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Exponential Smoothing I

Notation: ŷt (h) = forecast of Y at horizon h, given at time t .

Idea 1: Predict Yt+h by taking weighted sum of past
observations:

ŷt (h) = λ0yt + λ1yt−1 + · · ·

Assumes ŷt (h) is constant for all horizons h.
Idea 2: Weight recent observations heavier than older ones:

λi = cαi , 0 < α < 1 ⇒ ŷt (h) = c
(

yt + αyt−1 + α2yt−2 + · · ·
)

where c is a constant so that weights sum to 1.
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Exponential Smoothing II

ŷt (h) = c
(

yt + αyt−1 + α2yt−2 + · · ·
)

Weights are exponentially decaying (hence the name).
Choose α by minimizing squared one-step prediction error.

Overall:

Just a weighted moving average.
Can be extended to include trend and seasonality.
Prediction intervals? Sort of ...
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SAS Code

All done with PROC FORECAST:

method=expo trend=1 for simple.
method=expo trend=2 for trend.
method=winters seasons=( 12 ) for seasonal.

Forecasting 3 weeks ahead, exponential smoothing
PROC FORECAST data=airline method=xx interval=month lead=12

out=foreexsm outactual out1step;
VAR pass;
ID date;

RUN;
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Exponential Smoothing VI

Advantages:

Gives interpretable results (trend + seasonality).
Gives more weight to recent observations.

Disadvantages:

Not a model (in the statistical sense).

Prediction intervals not (really) possible.

Can’t generalize to multivariate approach.
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ARIMA I

Stands for AutoRegressive Integrated Moving Average
models.
Also known as Box-Jenkins models (Box and Jenkins, 1970).
Advantages:

Best fit (minimum mean squared forecast error).
Generalizes to multivariate approach.
Often used in statistical practice.

Disadvantages:

More complex.
Not intuitive at all.
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ARIMA II

Assume nonseasonality for now.

First, transform, then difference the data {Yt} d times until it
is stationary (constant mean, variance), denoted {Y ∗

t }.
Guesstimate orders p, q through the sample autocorrelation,
partial autocorrelation functions.
Fit an autoregressive moving average (ARMA) process,
orders p and q:

Y ∗
t − φ1Y ∗

t−1 − · · · − φpY ∗
t−p = Zt + θ1Zt−1 + · · ·+ θqZt−q

φ (Y ∗
t ) = θ (Zt )

where Zt
iid∼ N(0, σ2), and φ1, . . . , φp, θ1, . . . , θq are constants.

Through trial and error, repeat above 2 steps until errors “look
good”.

Above is an ARIMA(p,d ,q) model.
Nate Derby Time Series Forecasting Methods 27 / 43
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Confused Yet?

Q: How do we account for seasonality, period s?
A: We do almost the exact same thing, except for period s:

Look at {Y ∗
t ,Y

∗
t+s,Y

∗
t+2s, . . .}. Are they stationary? If not,

difference D times until they are.
Guesstimate orders P and Q similarly to before.
Fit “multiplicative ARMA(P,Q)” process, period s:(
Y ∗

t − Φ1Y ∗
t−s − · · · − ΦPY ∗

t−Ps
)
φ(Y ∗

t ) =
(Zt + Θ1Zt−s + · · ·+ ΘQZt−Qs) θ(Zt )

Repeat above 2 steps until all “looks good”.

Above is an ARIMA(p,d ,q)(P,D,Q)s process.
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SAS Code

If you’re still with me ...

Yt = log(passt ) ∼ ARIMA(0,1,1)× (0,1,1)12 :

(Yt − Yt−1)(Yt − Yt−12) = (Zt − θ1Zt−1)(Zt −Θ1Zt−12)

Forecasting 3 weeks ahead, ARIMA
PROC ARIMA data=airline;

IDENTIFY var=lpass( 1, 12 ) noprint;
ESTIMATE q=( 1 )( 12 ) noint method=ML noprint;
FORECAST lead=12 out=forearima id=date interval=month noprint;

RUN;
QUIT;

Compare with Moving Average
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Beware the defaults!

