about your data from histogram, box-whisker, and Q-Q plots
- Identify the kinds of problems may be present in the data: (biased sample, outliers, extreme values)
- For a given experiment, verify that the observations are independent
- For a given experiment, verify the errors are normally distributed
- Use the UNIVARIATE procedure to examine residuals
- For a given experiment, verify all groups have equal response variance
- Use the HOVTEST option of MEANS statement in PROC GLM to assess response variance

Analyze differences between population means using the GLM and TTEST procedures

- Use the GLM Procedure to perform ANOVA
 - CLASS statement
 - MODEL statement
 - MEANS statement
 - OUTPUT statement
- Evaluate the null hypothesis using the output of the GLM procedure
- Interpret the statistical output of the GLM procedure (variance derived from MSE, F value, p-value R**2, Levene's test)
- Interpret the graphical output of the GLM procedure
- Use the TTEST Procedure to compare means

Perform ANOVA post hoc test to evaluate treatment effect
Use the LSMEANS statement in the GLM or PLM procedure to perform pairwise comparisons
- Use PDIFF option of LSMEANS statement
- Use ADJUST option of the LSMEANS statement (TUKEY and DUNNETT)
- Interpret diffograms to evaluate pairwise comparisons
- Interpret control plots to evaluate pairwise comparisons
- Compare/Contrast use of pairwise T-Tests, Tukey and Dunnett comparison methods

Detect and analyze interactions between factors
- Use the GLM procedure to produce reports that will help determine the significance of the interaction between factors. MODEL statement
- LSMEANS with SLICE=option (Also using PROC PLM)
- ODS SELECT
- Interpret the output of the GLM procedure to identify interaction between factors: p-value
- F Value
- R Squared
- TYPE I SS
- TYPE III SS

Linear Regression - 20%

Fit a multiple linear regression model using the REG and GLM procedures
- Use the REG procedure to fit a multiple linear regression model
- Use the GLM procedure to fit a multiple linear regression model

Analyze the output of the REG, PLM, and GLM procedures for multiple linear regression models
- Interpret REG or GLM procedure output for a multiple linear regression model: convert models to algebraic expressions
- Convert models to algebraic expressions
- Identify missing degrees of freedom
- Identify variance due to model/error, and total variance
- Calculate a missing F value
- Identify variable with largest impact to model
- For output from two models, identify which model is better
- Identify how much of the variation in the dependent variable is explained by the model
- Conclusions that can be drawn from REG, GLM, or PLM output: (about H0, model quality, graphics)

Use the REG or GLMSELECT procedure to perform model selection
• Use the SELECTION option of the model statement in the GLMSELECT procedure
• Compare the different model selection methods (STEPWISE, FORWARD, BACKWARD)
• Enable ODS graphics to display graphs from the REG or GLMSELECT procedure
• Identify best models by examining the graphical output (fit criterion from the REG or GLMSELECT procedure)
• Assign names to models in the REG procedure (multiple model statements)

Assess the validity of a given regression model through the use of diagnostic and residual analysis

• Explain the assumptions for linear regression
• From a set of residuals plots, assess which assumption about the error terms has been violated
• Use REG procedure MODEL statement options to identify influential observations (Student Residuals, Cook's D, DFFITS, DFBETAS)
• Explain options for handling influential observations
• Identify collinearity problems by examining REG procedure output
• Use MODEL statement options to diagnose collinearity problems (VIF, COLLIN, COLLINOINT)

Logistic Regression - 25%

Perform logistic regression with the LOGISTIC procedure

• Identify experiments that require analysis via logistic regression
• Identify logistic regression assumptions
• logistic regression concepts (log odds, logit transformation, sigmoidal relationship between p and X)
• Use the LOGISTIC procedure to fit a binary logistic regression model (MODEL and CLASS statements)

Optimize model performance through input selection

• Use the LOGISTIC procedure to fit a multiple logistic regression model
• LOGISTIC procedure SELECTION=SCORE option
• Perform Model Selection (STEPWISE, FORWARD, BACKWARD) within the LOGISTIC procedure

Interpret the output of the LOGISTIC procedure

• Interpret the output from the LOGISTIC procedure for binary logistic regression models: Model Convergence section
• Testing Global Null Hypothesis table
• Type 3 Analysis of Effects table
• Analysis of Maximum Likelihood Estimates table
• Association of Predicted Probabilities and Observed Responses

