

and the state of the

Generating realistic synthetic test data using SAS Random Functions

Tom Kari, Tom Kari Consulting TASS, December 2017

"Come out of the desert of ignorance to the OASUS of knowledge"

ALC: NOTICE DE

Generating realistic synthetic test data using SAS Random Functions

- Why would we want to do this?
- American Community Survey (California) 2016 as an example
- SAS Random Number functions
- Using random numbers to generate test data
- Please feel free to ask questions during the presentation!

A STATE OF

Testing activities that may require large volumes of data

Volume testing (can the system process the required volumes of data expected in production?)

A STATE OF

Testing activities that may require large volumes of data

- Volume testing (can the system process the required volumes of data expected in production?)
- Performance testing (is the performance of the system at high volumes acceptable?)

in the state

Testing activities that may require large volumes of data

- Volume testing (can the system process the required volumes of data expected in production?)
- Performance testing (is the performance of the system at high volumes acceptable?)
- Usability, for analytical systems (when presented with realistic data, can the users effectively use the analytical tools?)

Approaches for obtaining large volumes of data

Replicate the unit and integration test files

<u>Issues:</u>

- Typically hand-crafted to ensure correct system behaviour
- Usually contain small proportions of the domains of the variables
- Frequently concentrated on boundary conditions
- Replication will tend to produce highly skewed datasets
- Won't permit effective assessment of the system

Approaches for obtaining large volumes of data

Use production data from previous cycles, possibly with anonymization

<u>Issues:</u>

- If it's a new system, there isn't any production data
- Current production data may be a poor model for new system behaviour
- Confidentiality: Challenges using the data in documents, training
- Confidentiality: Can't share data with partners, hardware/software vendors, subcontractors

www.OASUS.ca

Approaches for obtaining large volumes of data

	Marst					Total (ALL)	
	Married(1)	Living common law(2)	Never Married(3)	Separated(4)	Divorced(5)	Widowed(6)	
	N	N	N	N	N	N	N
Income							
Zero to 5000	7950	2008	5073	419	1025	941	17416
Greater than 5000, Less than or equal to 10000	608	1352	3419	2 98	747	35	12159
Greater than 10000, Less than or equal to 20000	10673	2	6380	595	1374	- 27	22913
Greater than 20000, Less than or equal to 30000	10073	2.09	6103	592	1329	1232	2 98
Greater than 30000, Less than or equal to 40000	8929	2134	5130	-86	1074	1093	10046
Greater than 40000, Less than or equal to 50000	7040	1775	157	398	880	850	15102
Greater than 50000, Less than or equal to 60000	5224	1234	3104	284		645	11175
Greater than 60000, Less than or equal to 70000	3.1	994	2 36	214	3		800 9
Greater than 70000, Less than or equal to 80000	3059	751	1899	190	0.19		6702
Greater than 80000, Less than or equal to 90000	2300		1355	120	303	25	868
Greater than 90000, Less than or equal to 100000	1873		1078	109	2.15	2 12	
Greater than 100000, Less than or equal to 120000	2318		1471	117	306	277	
Greater than 120000, Less than or equal to 140000	1390	320	8 0S	87	168	171	
Greater than 140000, Less than or equal to 160000	937	2	554		123	9 3	6
Greater than 160000, Less than or equal to 180000	-97	111	277	23	49	64	1021
Greater than 180000, Less than or equal to 200000	392		225	20	39	49	33
Greater than 200000, Less than or equal to 220000	262	53	174	9	29	31	ି5 8
Greater than 220000, Less than or equal to 240000	106	26	67	7	17	18	241
Greater than 240000, Less than or equal to 260000	131	23	91	13	21	13	292
Greater than 260000, Less than or equal to 280000	42	11	23	5	1	4	86
Total (ALL)	72833	17622	43771	4047	9351	8881	156505

All Allerates

Approaches for obtaining large volumes of data

Don't do volume, performance, usability tests

And the second second

Approaches for obtaining large volumes of data

Do your testing on your production data store

Approaches for obtaining large volumes of data

Do your testing on your production data store What could possibly go wrong?

