JMP Certified Associate:
Statistical Thinking for Industrial Problem Solving

Section 1: Statistical Thinking and Problem Solving: 10%

Define statistical thinking and problem solving

- Explain the benefits of statistical thinking
- List the principles of statistical thinking
- Describe the importance of following a structured approach to problem solving
- Explain the importance of a well-written problem definition
- Identify and define KPIs (Key Performance Indicators)
 - Define what success looks like and determine how to measure for success and improvement
 - Describe the importance of establishing a baseline for your KPIs using control charts

Define the process for creation of a process map or SIPOC

- Interpret a process map
 - Explain the importance of a process map in understanding the process and scoping the problem
 - Define the parts of a process map
- Interpret a SIPOC model (Supplier, Input, Process, Output, Customer)
 - Explain why you would do a SIPOC

Identify root causes of a problem, compile and collect data

- Develop and interpret a cause and effect (C&E) diagram
 - Identify the components of a simple C&E diagram
 - Given a completed C&E diagram, determine action to take based on the completed diagram.
- Define rules for effective brainstorming
 - Explain methods for brainstorming and methods for gaining consensus.
 - Explain how Affinity diagrams are used for organizing output from a brainstorming session
- Define operational definitions and why they are important
 - Given a particular KPI, identify the appropriate operational definition for it
- Describe data types and modeling types
• Given a problem, be able to create a data collection plan
 o Determine the data you need to collect
 o Determine if there is historical data available that can be used
 ▪ Determine locations/sources of existing data
 o Given a project, determine what other type of data are needed
 ▪ Describe the benefits/risks of using different types of data (observational, retrospective/historical, experimental)
 ▪ Describe different sampling strategies for collecting data

Section 2: Exploratory Data Analysis: 20%

Describe data using descriptive statistics and graphical summaries

• Describe measures and graphs for summarizing data
 o Interpret summary statistics
 o Generate and interpret: histograms, box plots, comparative box plots, run charts, and Pareto plots
 ▪ Describe when to use each type of plot
• Distinguish between population vs sample, distinguish between parameter vs statistic
• Recognize the importance of probability distributions
 o Describe characteristics of the normal distribution.
 o Explain the central limit theorem
 o Use a normal quantile plot to determine if the underlying distribution is approximately normal.

Visualize and explore data

• View relationships between variables
 o using scatterplots
 o using box plots
 o using bar charts
• Create graphs to visualize many variables at a time
 o using heat maps
 o using multivari (variability) charts
 o using trellis plots and overlay variables
 o using geographic maps
• Describe the characteristics of a good data visualization
• Explore subsets of your data using data filtering
• Communicate the message in your data
• Identify your target audience
• Translate analytic results into practical/actionable results
 • Determine the best visualization to tell a story
 • Given a particular visualization, describe the story in the data in the simplest terms
Save and share results

- Produce high quality graphics
 - Edit and customize graphs
- Save work for reproducibility and reuse
 - Manage and organize your work (datasets and output)
 - Save scripts to data tables
- Select the appropriate method to share your work based on your intended audience
 - HTML w/data, PowerPoint, scripts, dashboards, copy and paste images with selection tool

Prepare data for analysis

- Structure data appropriately for analysis
 - Describe a data table (observations and variables)
 - Determine if data needs to be restructured for analysis
 - Describe restructuring techniques (split, stack, concatenate, sort, and join)
- Identify data quality issues such as missing or messy data, outliers, and redundant variables
 - Define the possible data quality issues
 - Recognize data quality issues
 - Determine and recommend actions to take to address data quality issues
- Group and bin data and create new variables
 - Describe need for derived variables
 - Demonstrate when recoding variables might be helpful
 - Create new columns with formulas
Section 3: Quality Methods: 20%

Use Statistical Process Control Charts

- Explain how control charts are used
 - Describe structure of control charts
 - Interpret the elements of a control chart
 - Explain how to use control charts for process improvement
 - Define special and common cause variation
 - Describe tampering
- Create simple charts, I and MR, X-bar and R or S, 3-way charts
 - Describe differences between I and MR charts and X-bar R or S charts
 - Describe how and why to use rational subgrouping
 - Use phase variables for exploratory analysis
- Use and interpret tests for special causes
 - Interpret control charts and determine if they are stable
 - Add tests for special causes to the charts, determine which tests to add
- Use control charts to determine if improvements have been sustained

Assess process capability

- Explain the difference between voice of the process to voice of the customer
 - Describe Cp, Cpk, Pp and Ppk
 - Define process capability
 - Compare and contrast control limits and spec limits
 - Compare and contrast capability to stability
- Interpret capability indices
 - Check the assumptions for interpreting capability indices
 - Relate capability measures to ppm defective
 - Interpret graphics and indices for non-normal data
 - Interpret graphics and indices for many variables at one time
 - Goal plot
 - Process performance graph
 - Use capability indices (including stability index and target index) and plots to determine if a problem is present and the nature of the problem
 - Instability
 - Off target
 - Determine actions to take based on capability measures
Conduct Measurement System Studies

- Define the goal/objective of (Measurement System Analysis), determine language and define terminology to be used:
 - Explain importance of evaluating your measurement system
 - Define terms associated with MSAs
 - repeatability, reproducibility, stability, bias, linearity
 - Describe the process of conducting an MSA
 - Design an MSA

