

An Introduction to Deep Learning

Labeeb Khan

Special Thanks:

Lukas Masuch

@lukasmasuch

y

G+ +lukasmasuch

Lead Software Engineer: Machine Intelligence, SAP

The Big Players Companies

The Big Players Startups

Machine Learning - Basics

Learning Approaches

Supervised Learning: Learning with a labeled training set Example: email spam detector with training set of already labeled emails

Unsupervised Learning: Discovering patterns in unlabeled data *Example: cluster similar documents based on the text content*

Reinforcement Learning: learning based on feedback or reward *Example: learn to play chess by winning or losing*

What is DeepLearning?

Part of the machine learning field of learning representations of data. Exceptional effective at learning patterns.

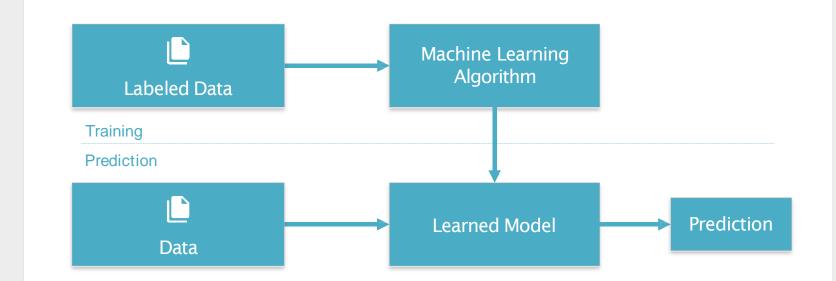
Utilizes learning algorithms that derive meaning out of data by using a hierarchy of multiple layers that mimic the neural networks of our brain.

If you provide the system tons of information, it begins to understand it and respond in useful ways.

Machine Learning - Basics

Introduction

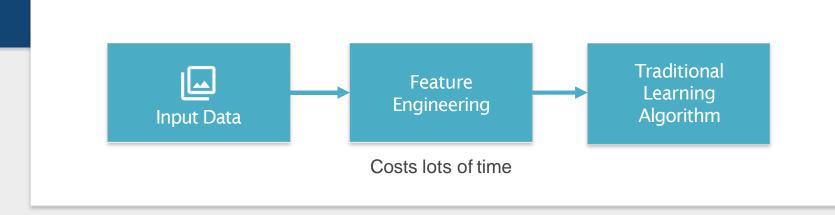
Machine Learning is a type of Artificial Intelligence that provides computers with the ability to learn without being explicitly programmed.



Provides various techniques that can learn from and make predictions on data

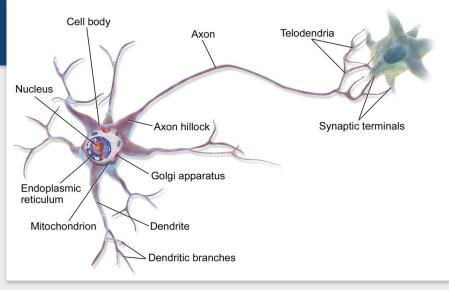
Deep Learning - Basics

No more feature engineering





Inspired by the Brain



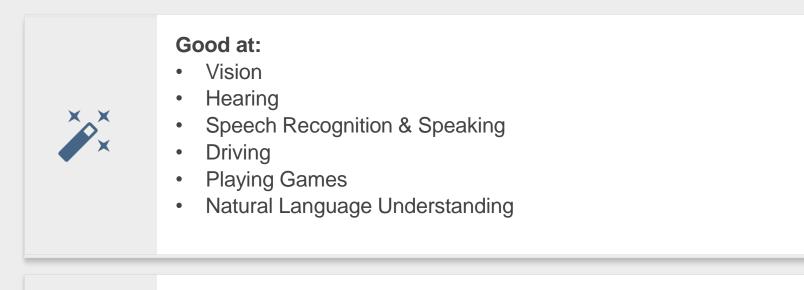
- Humans have ~100 billion neurons
- Each neuron contains a cell body, dendrites, axon connected to ~10,000 other neurons

Our neurons pass signals to each other via 1000 trillion synaptic connections, which is approximately a 1 trillion bit per second processor (125,000 MB/s).

One learning algorithm hypothesis: all significant mental algorithms are learned except for the learning and reward machinery itself.

Our Natural System

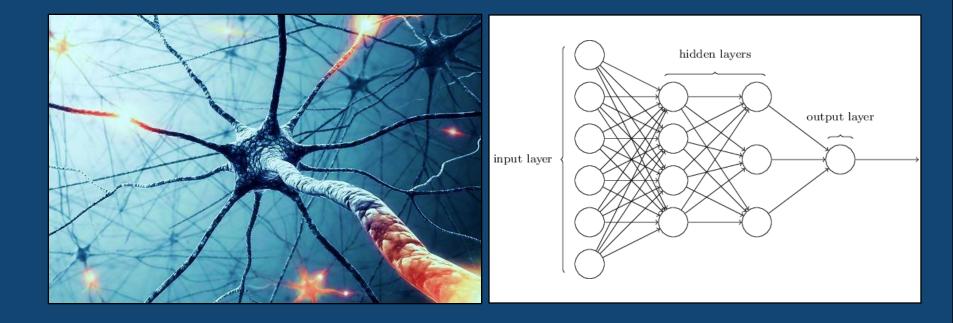
What is it good at?



