Solve the Rubik’s Cube using Proc IML

Jeremy Hamm
Cancer Surveillance & Outcomes (CSO)
Population Oncology
BC Cancer Agency
Overview

- Rubik’s Cube basics
- Translating the cube into linear algebra
- Steps to solving the cube using proc IML
- Proc IML examples
The Rubik’s Cube

- 3x3x3 cube invented in 1974 by Hungarian Erno Rubik
 - Most popular in the 80’s
 - Still has popularity with speed-cubers
- 43×10^{18} permutations of the Rubik’s Cube
 - Quintillion
- Interested in discovering moves that lead to permutations of interest
 - or generalized permutations
 - Generalized permutations can help solve the puzzle
The Rubik’s Cube

- Made up of Edges and corners
- Pieces can permute – Squares called facets
- Edges can flip
- Corners can rotate
Rubik’s Cube Basics

- Each move can be defined as a combination of Basic Movement Generators
 - each face rotated a quarter turn clockwise
- Eg.
 - Movement of front face $\frac{1}{4}$ turn move F
 - $\frac{1}{4}$ turn counter clockwise is F^{-1}
 - 2 quarter turns would be $F \times F$ or F^2
Relation to Linear Algebra

The Rubik’s cube can be represented by a Vector, numbering each facet 1-48 (excl centres). Permutations occur through matrix algebra where the basic movements are represented by Matrices Ax=b
Relation to Linear Algebra

- Certain facets are connected and will always move together
- Facets will always move in a predictable fashion

- Can be written as: $F = (17, 19, 24, 22)$
 $\quad (18, 21, 23, 20)$
 $\quad (6, 25, 43, 16)$
 $\quad (7, 28, 42, 13)$
 $\quad (8, 30, 41, 11)$
Relation to Linear Algebra

Therefore, if you can keep track of which numbers are edges and which are corners, you can use a program such as SAS to mathematically determine moves which are useful in solving the puzzle

– Moves that only permute or flip a few pieces at a time such that it is easy to predict what will happen
Useful Group Theory

Notes:

- All moves of the Rubik’s cube are cyclical where the order is the number of moves needed to return to the original
 - Eg. Movement F (front face ¼ turn)
 - If done enough times, will return to original position
 - Enough times=4; F is Order 4
Proc IML

- Proc IML (interactive matrix language) can be used to test Rubik’s Cube moves using Matrix algebra to determine which moves are useful for solving the puzzle.
Intro to Proc IML

- Similar to proc SQL in use

 Proc iml;

 IML code …;

 Quit;

 • code will be able to run while in IML until you exit with a ‘quit;’ statement

 – Useful for row and column calculations/summaries

 • Good at do loops, simulations and linear algebra

 • Not as awesome with character data

 • As always, need to keep track of matrix/vector dimensions
Steps to Solve Cube

- Read in and Create list of moves to test
- Determine Order of each move
 - How many moves in cycle
- Determine during cycle, if at any point:
 - The edges are stable but corners move
 - When and how many?
 - The corners stay stable but edges move
 - When and how many?
Solving in Proc IML

- Read data into proc IML
- Create functions in IML
- Operate on individual matrix cells
- Perform matrix operations
- Output data from IML
Importing Data

- ‘Use’ statement makes a SAS dataset available in proc iml
 - Can specify which variables you wish to import and any ‘where’ statements for filtering
- ‘Read’ statement turns this dataset into a usable matrix
 - Default only includes numeric variables
 - Rows and columns now numbered instead of named as default
 - Can read in names and refer to them
Example

```sas
data test;
  input x y z;
datalines;
1 2 3
4 5 6
7 8 9
;
run;
```

```sas
proc iml;
  use test; read all var {x y} into test2 [colname=names];
a=test2[,"x"];
  print a test2;
create test3 from test2 [colname=('y' 'x')]; append from test2 ;
quit;
```

Read in all rows
- Can specify specific row (point 5 = 5th row)

Specify variables to read

The SAS System 13:23
```
<table>
<thead>
<tr>
<th></th>
<th>test2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>x</td>
</tr>
</tbody>
</table>
| 1   | 1         | 2
| 4   | 4         | 5
| 7   | 7         | 8
```
Example

```proc iml;
reset deflib=rc;
   use F; read all into F; use R; read all into R;
   use B; read all into B; use L; read all into L;
   use D; read all into D; use U; read all into U;
   use Mu; read all into Mu; use Mf; read all into Mf;
   use Mr; read all into Mr;
```

- Read in pre-created movement generators in matrix form
- Setup default libname
 - All input and output data will come/go to this library
- Specify rows and columns to import
 - We're using all of them
Functions/macros in IML