- Utilize variability (multivari) charts to graphically evaluate the data from your MSA
 - Calculate common metrics for evaluating the measurement system

- Interpret variance components output to determine the next actions to take from your MSA

- Interpret Gauge R&R analysis results

- Examine EMP (Evaluate Measurement Process) output
 - Interpret the EMP output to determine if your measurement system is fit for use or if it needs improvement
 - Using average and range charts
 - Using parallelism plots
Section 4: Decision Making with Data: 15%

Define/describe statistical intervals

- Contrast the different types of intervals: confidence, tolerance, and prediction
- Explain the need for statistical intervals
 - Compare point estimation to statistical intervals
- Explain when to use each type of interval
- Interpret and explain each type of interval
- Describe the effect of sample size on statistical intervals

Perform statistical tests

- Compare confidence intervals with hypothesis tests
- Perform a test for one mean
- Perform a test for two or more means
 - Perform, interpret and explain multiple comparison tests
- Interpret and explain output from means tests
- Compare statistical significance with practical significance

Determine sample size

- Define statistical power and alpha risk
- Explain the factors that influence power and sample size calculations
- Determine sample size for a given power (and s, and delta and alpha risk)
 - Calculate sample size for one and two sample mean problems
- Determine the power for a given sample size (and s, delta, and alpha risk)
Section 5: Correlation and Regression: 20%

Be able to define and use correlation

- Use correlation to measure relationships between continuous variables
 - Describe the strength of a linear association using correlation. Provide a definition of correlation.
 - Interpret a correlation matrix and scatterplot matrix
 - Interpret a density ellipse
- Describe common errors in interpreting correlations
 - Explain the difference between correlation and causation.
 - Lurking variables
- Describe the impact of outliers on correlation.
- Explain why correlation does not apply when there is curvature.

Define simple linear regression

- Explain the difference between correlation and regression.
- Explain and interpret the coefficients in the regression model.
- Describe the method of least squares.
- Evaluate regression model assumptions.
 - List the model assumptions and use a residual analysis to determine if model assumptions are met.
 - Explain what might be causing particular patterns in residual plots (curvature, heteroscedasticity, outliers).
- Interpret regression analysis results.
 - Perform a regression analysis.
 - Determine whether the regression model is significant.
 - Interpret the slope coefficient.
 - Interpret the confidence interval for the slope coefficient.
- Fit regression models with curvature
 - Fit a model with a quadratic effect and interpret the results.

Define/Explain Multiple Linear Regression

- Fit multiple linear regression models
 - Describe when multiple linear regression is appropriate.
 - Explain the difference between SLR and MLR.
- Compare/contrast the goals of explanatory and predictive modeling.
- Interpret the multiple linear regression model
 - Interpret the coefficients in a regression model (continuous and categorical)
 - In JMP, use the prediction profiler to interpret model coefficients and interactions.
• Be able to interpret the output of a multiple regression model
• Verify model assumptions
 o Conduct a residual analysis and determine if regression assumptions have been met.
• Identify influential observations
 o Describe the impact of influential observations
 o Interpret Cook’s D values
• Explain/describe/define collinearity
 o Interpret the VIF
 o Describe the impact of collinearity
• Perform variable selection
 o Define variable selection and explain the need for variable selection
 o List methods of model variable selection (forward, backward, mixed)
 o Use the Effect Summary table in JMP to reduce the model

Define/explain logistic regression

• Explain the difference between logistic regression and multiple linear regression.
 o Describe when logistic regression is appropriate.
 o Explain how logistic regression works.
• Fit a logistic regression model and interpret results.
 o Interpret the coefficients in a logistic regression model (continuous and categorical)
 o Interpret a logistic curve
 o Use the prediction profiler to interpret model coefficients and understand interaction effects.
• Identify potential problems with the logistic regression model such as:
 o Separation
 o Not enough data
Section 6: Design of Experiments: 10%

Define DOE and compare it to OFAT

- Determine the appropriate circumstances for using DOE.
 - Explain the difference between DOE and OFAT
- Explain why you need to do a DOE.
- Describe the importance of a well-designed experiment.

Discuss best practices and considerations to take when running an experiment

- Determine what you want to measure.
- Explain the importance of randomization and the consequences of not doing it
- Explain the trade-offs between budget and the complexity of the experiment
- Determine the goals of your DOE

Analyze the results of an experiment

- Analyze the results of a factorial experiment
 - Interpret analysis results
 - Identify significant model effects
 - Use the Prediction Profiler to explore your model

Design a simple experiment

- Define the following terms: factor, level, treatment, replicate
- Describe a full factorial experiment
- Design a 2^k full factorial experiment in JMP
Section 7: Predictive Modeling and Text Mining: 5%

Explain the difference between explanatory modeling versus predictive modeling
- Explain overfitting
- Describe model validation

Interpret results from a predictive model with validation
- Interpret results from a multiple linear model with validation.
 - Interpret RMSE (RASE)
- Interpret results from a logistic model with validation.
 - Interpret the misclassification rate (error)
 - Interpret the confusion matrix
 - Define the following terms: False positive, false negative, true positive, true negative

Interpret decision tree models.
- Describe a decision (partition) tree model
- Describe the difference between a classification tree and a regression tree.

Describe neural network models.
- Describe the basic structure of a neural network (input layer, hidden layer, output layer).