Call State

Approaches for obtaining large volumes of data

Do your testing on your production data store *What could possibly go* <u>wrong?</u> Ontario woman discovers she can't trade in her van because 'Fred Flintstone' put a lien on it

ALLISON JONES, THE CANADIAN PRESS | May 11, 2017 12:00 AM ET More from The Canadian Press

Approaches for obtaining large volumes of data

Generate synthetic data that more or less models your expected production data

<u>Issues:</u>

- It is necessary to have some conception of what the production data characteristics will be
- It requires time and funding

Example: 2016 American Community Survey (California)

- Real-world example
- Large volume (39 million records)
- Diverse characteristics of variables
- I'm very familiar with this kind of data
- The audience has passing knowledge of the Canadian Census long form, which is similar

John Area SAS Users

www.OASUS.ca

Mar half stor

2016 American Community Survey Gender

	Count
Female	19,752,605
Male	19,497,412
	39,250,017

Million Star

2016 American Community Survey

Marital Status

and the start

2016 American Community Survey

Age

2017

-26 6191-62: V

2016 American Community Survey Ancestry

and the start

2016 American Community Survey

Wage Income

SAS Random Number functions

- The RAND function generates random numbers from a specified distributions
- Available distributions are: Bernoulli, Beta, Binomial, Cauchy, Chi-Square, Erlang, Exponential, F, Gamma, Geometric, Hypergeometric, Lognormal, Negative Binomial, Normal, Poisson, T, Triangular, Uniform, and Weibull
- Also, Tabled option, not a distribution
- The STREAMINIT routine allows you to specify a seed, so the stream of numbers is repeatable
- It is better to use RAND, not the older random number routines (RANUNI etc.)

RAND Uniform

- The simplest option, no parameters, generates a random number uniformly distributed > 0, < 1
- Can be manipulated to generate numbers in a desired range, real or integer

```
%let Repetitions = 10000; /* > 0 */
%let Lower = 17; /* >= 0 */
%let Upper = 44; /* >= Lower */
```


John Area SAS Users,

www.OASUS.ca

www.OASUS.ca

RAND Normal

- Returns a random number normally distributed as specified by the two parameters: mean(0), and standard Deviation(1)
- Models many natural and statistical phenomena

```
data RandomNormal(drop=_:);
  do _i = 1 to 10000;
    RandomVar = rand('normal');
  /* RandomVar = rand('normal', 12, 4); */
    output;
  end;
run;
```


RAND Triangular

www.OASUS.ca

Jana Area SAS Users Joociet

• Returns a random number distributed in a triangle (0,1)

RandomVar = rand('triangle', .5);

RAND Chi-Square

www.OASUS.ca

2017

John Area SAS Users,

Sec. Mirston

 Returns a random number distributed in the chi-square distribution

RandomVar = rand('chisquare', 6);

Some Area SAS Users, www.OASUS.ca

All Allerson V

Society

Returns a random number distributed in the beta distribution

RAND Beta

RandomVar = rand('beta', 5, .5);

Mar hall some

RAND Beta

Mar hall some

RAND Beta

RAND Tabled

• Returns an integer based on a specified distribution

RandomVar

Some Area SAS Users

STREAMINIT routine

www.OASUS.ca

Area SAS Users Society

Allows you to specify a seed, so that the number stream is reproducible

```
/* No input SAS dataset */
data RandomNumbers(drop=_:);
  call streaminit(1704211720);
```

```
do _j = 1 to 15;
    Run_1 = rand('uniform');
    output;
    end;
run;
```

```
/* With an input SAS dataset */
data RandomNumbers;
if _n_ = 1 then
    call streaminit(1704211720);
set sashelp.class;
Run_1 = rand('uniform');
run;
```

Generating data: Gender

/* Option 1 */

data AgeData(drop=_:); do _i = 1 to 39250017; RandomVar = rand('uniform');

```
if RandomVar <= 19752605 / 39250017
then Gender = 1; /* Female */
else Gender = 2; /* Male */
output;
end;
run;</pre>
```

```
/* Option 2 */
```

```
data AgeData(drop=_:);
    do _i = 1 to 39250017;
    Gender = rand('tabled', 19752605 / 39250017);
    output;
    end;
run;
```

	Count
Female (1)	19,753,788
Male (2)	19,496,229
	39,250,017

Jona Area SAS Users Jochet

www.OASUS.ca

ALC: A LEWIS CO.