- Functions can be created in proc IML
 - Similar to macros
 - Use ‘start’ and ‘end’ statements instead of %macro and %mend
 - Eg. start(variable(s))

 function

 end

 - Function is applied with a
 - Run <function name>(variable(s)) command
Example

```
START FILL(A);
   DO I=1 TO 48;
   END;
FINISH FILL;
RUN FILL(F); RUN FILL(R);
RUN FILL(B); RUN FILL(L);
RUN FILL(D); RUN FILL(U);
RUN FILL(MR); RUN FILL(MU);
RUN FILL(MF);
```

- This function ‘Fill’ sets the movement generators diagonal values to 1 if there are no values in a row/column combination.
Creating and operating on vectors and matrices

- Vectors can be created with () and {} brackets
 - () for continuous style values
 - ST=(1:48)
 - 1 2 3 4 … 48
 - Starting position vector for each face of the cube
 - {} for discrete style
 - POS={2 3 2 3 3 2 …}
 - Position vector for cube faces
 - 2’s represent corners; 3’s represent edges
Creating and operating on vectors and matrices

- Matrices can be created discretely or with functions
 - $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ 2x3 matrix

- Functions include
 - Identity matrix: $I(3) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 3x3 identity matrix
 - All one value: $j(4, 3, 0) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ 4x3 matrix of 0’s

 - Useful to create a matrix to fill in with list of permuted faces in cube for each movement in cycle
Matrix Operations

- Matrices can be operated on
 - $A \times B =$ Matrix A times Matrix B
 - Eg. $F \times R$ creates a single move from 2 movement generators
 - $A^{**n} =$ matrix A to the power of n
 - Eg. F^{**3}
 - $A//B =$ stack A and B (must have same #cols)
 - Stack moves on top of each other to create list of moves as matrices
 - $A||B =$ A beside B (must have same #rows)
Testing a Move

- To determine the order of a move:
 - Isolate Movement matrix G from list as a 48x48 matrix
 - Let d be the number of moves being examined
 - Do i=1 to d by 48 will isolate moves 1 at a time
 - Multiply G by ST vector (1:48) to get permutation (A=G*ST)
 - Re-attach ST to A to identify starting position
 - A=ST||A
 - Do while (sum(A=ST)<48) will continue to cycle until every element of A=every element of the starting position vector ST
 - Run a count variable to enumerate the number of moves in the cycle
 - The order
Testing a Move

do i=1 to d by 48; *go by movement generating matrix - as they are stacked on each other;
x=i+47;
*print G;
G=moves[i:x,]; *identify a movement generating matrix (eg moves[49:96,]=F);
ST1=G*ST; *multiply movement generating matrix by position vector;
A=st||st1; *horizontal concatenation of original position vector and new position vector;
count=1;
*print g;
 do while(sum(ST1=ST)<48); *examine the length of the move's cycle with variable count.
 sum(ST1=ST)=48 upon cycle completion;
 ST1=G*ST1;
 A=A||ST1;
 *print count ;
 count=count+1;
 end;
Example

- $G = F \cdot R^3$

$$A = \ldots$$

- Order $= 63$
Summarizing a Move

- Matrix is created for each move which has a 1 or 0 indicating whether a facet has been permuted (compared to starting location)
- Can isolate corners and edges into vectors

```plaintext
PERM2=PERM1||POS;
last=ncol(perm2);

i1=loc(perm2[,last]=2); *vector of corner positions (i.e. [1,3,6,8,9,11,...]);
i2=loc(perm2[,last]=3); *vector of edge positions (i.e. [2,4,5,6,...]);
a1=2:(ncol(perm2)-1); *2:the end of perm2;
ca=PERM2[i1,a1][+,];
ea=perm2[i2,a1][+,];
ta=ca/ea; /*matrix [2 x number of movements in cycle]
of number of corners/edges permuted from original;
```

Can specify columns and rows using vectors.
Can summarize columns and/or rows
Example

<table>
<thead>
<tr>
<th>COL1</th>
<th>COL2</th>
<th>COL3</th>
<th>COL4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COL52</th>
<th>COL53</th>
<th>COL54</th>
<th>COL55</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Position vector

Corners permuted

Edges permuted
Summarizing a Move

- Create 7 column vector that identifies:
 - Do either corners or edges stay stable in cycle (1/0)
 - If edges stable (1/0):
 - What move in cycle does this occur?
 - How many corners move?
 - If corners stable (1/0):
 - What move in cycle does this occur?
 - How many edges move?
Summarizing a Move

Corners permuted
Edges permuted

- Stable edges at move number 7
- Stable corners at move number 9

Summary Vector
Exporting results

- For each move and 7 column vector generating describing the move:
 - Stack vectors to create an Nx7 matrix corresponding to all moves tested
- Can output as SAS dataset for further analysis:

```plaintext
create study_jh_20141106 from study1;
append from study1;
```
Questions?

Jeremy Hamm
Cancer Surveillance & Outcomes (CSO)
Population Oncology
BC Cancer Agency