
SHAPING DATA LONG
TO WIDE:

Counting Common Characteristics
and Making Them into Variables

Part I. Data has multiple
records per account

and user count is required
2 (Data has to be sorted by the common characteristic in question)

OUTPUT

3

COUNTING
1. First and Last – Assigning Value 1

data test_firstlast_1;
 set cards;
 by acct_num;
 if first.acct_num then total_count=0;
 total_count=sum(total_count,1);
 retain total_count;
 if last.acct_num then output;
 drop card_num last_name first_name;
run;

4

data test_firstlast_2;
 set cards;
 by acct_num;
 if first.acct_num then total_count=0;
 total_count+1;
 if last.acct_num then output;
 drop card_num last_name first_name;
run;

5

COUNTING
1. First and Last – Assigning Value 2

1. First and Last – Assigning V 1 and 2
Differences

SUM function – excludes missing values, requires
retain statement

SUM statement - assigns zeros to missing values,

does not require retain

Both can assign initial zero value to total_count

6

data test_firstlast_3;
 set cards;
 by acct_num;
 total_count+1;
 if last.acct_num then do;
 output; total_count=0; end;
 drop card_num last_name first_name;
run;

7

COUNTING
1. First and Last – Automatic

 Assignment

COUNTING
2. Do Until

data test_dountil;
do until (last.acct_num);
 set cards;
 by acct_num;
 total_count=sum(total_count,1);
end;
 drop card_num last_name first_name;
run;

8

DOW – Do Loop of Whitlock – Do Until precedes
Set to ensure that data is processed as it is read in,

values of total_count are reset to missing at the
beginning of each loop

It is not possible to construct Do While (not

Last.acct_num) loop as its condition is evaluated
at the top and it is terminated before the result

can be outputted
9

1. First and Last and 2. Do until
Differences

COUNTING
3. Proc SQL

proc sql;
create table test_procsql as
 select acct_num,
 count(*) as total_count
 from cards;
 group by acct_num
 order by acct_num;
quit;

10

Proc SQL – does not require preliminary sorting
and is time effective pulling large volumes of data

Numeric functions in Proc SQL can be used with

character variables to include them into grouped
dataset (e.g. max, min)

11

1. First and Last, 2. Do until and
3. Proc SQL

 Differences

Part II. Data has multiple
records per account

and one record per account is required
12 (Data has to be sorted by the common characteristic in question)

OUTPUT

13

TRANSPOSING
1. Proc Transpose

proc transpose data=cards out=cardsbyaccount1
 (drop=_NAME_ _LABEL_) prefix=last_name;
 var last_name;
 by acct_num;
run;
proc transpose data=cards out=cardsbyaccount2
 (drop=_NAME_ _LABEL_) prefix=first_name;
 var first_name;
 by acct_num;
run;

14

1. Proc Transpose (Cont’d)

proc sort data=cardsbyaccount1; by acct_num; run;

proc sort data=cardsbyaccount2; by acct_num; run;

data cardsbyaccount_transpose;
 merge cardbyaccount1(in=a)
 cardbyaccount2(in=b);
 by acct_num;
 if a=b;
run; 15

1. Proc Transpose (Cont’d)

Proc Transpose needs prior sorting but will create
the necessary number of columns to

accommodate all records being transposed

Proc Transpose cannot transpose several variables
into one row, instead they have to be transposed

one by one

16

TRANSPOSING
2. Transposing with Arrays

proc means data=test_firstlast1 noprint missing;
 var total_count;
 output out=max_obs (drop=_FREQ_ _TYPE_)
 max=max_total_count
run;

data _null_
 set max_obs;
 call symput (‘N’ ,Trim(Left(max_total_count)));
run; 17

Call symput adds leading blanks to a macro, Trim and Left are used to remove them

2. Transposing with Arrays (Cont’d)

data cardsbyaccount_array_1;
 set cards;
 by acct_num;
 array ln{&N} $ last_name1-last_name&N;
 array fn{&N} $ first_name1-first_name&N;
 if first.acct_num then i=1; else i+1;
 ln{i}=last_name; fn{i}=first_name;
 if last.acct_num;
 if i lt &N then do i=i+1 to &N;
 ln{i}=‘ ’; fn{i}=‘ ’; end;
retain acct_num last_name1-last_name&N first_name1-first_name&N;
keep acct_num last_name1-last_name&N first_name1-first_name&N;
run;

18

Using First/Last and Do Loops 1

2. Transposing with Arrays (Cont’d)

First/Last and Do Loops need a value for
maximum records to be transposed, which

requires an additional step to get and set N as a
macro variable

First/Last and Do Loops need specific

instructions to fill the excess records with blanks
if number of existing records is less than N

19

Using First/Last and Do Loops 1

2. Transposing with Arrays (Cont’d)

data cardsbyaccount_array_2;
 retain acct_num;
 array ln{&N} $ last_name1-last_name&N;
 array fn{&N} $ first_name1-first_name&N;
 do i=1 to &N until (last.acct_num);
 set cards;
 by acct_num;
 ln{i}=last_name; fn{i}=first_name;
 end;
keep acct_num last_name1-last_name&N first_name1-first_name&N;
run;

20

Using First/Last and Do Loops 2

2. Transposing with Arrays (Cont’d)

The second version of First/Last and Do Loops is
shortened by combining Do To with Unil (Last)

and taking advantage of built in features like
assigning missing values to records short of N
and incrementing the count by 1 for the next

loop

21

Using First/Last and Do Loops 2

2. Transposing with Arrays (Cont’d)
 data cardsbyaccount_array_3;

 set cards;
 by acct_num;
 retain acct_num;
 array ln{&N} $ last_name1-last_name&N;
 array fn{&N} $ first_name1-first_name&N;
 if first.acct_num then do; i=1;
 do j=1 to &N; ln{i}=‘ ’; fn{i}=‘ ’; end;
 end;
 else i+1; ln{i}=last_name; fn{i}=first_name;
 if last.acct_num then output;
retain acct_num last_name1-last_name&N first_name1-first_name&N;
keep acct_num last_name1-last_name&N first_name1-first_name&N;
run;

22

Using initial missing values and First/Last

2. Transposing with Arrays (Cont’d)

Initial missing values and First/Last (Jesse Coull’s
approach) instructs SAS to create all N records
for each account, which then are filled with the

existing data or remain blank

This approach has additional advantages if one
of the variables in the dataset is a time variable

as it can be incorporated into counter

23

Using initial missing values and First/Last

2. Transposing with Arrays (Cont’d)
 data cardsbyaccount_array_3;

 set cards;
 by acct_num;
 array bal{&N} $ balance1-balance&N;
 array st{&N} $ status1-status&N;
 if first.acct_num then do;
 do j=1 to &N; ln{i}=‘ ’; fn{i}=‘ ’; end;
 end;
 index=&N-(intck(‘month’,Date_Entered,today());
 bal {index}=acct_balance; st{index}=acct_status;
 if last.acct_num then output;
retain acct_num last_name1-last_name&N first_name1-first_name&N;
keep acct_num last_name1-last_name&N first_name1-first_name&N;
run;

24

Using initial missing values and First/Last

Conclusions and Contact Info

 Conclusions:
1. Counting can be the end goal or the intermediate

step in data transformation process;
2. Once the maximum value of records is known

the ARRAY statement can be used to transform
data more quickly and efficiently.

Iryna Nekhayevska, ATB Financial

INekhayevska@atb.com
 economics@consultant.com

25