SAS Code
symbol1 i=join c=red mode=include;
symbol2 i=join c=blue mode=include;
symbol3 i=join c=blue l=20 mode=include;

proc gplot data=forearima;
plot pass*date=1
forecast*date=2
l95*date=3
u95*date=3 / overlay ...;

run;
quit;
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Which Method Should be Used?

We used three methods, would like to try others later.
Q: Which method should be used?

Idea: The one that makes the best forecasts!

Make k -month-ahead forecasts for the last n months of the
data.

For i = 1, . . . , n, remove last i months of the data, then make
forecasts for k months in the future.

For each method, compare forecasts to actuals.
Use forecasts from the method that made the most accurate
forecasts.
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How Do We Judge Forecasts?

General standard: Mean Absolute Prediction Error (MAPE):

MAPE = 100×
T∑

t=1

|forecastt − actualt |
actualt

,

Gives average percentage off (zero is best!).

Sometimes different methods best for different horizons.
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How Do We Do This with SAS?

Easy way: Forecast Server or High Performance Forecasting!

Follows (and generalizeds) our framework.
Implements our methods.
Allows us to add our own methods.

Harder (but cheaper) way: Program it ourselves.
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How Do We Do This with SAS?

SAS Code Excerpt
DATA results;

SET all; *merged results, sorted by method;
ape3 = 100*abs( pass - forecast3 )/pass;

PROC MEANS data=results noprint;
BY method;
VAR ape3;
OUTPUT OUT=mapes MEAN( ape3 ) = mape3 / noinherit;

DATA mapes;
SET mapes;
IF method = 'arima' THEN CALL SYMPUT( 'mapearima', mape3 );
IF method = 'exsm' THEN CALL SYMPUT( 'mapeexp', mape3 );
IF method = 'mave' THEN CALL SYMPUT( 'mapemave', mape3 );

%LET mapev = &mapearima, &mapeexp, &mapemave;

DATA _null_;
IF MIN( &mapev ) = &mapearima THEN CALL SYMPUT( 'best', 'arima' );

ELSE IF MIN( &mapev ) = &mapeexp THEN CALL SYMPUT( 'best', 'exsm' );
ELSE IF MIN( &mapev ) = &mapemave THEN CALL SYMPUT( 'best', 'mave' );

DATA bestforecasts;
SET fore&best;

RUN;
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Are Our Overall Forecasts Better?

Better forecasts in training set no guarantee of better
forecasts overall!
Happily, we often do get better forecasts in general.
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What’s Next?

Multivariate Models!

Takes account of holidays/other irregularities.
Allows for scenario forecasting!

How will we do this?
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How Will We Do This?

One solution: Multivariate ARIMA (transfer models):

Yt = β0 +
I∑

i=0

βiXt−i + Zt , Zt = ARIMA process

Works all right (using PROC ARIMA), but
Very complicated to use,
Results not very good/useful!

One big problem: Parameters are fixed over time.

One outlier (e.g., Sept 11) could screw up entire model.
If parameters could change over time, model would be (much)
more flexible.

Nate Derby Time Series Forecasting Methods 41 / 43



Introduction
Univariate Forecasting

Conclusions

Which Method?
Are Our Results Better?
What’s Next?

How Will We Do This?

Another solution: State Space (or Hidden Markov) Models

Yt = β0t +
I∑

i=0

βi tXt−i + Zt , Zt = Normal process

Parameters change (slowly) over time.
Modeled by separate equation.

Complicated, but flexibility makes it worth it.
Problem: SAS doesn’t implement it!

PROC STATESPACE: Nope! (misleading name)
PROC UCM: Closer, but still not there.
PROC IML: Can do it, but a fair bit of work.
(Almost) no one else (R, S+, SPSS) does, either.
My next research project!
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Appendix

Further Resources

John C. Brocklebank and David A. Dickey.
SAS for Forecasting Time Series.
SAS Institute, 2003.

Chris Chatfield.
Time-Series Foreasting.
Chapman and Hall, 2000.

Nate Derby: http://nderby.org
nderby@sprodata.com
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