Generating data: Marital Status

www.OASUS.ca

Some Area SAS Users

And the second second

```
data MarstData(drop=_:);
do _i = 1 to 39250017;
Marst = rand('tabled', 0.375361748, 0.04050276,
0.0758204, 0.01657612, 0.491738972);
output;
end;
```

run;

Society

Generating data: Ancestry

For variables with more than a couple of dozen codes:

1. Get a dataset summarizing counts by code

John Area SAS Users

www.OASUS.ca

- 2. Generate a new dataset, creating approximately but on average slightly more records per code than actual
- 3. Randomly trim this result down to the exact number of records desired

Generating data: Ancestry

/* Get a count by ancestry value */ proc sql noprint;

create table ACSAncestrySumm as

select Ancestry, count(*) as AncestryCount

from ACSAncestry

group by Ancestry

order by Ancestry;

quit;

Jona Area SAS Users Jochet

www.OASUS.ca

200 430-52

/* Adjust upwards for disclosure avoidance with small counts */ data ACSAncestrySumm;

set ACSAncestrySumm;

if AncestryCount < 20 then AncestryCount = 20;

run;

Generating data: Ancestry

www.OASUS.ca

Jona Area SAS Users Jochet

ALC: A DECISION

/* Generate records, they'll be grouped by ancestry value */

/* Create a few too many records */

data AncestryRecsBig(keep=Ancestry RN);

set ACSAncestrySumm;

AncestryCount = int(AncestryCount * (.98 + (rand('uniform')*.07)));

do _i = 1 to AncestryCount;

RN = rand('uniform');

output;

end;

run;

/* Sort by a random number to randomize the ancestry value sequence */ proc sort data=AncestryRecsBig;

by RN;

run;

/* Select just the number of records that we want */ data AncestryFinal;

set AncestryRecsBig(obs=39250017 drop=RN);

run;

NOTE: The data set WORK.ANCESTRYFINAL has 39250017 observations and 1 variables.

Generating data: Income

- In this case, we don't really care about the exact values, and there is an enormous number of different values.
- On option is to group by ranges (0-9...90-99, 100-199...900-999, 1000-1999...9000-9999), and generate values as with Ancestry, perturbating the individual values.
- Or we can use random number distributions to generate data directly, if the curve is a good fit.

John Area SAS Users

www.OASUS.ca

Generating data: Income Highly distorted because of high reporting levels at 000's, 0000's

Jona Area SAS Users Societ

www.OASUS.ca

200 4281 62.

Generating data: Income

Smoothed to represent real data

er 2017

Jona Area SAS Users Societ

www.OASUS.ca

200 A 181-52

www.OASUS.ca

Area SAS Users Societ

A Guingan

data WagPData(drop=_:); do _i = 1 to 100000; WagP = rand('chisq', 8); output; end; run;

Income: Step 1

www.OASUS.ca

Jonna Area SAS Users Society

Mar half stor

data WagPData(drop=_:); do _i = 1 to 100000; WagP = rand('chisq', 8); if WagP > 7 then output; end; run;

/* max(WagP) is around 35 */

Income: Step 2

Income: Step 3

Jonna Area SAS Users Society

-26 4181-52 V

Income: Step 4

/* When we ran 100,000 iterations, 2,500,000 we got 53,491 records */ data WagPData(drop=_:); 2,000,000 . /* To get desired 18640615 records, run 18640615 * 100,000 / 53,491 cycles */ 1,500,000 -Population do i = 1 to 34848134; WagP = rand('chisq', 8);if WagP > 7 & WagP < 35 1,000,000 then do; WagP = int((WagP - 7) * 15000);output; 500,000 · end; end; run; 200,000 400,000 600,000 Wage Income

Jona Area SAS Users Jochet

www.OASUS.ca

All all stor

ALC: ALC: NO.

Generating data: Age

Can either follow the process for Ancestry, or for Income

Final thoughts

Be prepared to do some additional cleaning, particularly at the high and low end. Watch for negative values where forbidden.

These methods will produce good-looking univariate results. Correlations in multivariate results won't appear. In my experience, this hasn't been a problem.

So get out there and generate some data!

Thank you for your attention and participation.