Not good at:

- Multiplying 2 numbers
- Memorizing a phone number

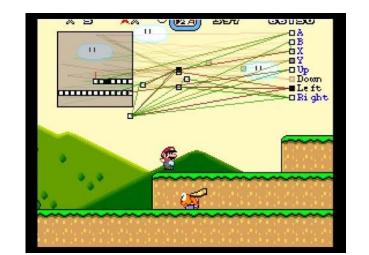
Feedforward Neural Networks Architecture



Feedforward Networks – Applications

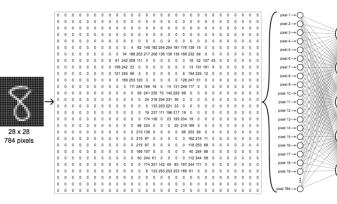
Game AI Mario Neural Network

Animal Recognition

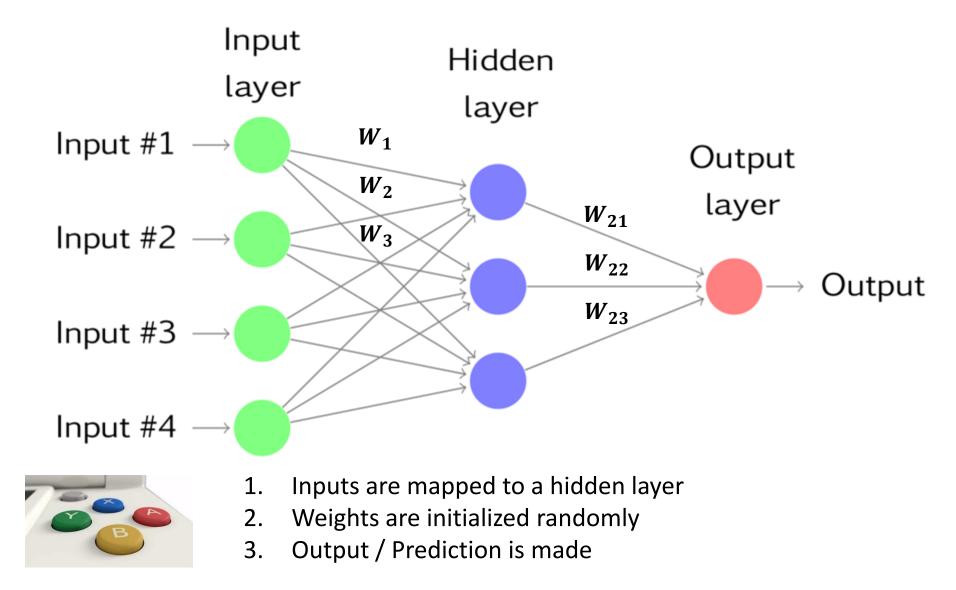


94%

Digit Recognition

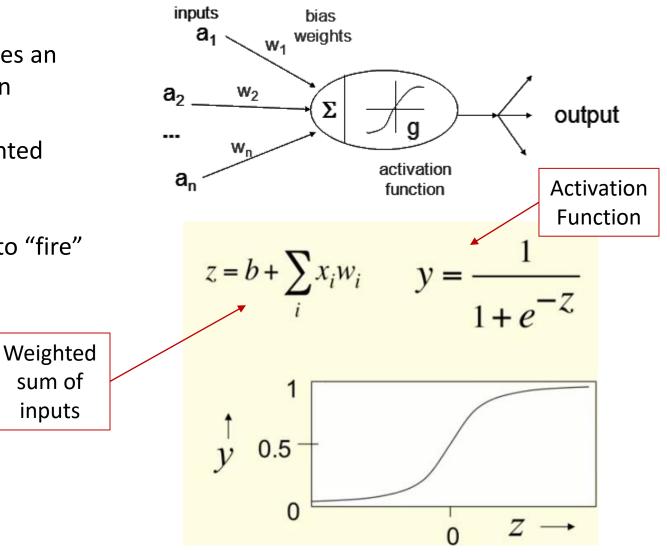


Network Architecture - Introduction

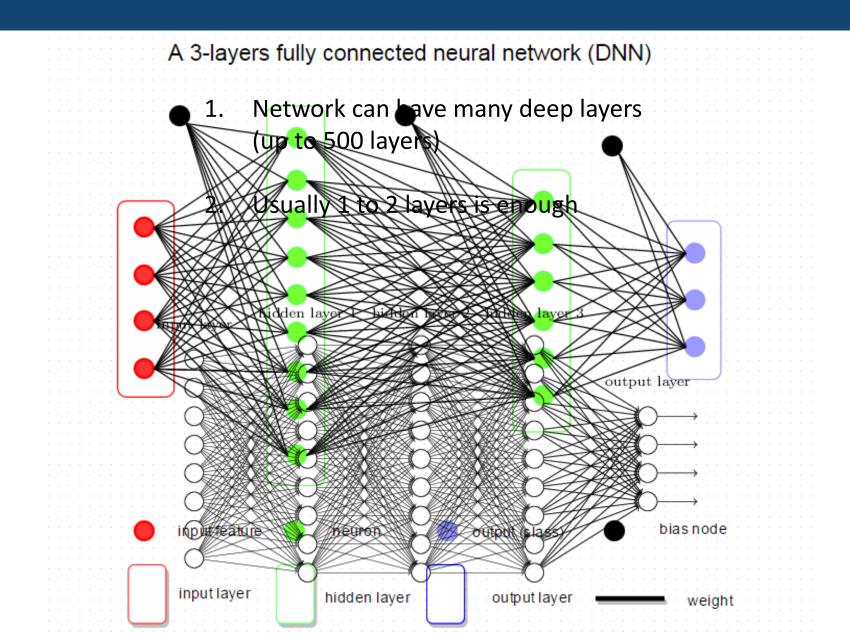


Network Architecture – Sigmoid Activation Function

- 1. Each neuron utilizes an activation function
- 2. Calculates a weighted sum of inputs
- 3. Decides weather to "fire" or not



