SAS SYSTEM FOR THE EVALUATION OF SURROGACY IN CLINICAL TRIALS

Theophile Bigirumurame
Interuniversity Institute for Biostatistics and statistical Bioinformatics University Hasselt, Belgium

SAS ACADEMIC CONFERENCE
Leuven March 3rd, 2016

Research team

• Geert Molenberghs
• Ariel Alonso Abadi
• Wim Van der Elst
• Theophile Bigirumurame
• Marc Buyse
• Tomasz Burzykowski
• Ziv Shkedy
Definition

• **Clinical endpoint (or true endpoint)**
 – A characteristic or variable that reflects how a patient feels, functions, or survives.

• **Biomarker**
 – A characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.

• **Surrogate endpoint**
 – A biomarker that is intended to substitute for a clinical endpoint. It is expected to predict clinical benefit (or harm or lack of benefit or harm)

Motivation

• **Primary motivation**
 – True endpoint is rare and/or distant
 – Surrogate endpoint is frequent and/or close in time

• **Secondary motivation**
 – True endpoint might be: invasive, uncomfortable, costly,....
Examples of surrogate endpoints used in medical research

<table>
<thead>
<tr>
<th>Disease</th>
<th>Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Surrogate</td>
</tr>
<tr>
<td>Early stage cancer</td>
<td>Time to progression</td>
</tr>
<tr>
<td>Advanced cancer</td>
<td>Tumor response</td>
</tr>
<tr>
<td>HIV infections</td>
<td>CD4 counts; viral load</td>
</tr>
</tbody>
</table>

Surrogate validation

- Before its use, a surrogate has to be validated (at the individual level and trial level)
- However, no standard software available
- We propose a set of SAS macro to perform the analysis
Individual-level surrogacy validation

The individual-level surrogacy, measures the association between the potential surrogate endpoint and the clinical endpoint, adjusting for the effect of treatment across all the trials included.

Trial-level surrogacy validation

how well one can predict the treatment effect on the clinical endpoint in a future trial based on the observed association between the treatment effects on the surrogate and clinical endpoints observed in previous trials.
Assessment of surrogacy levels

- Good surrogate is expected to have R^2 close to 1, at both level of surrogacy.
- Confidence interval around R^2 should be narrow.

The surrogacy setting:

Surrogacy question:
can we use treatment effect on the surrogate endpoint to predict treatment effect on the true endpoint?
Different Type of endpoints

- Survival/Survival
- Normal/Normal
- Normal/Binary
- Survival/Binary

Software

1. DATA
2. SAS MACRO
3. STANDARD OUTPUT
 - Graphical outputs
 - Surrogacy measures

Per setting
Application 1

Two continuous endpoints

Case study

- Randomized, multicenter study in ophthalmology.
- Patients with age-related macular degeneration, patients progressively lose vision
- Interferon-alpha vs placebo.
- Primary endpoint: change of visual acuity at 1 year of treatment (Diff 52).
- Surrogate endpoint: change of visual acuity after 6 months of treatment (Diff 24).
- Question: does treatment improve the visual acuity?

Can we use visual acuity after 6 months as a surrogate for visual acuity after 1 year?
Surrogacy Question: trial level surrogacy

Can we use treatment effect on Diff24 to predict treatment effect on Diff52?

A: Diff24 is not predictive
B: Diff24 is predictive

Macro call

%reduc(data=surr=true, trt=center, weighted=looa, type=)

Output:
1. Exploratory plots
2. Numeric outputs
3. Surrogates measures
Exploratory plots

Numerical outputs

<table>
<thead>
<tr>
<th>Trial</th>
<th>True Lower</th>
<th>True Estimate</th>
<th>True Upper</th>
<th>Surrogate Lower</th>
<th>Surrogate Estimate</th>
<th>Surrogate Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>13395</td>
<td>-27.0499</td>
<td>-5.5000</td>
<td>16.9400</td>
<td>-16.4300</td>
<td>1.5000</td>
<td>19.4300</td>
</tr>
<tr>
<td>13740</td>
<td>-5.9838</td>
<td>1.5800</td>
<td>13.6353</td>
<td>-7.6518</td>
<td>2.1907</td>
<td>11.6949</td>
</tr>
<tr>
<td>13629</td>
<td>0.2381</td>
<td>6.0000</td>
<td>21.2381</td>
<td>5.1787</td>
<td>7.5000</td>
<td>20.1787</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Removed Trial</th>
<th>Indiv. level</th>
<th>Trial level</th>
</tr>
</thead>
<tbody>
<tr>
<td>13395</td>
<td>0.5307</td>
<td>0.0561</td>
</tr>
<tr>
<td>13390</td>
<td>0.5315</td>
<td>0.6573</td>
</tr>
<tr>
<td>13745</td>
<td>0.5278</td>
<td>0.6702</td>
</tr>
<tr>
<td>13740</td>
<td>0.5228</td>
<td>0.6547</td>
</tr>
<tr>
<td>13748</td>
<td>0.5471</td>
<td>0.6687</td>
</tr>
<tr>
<td>13750</td>
<td>0.5264</td>
<td>0.6682</td>
</tr>
<tr>
<td>13828</td>
<td>0.5333</td>
<td>0.6521</td>
</tr>
<tr>
<td>13829</td>
<td>0.5280</td>
<td>0.0518</td>
</tr>
</tbody>
</table>
Surrogacy measures

The association at individual level or individual level surrogacy = 0.5318 (0.4315, 0.6231)
The trial level surrogacy = 0.6585 (0.4695, 0.8476)
Visual acuity after 6 months is a moderate surrogate for visual acuity after 1 year

Some optional outputs
Application 2

Two survival endpoints

Case study

- Meta-analysis in oncology
- Patients with advanced ovarian cancer
- CAP (cylophosphamide + adriamycin+ cisplatin) vs CP.
- Primary endpoint: survival time
- Surrogate endpoint: progression free survival
- Question: does CAP improve the survival time?

Can we use progression free survival as a surrogate?
Surrogacy Question: trial level surrogacy

Can we use treatment effect on progression free survival to predict treatment effect on overall survival?

A: PFS is not predictive
B: PFS is predictive

Macro call

`%Survival(data=surr=surrind=true=trueind=true, center=true, trial=, copula=, adjustment=)`

<table>
<thead>
<tr>
<th>ID</th>
<th>TRUE</th>
<th>TRUEIND</th>
<th>Surr</th>
<th>Surrind</th>
<th>TRT</th>
<th>CENTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>404</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>524</td>
<td>1</td>
<td>160</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>419</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>213</td>
<td>1</td>
<td>233</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>569</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>816</td>
<td>1</td>
<td>636</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>317</td>
<td>1</td>
<td>137</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>378</td>
<td>1</td>
<td>144</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>917</td>
<td>1</td>
<td>86</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>403</td>
<td>1</td>
<td>56</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>483</td>
<td>1</td>
<td>45</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>62</td>
<td>1</td>
<td>62</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>550</td>
<td>0</td>
<td>353</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Output:
1. Exploratory plot
2. Effects plot
3. Surrogates measures
The association at individual level or individual level surrogacy = 0.8711 (0.8595, 0.8826)
The trial level surrogacy = 0.8733 (0.7989, 0.9476)
PFS seems to be a good surrogate for survival time for advanced ovarian cancer
Conclusion & Discussion

- Good surrogate is expected to have R^2 close to 1, at both level of surrogacy.
- Confidence interval around R^2 should be narrow.
- Validation specific to the disease and treatment
- Surrogates allow to read out clinical trial results earlier
- The macro will be available online soon !!!