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Generating realistic synthetic test 

data using SAS Random 

Functions
• Why would we want to do this?

• American Community Survey (California) 2016 as an 

example

• SAS Random Number functions

• Using random numbers to generate test data
• Please feel free to ask questions during the presentation!
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Testing activities that may require 

large volumes of data

• Volume testing (can the system process the required 

volumes of data expected in production?)

• Performance testing (is the performance of the 

system at high volumes acceptable?)

• Usability, for analytical systems (when presented with 

realistic data, can the users effectively use the 

analytical tools?)
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Approaches for obtaining large 

volumes of data

Replicate the unit and integration test files

Issues:

– Typically hand-crafted to ensure correct system behaviour

– Usually contain small proportions of the domains of the 

variables

– Frequently concentrated on boundary conditions

– Replication will tend to produce highly skewed datasets

– Won't permit effective assessment of the system
December 2017 Tom Kari
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Approaches for obtaining large 

volumes of data

Use production data from previous cycles, possibly with 

anonymization

Issues:
– If it’s a new system, there isn’t any production data

– Current production data may be a poor model for new system 

behaviour

– Confidentiality: Challenges using the data in documents, training

– Confidentiality: Can’t share data with partners, hardware/software 

vendors, subcontractors
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Don’t do volume, performance, usability tests

Issues:

–RISK!
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Approaches for obtaining large 

volumes of data

Generate synthetic data that more or less models your 

expected production data

Issues:

– It is necessary to have some conception of what the 

production data characteristics will be

– It requires time and funding
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Example: 2016 American 

Community Survey (California)

• Real-world example

• Large volume (39 million records)

• Diverse characteristics of variables

• I’m very familiar with this kind of data

• The audience has passing knowledge of the 

Canadian Census long form, which is similar

December 2017 Tom Kari



www.OASUS.ca
2016 American Community Survey
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Count

Female 19,752,605

Male 19,497,412

39,250,017

Gender
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2016 American Community Survey
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Marital Status
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Age
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Ancestry

206 rows omitted
Note change of scale
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Wage Income
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www.OASUS.ca SAS Random Number functions

• The RAND function generates random numbers from a 

specified distributions

• Available distributions are: Bernoulli, Beta, Binomial, Cauchy, Chi-Square, 

Erlang, Exponential, F, Gamma, Geometric, Hypergeometric, Lognormal, Negative 

Binomial, Normal, Poisson, T, Triangular, Uniform, and Weibull

• Also, Tabled option, not a distribution

• The STREAMINIT routine allows you to specify a seed, so the 

stream of numbers is repeatable

• It is better to use RAND, not the older random number 

routines (RANUNI etc.)
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RAND Uniform

• The simplest option, no parameters, generates a random 

number uniformly distributed > 0, < 1

• Can be manipulated to generate numbers in a desired range, 

real or integer

December 2017 Tom Kari

%let Repetitions = 10000; /* > 0 */

%let Lower = 17; /* >= 0 */

%let Upper = 44; /* >= Lower */

data RandomNumbers(drop=_:);

do _i = 1 to &Repetitions;

RandomVar = floor(&Lower + (rand('uniform') *

(&Upper - &Lower + 1)));

output;

end;

run;
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RAND Normal

• Returns a random number normally distributed as specified 

by the two parameters: mean(0), and standard Deviation(1)

• Models many natural and statistical phenomena
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data RandomNormal(drop=_:);

do _i = 1 to 10000;

RandomVar = rand('normal');

/* RandomVar = rand('normal', 12, 4); */

output;

end;

run;
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RAND Triangular
• Returns a random number distributed in a triangle (0,1)
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RandomVar = rand(‘triangle‘, .5);
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RAND Chi-Square
• Returns a random number distributed in the chi-square 

distribution
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RandomVar = rand('chisquare', 6);
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RAND Beta
• Returns a random number distributed in the beta distribution
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RandomVar = rand('beta', 5, .5);
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RAND Beta

December 2017 Tom Kari



www.OASUS.ca

RAND Beta
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RAND Tabled
• Returns an integer based on a specified distribution
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data RandomNumbers(drop=_:);

do _i = 1 to 10000;

RandomVar = rand('tabled', .1, .3, .05, .4);

/* 10% will be 1,

30% will be 2,

5% will be 3,

40% will be 4,

the remainder (15%) will be 5 */

output;

end;

run;

/* Can have up to 32K percentages */
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STREAMINIT routine
• Allows you to specify a seed, so that the number stream is 

reproducible
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/* No input SAS dataset */

data RandomNumbers(drop=_:);

call streaminit(1704211720);

do _j = 1 to 15;