Network Architecture – Many Layers

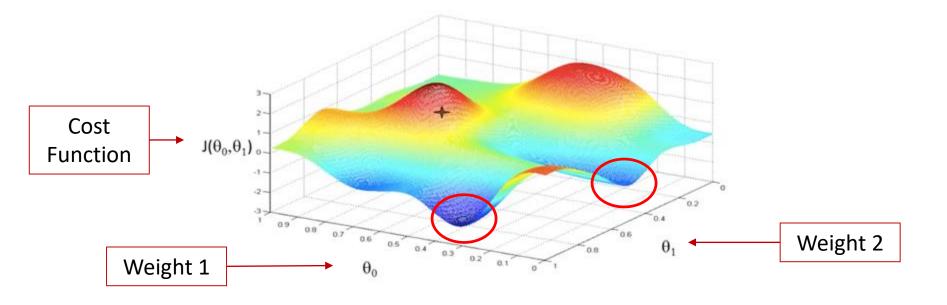


Network Architecture – Optimizing the Cost Function

- Each network prediction on the training data contains an associated error, or "cost"
- Plotting each error with an associated weight gives us a Cost Function (this is abstract, not seen by the network)

For the network to "learn" the problem:

We must find a set of weights that globally minimize the cost function



Network Architecture – Backpropagation and Gradient Descent

Backpropagation: Backward propagation of errors using Gradient Descent

Gradient Descent: Calculates the change in error with respect to Old each network weight Weight **Learning Rate:** Speed and quality at which the network learns Gradient Repeat until convergence { w2 $\theta_j \leftarrow \theta_j$ Minimum $J(\theta_0, \theta_1)$ -2 0.2 -3-New Learning w1 0.4 0.9 0.8 Starting point or initial guess Weight Rate θ_1

Feedforward Networks – Applications

Cheque Recognition

C11234567 001234567 243

Medical Diagnosis

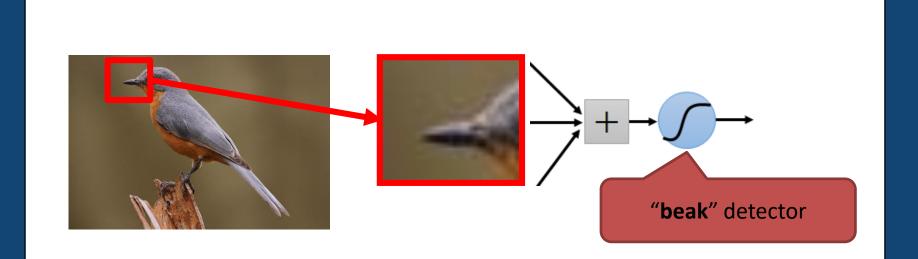
House Al

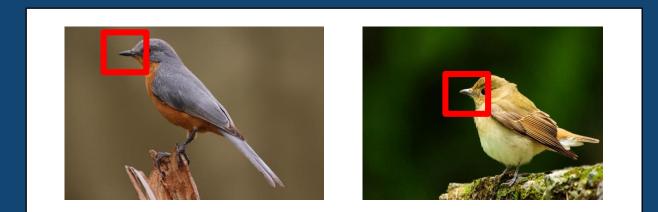
Feedforward Architecture – Problems with Image Processing

Image Processing & Vision:

- Some patterns appear in different places, these cannot be compressed with a feedforward network!
- Some patterns are much smaller than the whole image
- Feedforward networks map pixels to a hidden layer, images can be of different sizes!

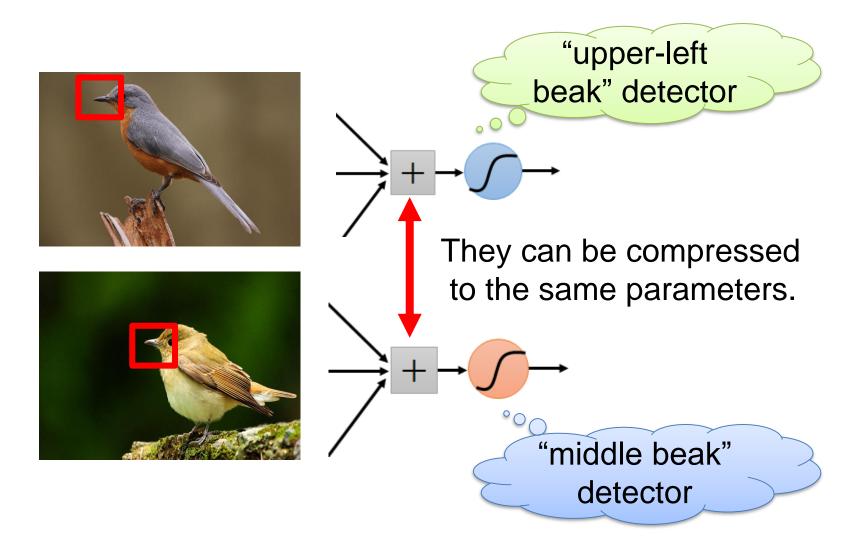
Convoluted Neural Networks (CNN) Architecture





