
The inner workings of
the datastep

By Mathieu Gaouette

Plan

• Introduction
• The base
• The base behind the scene
• Control in the datastep
• A side by side compare with Proc SQL

Introduction

• Most of you probably have been introduced to SAS
through Proc SQL.

• Unless you have been taught (or have read) about
the datastep, most of you probably very rarely use
it.

• Do you think you could name one thing that can be
done with a datastep that can’t be performed with
a proc SQL?

• Knowledge of how the datastep is being processed
by SAS is key in using it wisely.

The base

The anatomy of the datastep is fairly simple:

Data <table(s) to create > ;
<Stuff! (input definition, functions, calculations, ...)>
Run ;

The base - Input

SAS table input Flat file input

Identification

Input
instruction

• Reading in data makes the
datastep loop over as long as
there is data to read…
in most cases

Set or merge statement
<set|merge> table1 table2 …
[options];

Infile statement
<infile> external-file [options];

Same statement Input statement

The base - Output

SAS table output Flat file output

Identification

Output
instruction

For SAS tables, if no explicit output is used, an implicit output
statement is executed when the datastep execution hits the
« run » statement.

Data statement
Data table1 table2 … ;

File statement
<File> external-file
[options];

output [table-name] ; put statement

Behind the scene

• Data step processing order
• Program data vector (PDV)
• Automatic PDV variables
• Detailed step by step

example

Processing the datastep

1. The datastep initiates
2. If required, an input buffer is created
3. A program data vector is created (PDV)
4. The output dataset(s) are created empty

Only then is the first line
of the datastep is actually processed.

Why is that important?

The actual locations of a few key statements are
irrelevant in a datastep.

Consider the following datastep:

data test_no1 ;
val_a = 1 ; val_b = 2 ;
if val_a = 3 then do ;

drop val_a ;
end ;
else if val_b = 3 then do ;

drop val_b ;
end ;

run ;

Another example

data src_table_1 ;
val1_a = 1 ; val1_b = 1 ; val1_c = 1 ;

run ;
data src_table_2 ;

val2_a = 2 ; val2_b = 2 ; val2_c = 2 ;
run ;
data test_no2 ;

if "&SYSUSERID." eq 'gaouettm' then set src_table_1 ;
else set src_table_2 ;

run ;

A closer look at the PDV

• The PDV should be viewed as a draft of your data.
• It contains all of your dataset variables (even

dropped variables) plus two system variables :
1. _N_
2. _ERROR_

• Knowing about these two system variables can be
an asset.

QUIZ

• What is the minimal possible value of the datastep
system variable _N_?

A) 0
B) 1
C)

N

• Contrary to popular belief, this system variable
doesn’t track the row number being processed.

• “Each time the DATA step loops past the
DATA statement, the variable _N_
increments by 1. The value of _N_
represents the number of times the DATA step has
iterated.” (SAS.com)

• It’s actually more: “The value of _N_ represents the
number of times the DATA step has iterated plus
one.”

Typical use of _N_

• Limit the number of iteration in a datastep :
if _n_ > 1000 then stop ;

• Perform one time task from within the datastep :
if _n_ = 1 then do ;

<code to be executed one time>
end ;

• Create an incremental id variable :
id_key = _n_ ;

ERROR

• is 0 by default but is set to 1 whenever an error is
encountered, such as an input data error, a
conversion error, or a math error, as in division by 0
or a floating point overflow. You can use the value
of this variable to help locate errors in data records
and to print an error message to the SAS log.
(SAS.com)

QUIZ

• When a « _ERROR_ » is produced in a datastep,
does SAS generates a « WARNING: » and/or
« ERROR: » in the log?

A) Yes
B) No
C) It’s complicated. I’d rather not talk about it

What triggers _ERROR_

A few common situations are:
• Divisions by zero

• only triggers a NOTE in the log

• Invalid array position reference
• triggers an ERROR in the log

• Invalid value for input/put function
• only triggers a NOTE in the log

A note about NOTEs

• You can use input with an option that suppresses
the errors.

• A single ‘?’ with a space before the format tells SAS to
not print the NOTE.

• A double ‘?’ with a space before the format will also
reset the _ERROR_ value to 0

Ex: n_date = input(c_date,?? yymmdd10.) ;

Detailed example

• Lets start with two
simple tables
…that share a common key

• We wish to merge then and try to convert the
« num_dates » into a SAS date.

data toto ;
retain count_obs 0 ;
merge src_a(in=a) src_b(in=b) ;
count_obs = count_obs + 1 ;
by num_key ;
if a ;
char_nonsense_date = input(put(num_dates,8.),yymmdd8.) ;
output ;

run ;

Lets keep an eye on the PDV

• Retained count_obs is initialized before the statement is
executed.