Run_1 = rand('uniform');

output;

end;

run;

/* With an input SAS dataset */

data RandomNumbers;

if _n_ = 1 then

call streaminit(1704211720);

set sashelp.class;

Run_1 = rand('uniform');

run;
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Generating data: Gender
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/* Option 1 */

data AgeData(drop=_:);

do _i = 1 to 39250017;

RandomVar = rand('uniform');

if RandomVar <= 19752605 / 39250017

then Gender = 1; /* Female */

else Gender = 2; /* Male */

output;

end;

run;

/* Option 2 */

data AgeData(drop=_:);

do _i = 1 to 39250017;

Gender = rand('tabled', 19752605 / 39250017);

output;

end;

run;

Count

Female (1) 19,753,788

Male (2) 19,496,229

39,250,017
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Generating data: Marital Status
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data MarstData(drop=_:);

do _i = 1 to 39250017;

Marst = rand('tabled', 0.375361748, 0.04050276,

0.0758204, 0.01657612, 0.491738972);

output;

end;

run;
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Generating data: Ancestry

December 2017 Tom Kari

For variables with more than a couple of dozen codes:

1. Get a dataset summarizing counts by code

2. Generate a new dataset, creating approximately but on 

average slightly more records per code than actual

3. Randomly trim this result down to the exact number of 

records desired
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Generating data: Ancestry
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/* Get a count by ancestry value */

proc sql noprint;

create table ACSAncestrySumm as

select Ancestry, count(*) as AncestryCount

from ACSAncestry

group by Ancestry

order by Ancestry;

quit;

/* Adjust upwards for disclosure avoidance with small counts */

data ACSAncestrySumm;

set ACSAncestrySumm;

if AncestryCount < 20 then

AncestryCount = 20;

run;
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Generating data: Ancestry
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/* Generate records, they'll be grouped by ancestry value */

/* Create a few too many records */

data AncestryRecsBig(keep=Ancestry RN);

set ACSAncestrySumm;

AncestryCount = int(AncestryCount * (.98 + (rand('uniform')*.07)));

do _i = 1 to AncestryCount;

RN = rand('uniform');

output;

end;

run;

/* Sort by a random number to randomize the ancestry value sequence */

proc sort data=AncestryRecsBig;

by RN;

run;

/* Select just the number of records that we want */

data AncestryFinal;

set AncestryRecsBig(obs=39250017 drop=RN);

run;

NOTE: The data set WORK.ANCESTRYFINAL has 39250017 observations and 1 variables.
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Generating data: Income
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• In this case, we don’t really care about the exact 

values, and there is an enormous number of different 

values.

• On option is to group by ranges (0-9…90-99, 100-

199…900-999, 1000-1999…9000-9999), and 

generate values as with Ancestry, perturbating the 

individual values.

• Or we can use random number distributions to 

generate data directly, if the curve is a good fit.
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Generating data: Income
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Highly distorted because of high 

reporting levels at 000’s, 0000’s
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Generating data: Income
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Smoothed to represent real data

Artifact of PUMF 

creation
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Income: Step 1
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data WagPData(drop=_:);

do _i = 1 to 100000;

WagP = rand('chisq', 8);

output;

end;

run;
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Income: Step 2
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data WagPData(drop=_:);

do _i = 1 to 100000;

WagP = rand('chisq', 8);

if WagP > 7

then output;

end;

run;

/* max(WagP) is around 35 */
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Income: Step 3
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data WagPData(drop=_:);

do _i = 1 to 100000;

WagP = rand('chisq', 8);

if WagP > 7 & WagP < 35

then do;

WagP = (WagP - 7) * 15000;

output;

end;

end;

run;
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Income: Step 4
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/* When we ran 100,000 iterations,

we got 53,491 records */

data WagPData(drop=_:);

/* To get desired 18640615 records, 

run 18640615 * 100,000 / 53,491 

cycles */

do _i = 1 to 34848134;

WagP = rand('chisq', 8);

if WagP > 7 & WagP < 35

then do;

WagP = int((WagP - 7) * 15000);

output;

end;

end;

run;
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Income: Complete
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Generating data: Age
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Can either follow the process for Ancestry, or for Income
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Final thoughts
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Be prepared to do some additional cleaning, particularly 

at the high and low end. Watch for negative values 

where forbidden.

These methods will produce good-looking univariate 

results. Correlations in multivariate results won’t appear. 

In my experience, this hasn’t been a problem.
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So get out there and generate some data!

Thank you for your attention and participation.

Tom