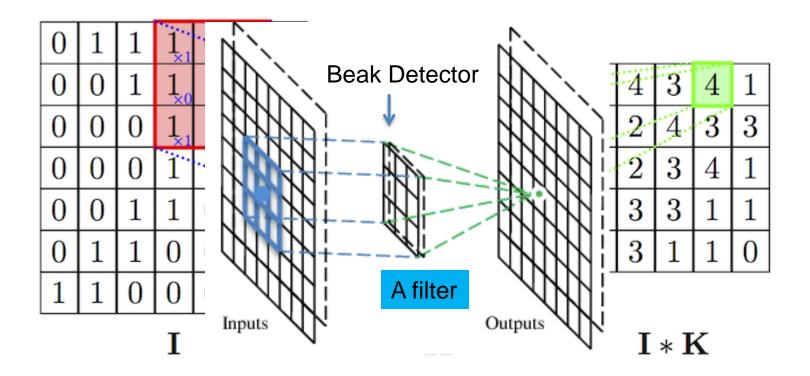
Convoluted Neural Networks

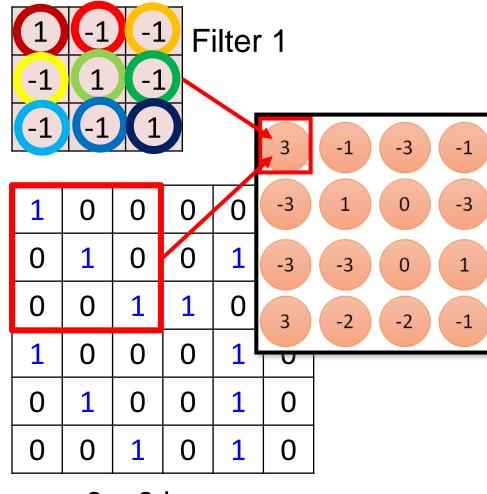
• Some patterns appear in different places, these can be compressed!



CNN Network Architecture – Convolutional Layer

• A neural network with convolutional layers. The convolutional layers are generated by filters that do convolutional operations

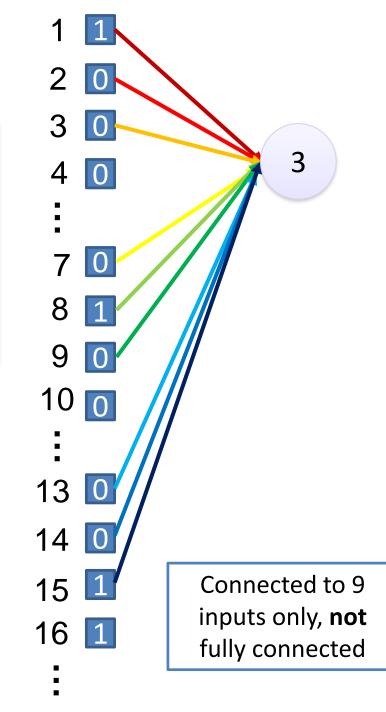


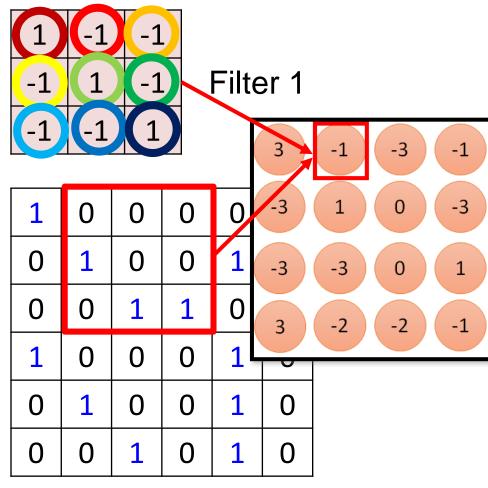


6 x 6 image

Source of image:

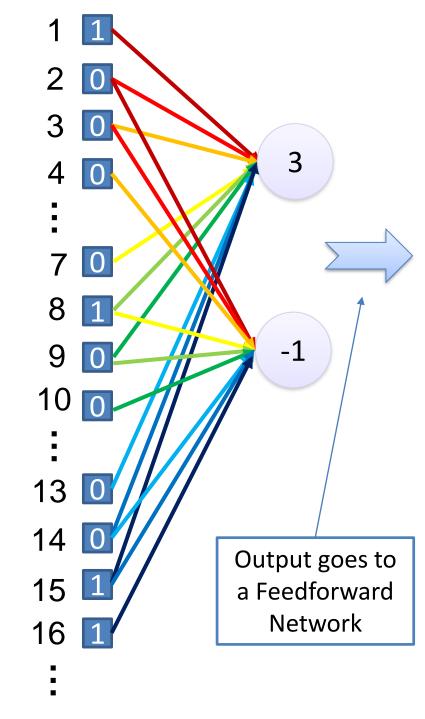
https://cs.uwaterloo.ca/~mli/cs898-2017.html



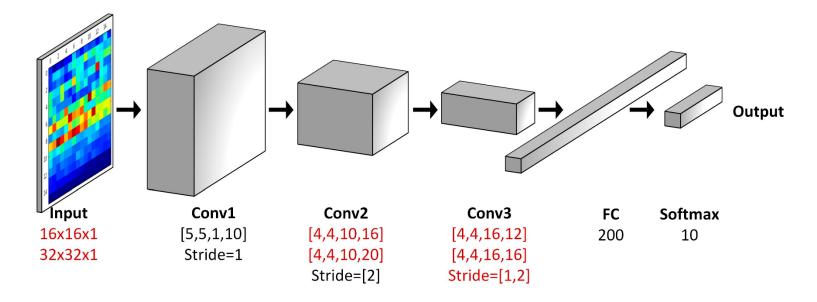


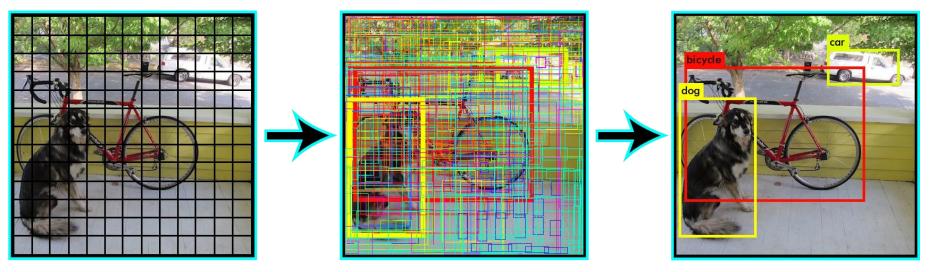
6 x 6 image

Source of image: https://cs.uwaterloo.ca/~mli/cs898-2017.html



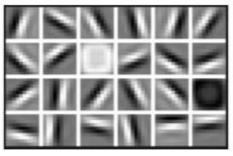
CNN Network Architecture – Process





CNN Network Architecture – Hierarchical Representation

A convoluted neural network consists of a hierarchy of layers, whereby each layer transforms the input data into more abstract representations (e.g. edge -> nose -> face). The output layer combines those features to make predictions.