• Input variables are set to missing until data is read.
• Char_nonsense_date actually gets a decent date value assigned.

Lets keep an eye on the PDV

• First row of values are kept in PDV until merge statement is
executed.

• Date conversion fails so _ERROR_ is set to 1 and the following
note gets displayed in log:

NOTE: Invalid argument to function INPUT at line 53 column 26.

Lets keep an eye on the PDV

• 3rd iteration starts off fresh with _ERROR_ back to 0.
• Second line of data for num_key 2 read (only the

num_dates field changes). The pointer to the table
src_b still points to the same row (num_key of 2).

Lets keep an eye on the PDV

• This iteration behaves a lot like the second one.
• A new line of data corresponding to a new num_key value

is read from both tables.
• An error is encountered while converting the bogus date.

Lets keep an eye on the PDV

• _ERROR_ initialized again.
• Missing values for variables from table src_a as it does

not contain the num_key 4.
• As “in variable” a is equal to 0, iteration stops there.

Lets keep an eye on the PDV

• Again, missing values for variables from table src_a as it does not
contain the num_key 5.

• As “in variable” a is equal to 0, iteration stops there
and we are done with the datastep, right ?

• Wrong, almost done!

Lets keep an eye on the PDV

• SAS loops again until it tries to read a new row of data from
input files.

• Since SAS can not read any data in, it stops processing the
current iteration.

… and now we’re done.

Control in the datastep

• Conditional processing and loops are huge
strengths of the datastep.

• The basic datastep goes from top to bottom one
line at a time.

• With loops and conditions, you can
execute some statements more
than once or not at all in specific
iterations.

Control in the datastep

Instruction Statement

Stop processing the current iteration delete ;

Stop processing the current datastep stop ;

Conditional processing if - then - do

Looping do, do while, do until

Go to specific portion of the datastep go to statement

Side by side

Data step Proc SQL

Joins

Unions

Output

Conditionnal
processing

Aggregations

Work usage

requires sorted/indexed input

YES

Multiple outputs

Strong with minimal code

Manual and requires sorted input

Minimal*

No requirement*

No interleave possible
Single output

Strong but with a toll on the
complexity

No real limits

Variable

Who wins?

• No one wins, it’s all about context.
• Learn to use both.
• Use Proc SQL to simplify programs by combining

several different tasks in one when you are dealing
with small to medium size datasets.

• Use the datastep for large dataset processing with
conditional statements and loops.

• Besides, no one really wants to see a car mechanic
fight an old lady!

References

• http://support.sas.com/documentation/cdl/en/lrcon/
62955/HTML/default/viewer.htm#a000961108.htm

• http://support.sas.com/documentation/cdl/en/lrcon/
68089/HTML/default/viewer.htm#p0e0mk25gs9binn
1s9jiu4otau29.htm

• http://support.sas.com/documentation/cdl/en/lrcon/
68089/HTML/default/viewer.htm#n1g8q3l1j2z1hjn1gj
1hln0ci5gn.htm

http://support.sas.com/documentation/cdl/en/lrcon/62955/HTML/default/viewer.htm
http://support.sas.com/documentation/cdl/en/lrcon/68089/HTML/default/viewer.htm
http://support.sas.com/documentation/cdl/en/lrcon/68089/HTML/default/viewer.htm

What I couldn’t cover but wish I did!

• Using multiple « set » or « merge » statements in the
datastep.

• Joining data with the use of formats and hash tables.
• Working on several rows of data (through retains or

lag statements).
• Using arrays.
• Views to allow efficient chain datastep processing.

	The inner workings of the datastep
	Plan
	Introduction
	The base
	The base - Input
	The base - Output
	Behind the scene
	Processing the datastep
	Why is that important?
	Another example
	A closer look at the PDV
	QUIZ
	N
	Typical use of _N_
	ERROR
	QUIZ
	What triggers _ERROR_
	A note about NOTEs
	Detailed example
	Lets keep an eye on the PDV
	Lets keep an eye on the PDV
	Lets keep an eye on the PDV
	Lets keep an eye on the PDV
	Lets keep an eye on the PDV
	Lets keep an eye on the PDV
	Lets keep an eye on the PDV
	Control in the datastep
	Control in the datastep
	Slide Number 29
	Side by side
	Who wins?
	References
	What I couldn’t cover but wish I did!