Score new data sets using the LOGISTIC and PLM procedures

• Use the SCORE statement in the PLM procedure to score new cases
• Use the CODE statement in PROC LOGISTIC to score new data
• Describe when you would use the SCORE statement vs the CODE statement in PROC LOGISTIC
• Use the INMODEL/OUTMODEL options in PROC LOGISTIC
• Explain how to score new data when you have developed a model from a biased sample

Prepare Inputs for Predictive Model Performance - 20%

Identify the potential challenges when preparing input data for a model

• Identify problems that missing values can cause in creating predictive models and scoring new data sets
• Identify limitations of Complete Case Analysis
• Explain problems caused by categorical variables with numerous levels
• Discuss the problem of redundant variables
• Discuss the problem of irrelevant and redundant variables
• Discuss the non-linearities and the problems they create in predictive models
• Discuss outliers and the problems they create in predictive models
• Describe quasi-complete separation
• Discuss the effect of interactions
• Determine when it is necessary to oversample data

Use the DATA step to manipulate data with loops, arrays, conditional statements and functions

• Use ARRAYS to create missing indicators
• Use ARRAYS, LOOP, IF, and explicit OUTPUT statements

Improve the predictive power of categorical inputs

• Reduce the number of levels of a categorical variable
• Explain thresholding
• Explain Greenacre's method
• Cluster the levels of a categorical variable via Greenacre's method using the CLUSTER procedure
 o METHOD=WARD option
 o FREQ, VAR, ID statement
Exam Content Guide

Use of ODS output to create an output data set
 • Convert categorical variables to continuous using smooth weight of evidence

Screen variables for irrelevance and non-linear association using the CORR procedure
 • Explain how Hoeffding's D and Spearman statistics can be used to find irrelevant variables and non-linear associations
 • Produce Spearman and Hoeffding's D statistic using the CORR procedure (VAR, WITH statement)
 • Interpret a scatter plot of Hoeffding's D and Spearman statistic to identify irrelevant variables and non-linear associations

Screen variables for non-linearity using empirical logit plots
 • Use the RANK procedure to bin continuous input variables (GROUPS=, OUT= option; VAR, RANK statements)
 • Interpret RANK procedure output
 • Use the MEANS procedure to calculate the sum and means for the target cases and total events (NWAY option; CLASS, VAR, OUTPUT statements)
 • Create empirical logit plots with the GPLOT procedure
 • Interpret empirical logit plots

Measure Model Performance - 25%

Apply the principles of honest assessment to model performance measurement
 • Explain techniques to honestly assess classifier performance
 • Explain overfitting
 • Explain differences between validation and test data
 • Identify the impact of performing data preparation before data is split

Assess classifier performance using the confusion matrix
 • Explain the confusion matrix
 • Define: Accuracy, Error Rate, Sensitivity, Specificity, PV+, PV-
 • Explain the effect of oversampling on the confusion matrix
 • Adjust the confusion matrix for oversampling

Model selection and validation using training and validation data
 • Divide data into training and validation data sets using the SURVEYSELECT procedure
 • Discuss the subset selection methods available in PROC LOGISTIC
 • Discuss methods to determine interactions (forward selection, with bar and @ notation)
Exam Content Guide

- Create interaction plot with the results from PROC LOGISTIC
- Select the model with fit statistics (BIC, AIC, KS, Brier score)

Create and interpret graphs (ROC, lift, and gains charts) for model comparison and selection

- Explain and interpret charts (ROC, Lift, Gains)
- Create a ROC curve (OUTROC option of the SCORE statement in the LOGISTIC procedure)
- Use the ROC and ROCCONTRAST statements to create an overlay plot of ROC curves for two or more models
- Explain the concept of depth as it relates to the gains chart

Establish effective decision cut-off values for scoring

- Illustrate a decision rule that maximizes the expected profit
- Explain the profit matrix and how to use it to estimate the profit per scored customer
- Calculate decision cutoffs using Bayes rule, given a profit matrix
- Determine optimum cutoff values from profit plots
- Given a profit matrix, and model results, determine the model with the highest average profit

Note: All 22 main objectives will be tested on every exam. The 126 expanded objectives are provided for additional explanation and define the entire domain that could be tested.