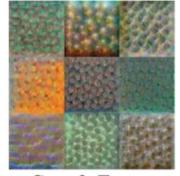
First Layer Representation

Second Layer Representation

Numerical

Third Layer Representation

Conv 1: Edge+Blob



Conv 3: Texture

Data-driven

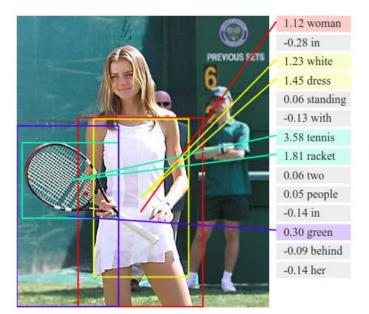
Conv 5: Object Parts

Fc8: Object Classes

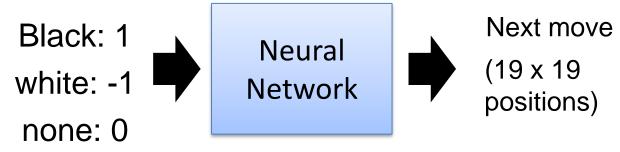
CNN Network Architecture – Examples

Alpha GO:

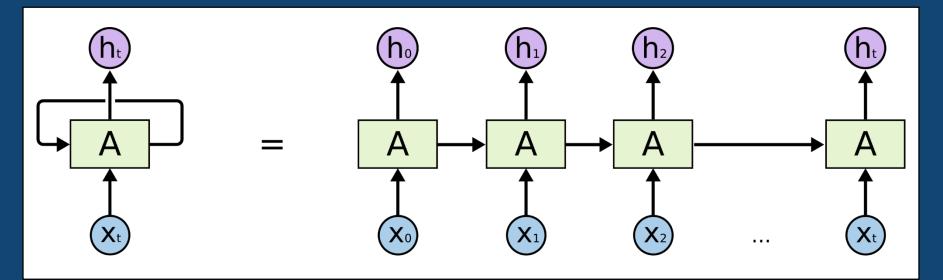
- Fully-connected feedforward network can be used
- But CNN performs much better

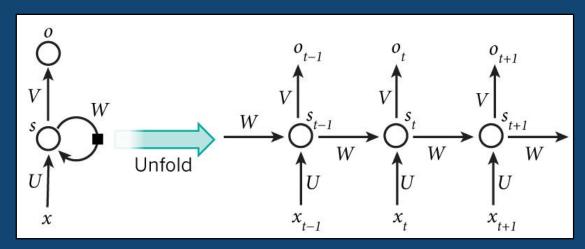


19 x 19 matrix

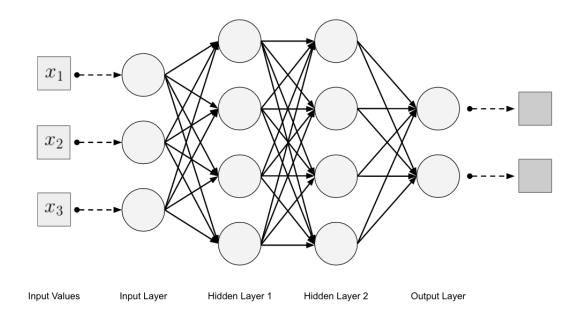


Recurrent Neural Networks (RNN) Architecture



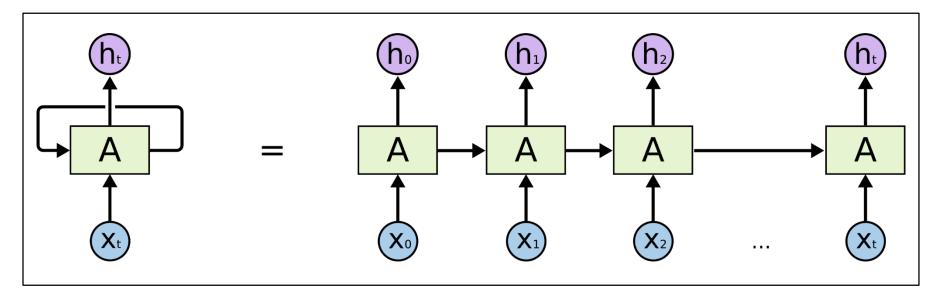


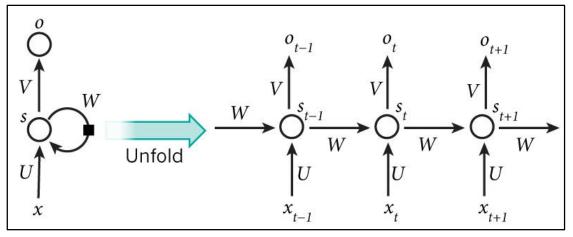
Recurrent Neural Networks - Introduction



- If input amount: x₁, x₂, x₃, ..., x_n, is large and *increasing* (large n), the network would become too large and is unable to train
- We will now input one x_i at a time, and re-use the same network weights

Recurrent Neural Networks – Model Representations





Recurrent Neural Networks - Application

- Time Series Predictions
 - Stock prices
- Natural Language Processing
- Translation

 h_1

x₁

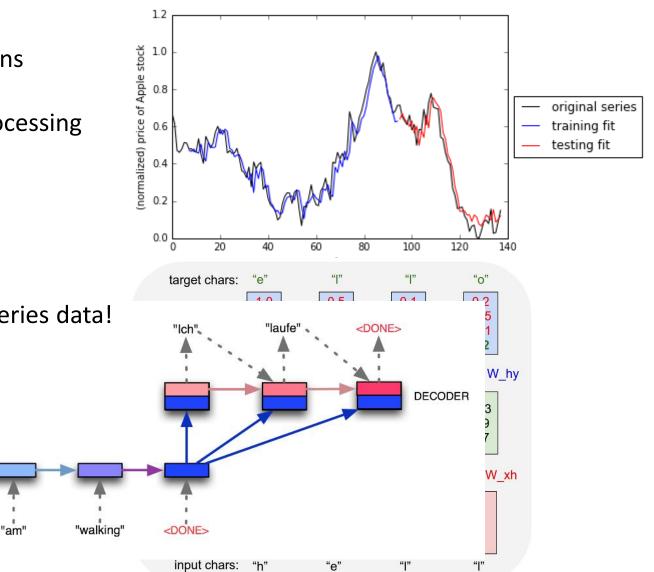
Echt

- Speech Recognition
- Video Processing
- Music Generating

ENCODER

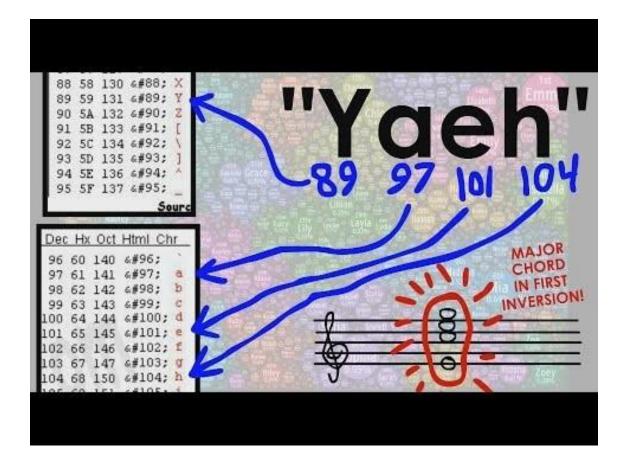
• Anything with time-series data!

njn



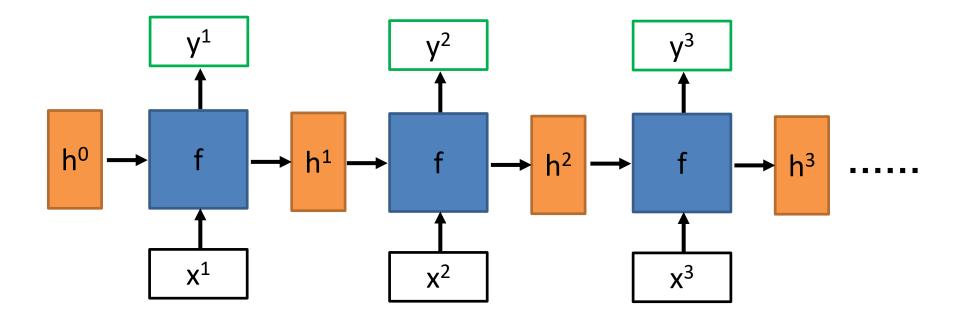
Recurrent Neural Networks – Application

Music Generating

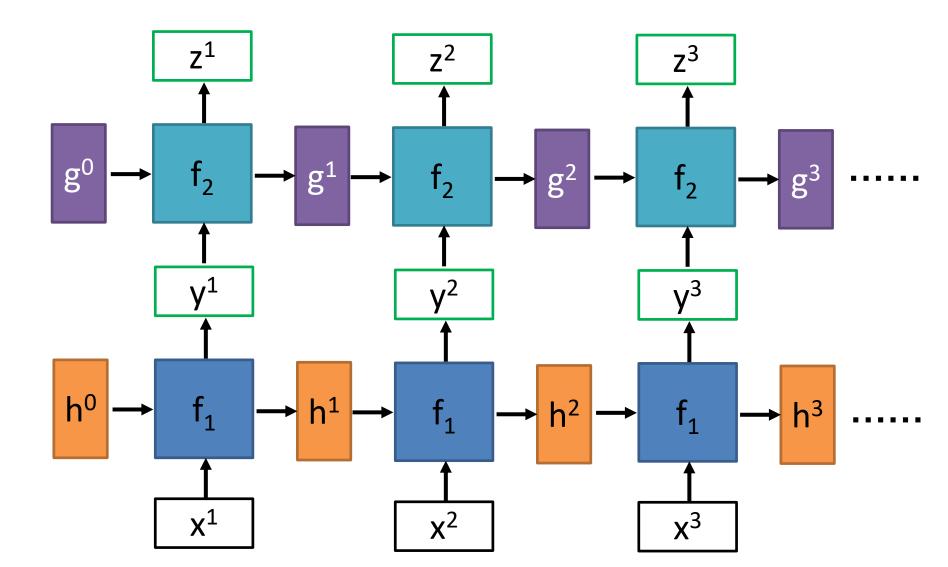


Recurrent Neural Networks – Architecture

• We can apply the same function f to an unbounded number of inputs x_i

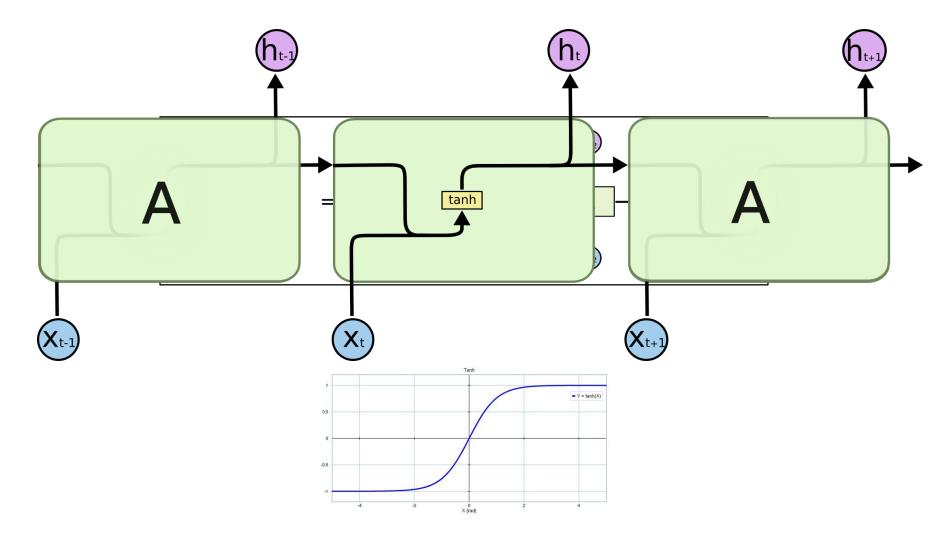


Recurrent Neural Networks – Deep RNN



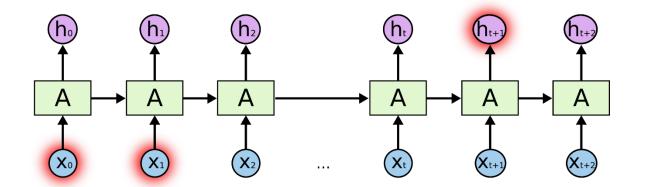
Recurrent Neural Networks – Naïve RNN

• Single tanh(x) layer as the activation function

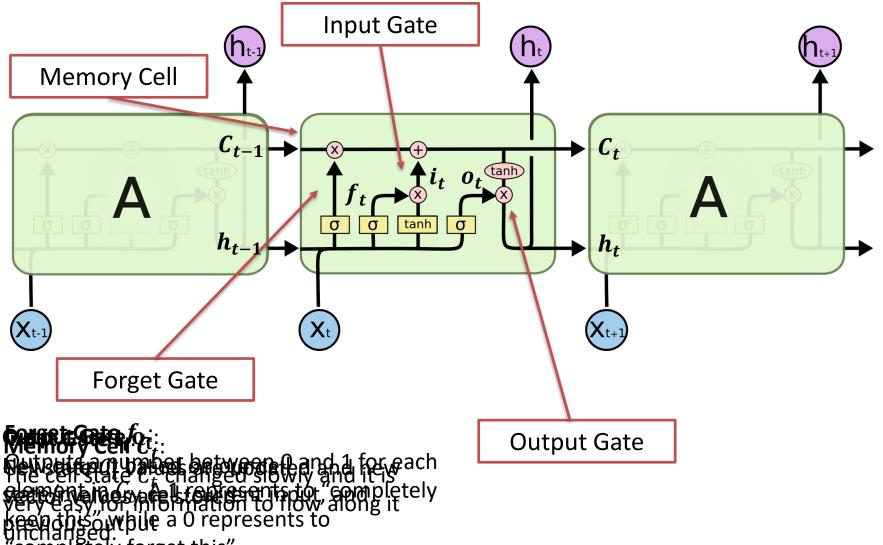


Recurrent Neural Networks - Naïve RNN Criticism

- For time series data, old information tends to be forgotten
- For a distant relationship of unknown length, we wish to have a "memory" to it



Recurrent Neural Networks – LSTM (Long Short-Term Memory)



completely forget this"

Recurrent Neural Networks – LSTM + CNN

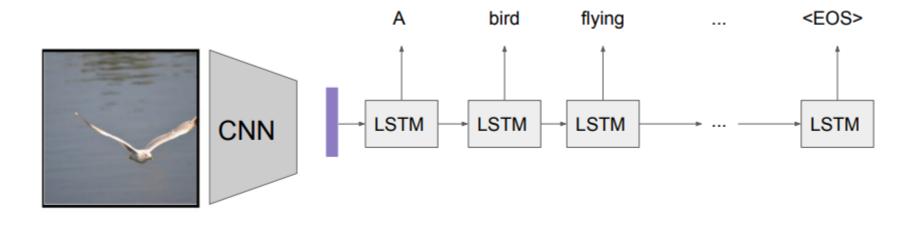
- Self driving!
- Convolute an image for object recognition (CNN), and recur (LSTM) over a series of images/frames (video)

Recurrent Neural Networks – Image Captioning

 Neural Image Caption Generator generates fitting natural-language captions only based on the pixels by combining a vision CNN and a language-generating RNN

E.g.: Image Captioning

A bird flying over a body of water



Recurrent Neural Networks – Image Captioning Examples

• Examples (success and failure)

A close up of a childholding a stuffed animal

Two pizzas sitting on top of a stove top oven

A man flying through the air while riding a skateboard

Recurrent Neural Networks – Image Captioning Examples

• Examples (success and failure)

Describes without errors

A person riding a motorcycle on a dirt road.

Describes with minor errors

Two dogs play in the grass.

Somewhat related to the image

A skateboarder does a trick on a ramp.

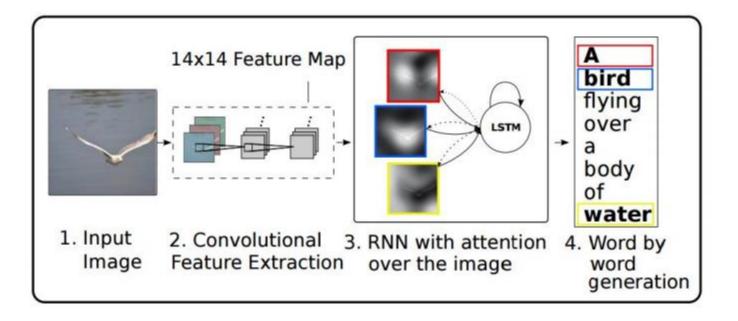
A group of young people playing a game of frisbee.

Two hockey players are fighting over the puck.

A little girl in a pink hat is blowing bubbles.

Recurrent Neural Networks - Attention Mechanism

• CNN + LSTM can provide 'attention' to an area of an image / video



Recurrent Neural Networks – Attention Mechanism Examples

• CNN + LSTM can provide 'attention' to an area of an image / video

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Generative Adversarial Networks (GANs) – 2014 Architecture

Generative Adversarial Networks – Introduction

- First introduced by Ian Goodfellow et al. in 2014
- GANs have been used to generate images, videos, poems, and some simple conversation

Generator:

- Generates candidates/images (from a probability distribution)
- It's objective is to 'fool' the discriminator by producing novel synthesized instances that appear to come from the true data

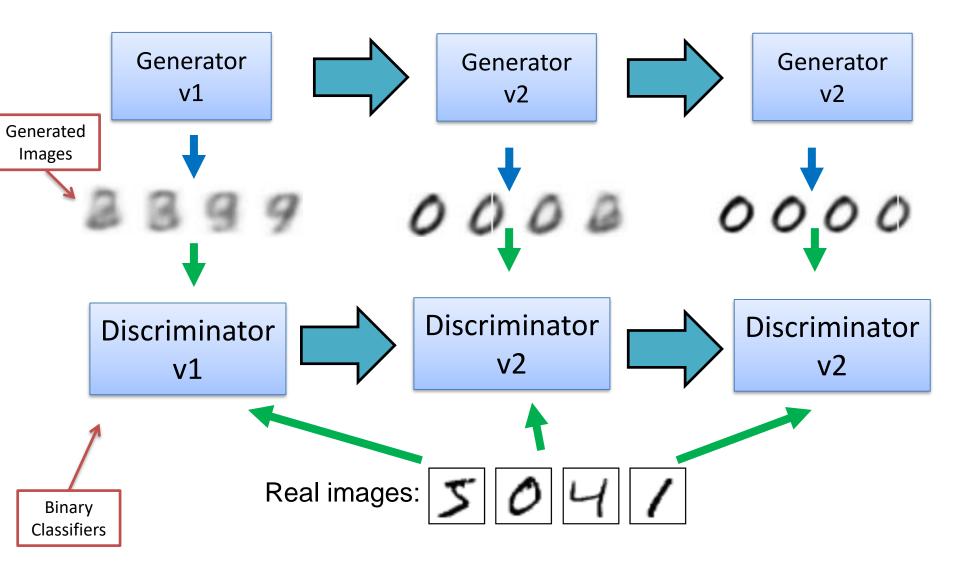
Discriminator:

 Evaluates the generated images to see if they come from the true data or not

Backpropagation applied to both networks:

- Generator to produce better images
- Discriminator to be more skilled at evaluating generated images

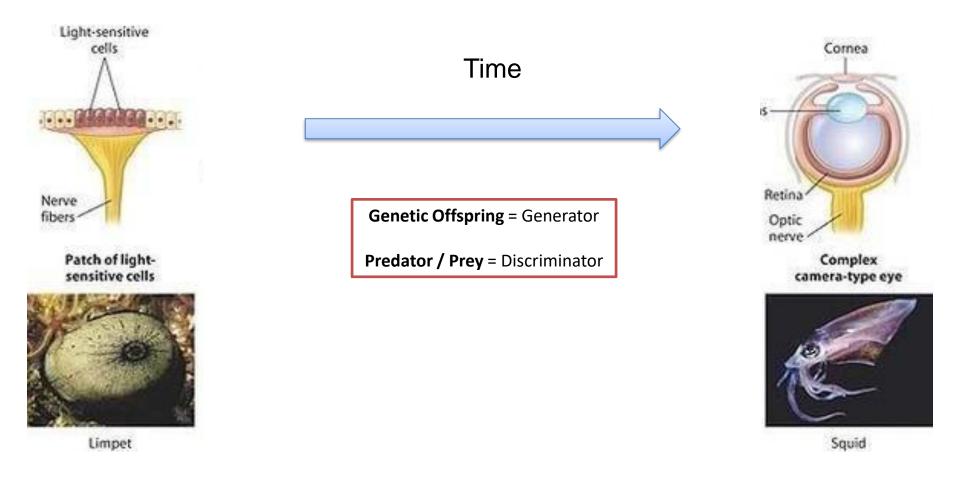
Generative Adversarial Networks – Training a Generator



Generative Adversarial Networks – Training a Generator

50,000 Rounds

Generative Adversarial Networks – Evolution as a GAN



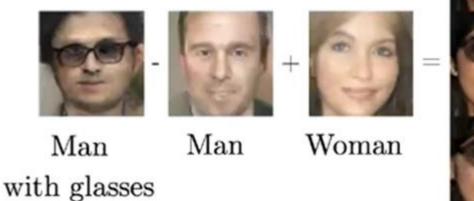
Generative Adversarial Networks – Image Generating Examples

DCGANs for LSUN Bedrooms

(Radford et al 2015)

Generative Adversarial Networks – Vector Arithmetic

Vector Space Arithmetic



Woman with Glasses

(Radford et al, 2015)

Generative Adversarial Networks – Text to Image

Caption	Image
a pitcher is about to throw the ball to the batter	
a group of people on skis stand in the snow	
a man in a wet suit riding a surfboard on a wave	

Generative Adversarial Networks – Text to Image

Caption	Image
this flower has white petals and a yellow stamen	**************************************
the center is yellow surrounded by wavy dark purple petals	
this flower has lots of small round pink petals	