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Introduction
This paper introduces deep learning, its applications and how SAS supports the 
creation of deep learning models. It is geared toward a data scientist and includes  
a step-by-step overview of how to build a deep learning model using deep learning 
methods developed by SAS. You’ll then be ready to experiment with these methods  
in SAS Visual Data Mining and Machine Learning. See page 12 for more information  
on how to access a free software trial.

Deep learning is a type of machine learning that trains a computer to perform human- 
like tasks, such as recognizing speech, identifying images or making predictions. 
Instead of organizing data to run through predefined equations, deep learning sets  
up basic parameters about the data and trains the computer to learn on its own by 
recognizing patterns using many layers of processing. Computer vision (the ability  
to recognize images) is used strategically in many industries (see Figure 1).

Figure 1: A few examples of how computer vision is used across a wide variety  
of industries.
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Deep Learning
Deep learning methods use neural network architectures to process data, which is why 
they are often referred to as deep neural networks.

Neural networks are represented as a series of interconnected nodes. A node is 
patterned after a neuron in the human brain. Similar in behavior to neurons, nodes  
are activated when there are sufficient stimuli (input). This activation spreads throughout  
the network, creating a response to the stimuli (output). Figure 2 shows an example of  
a simple neural network with its three key components: input layer, hidden layers and 
output layer.

 Figure 2: Organization of a simple neural network.

Here’s how neural networks operate. First, data such as images, sequence data (like 
audio or text), etc., are fed into the network through the input layer, which communi-
cates to one or more hidden layers. Processing takes place in the hidden layers through 
a system of weighted connections. Nodes in the hidden layer then combine data from 
the input layer with a set of coefficients (which either magnifies or diminishes the input) 
and assigns appropriate weights to inputs. These input-weight products are then 
summed up. The sum is passed through a node’s activation function, which determines 
the extent that a signal must progress further through the network to affect the final 
output. Finally, the hidden layers link to the output layer – where the outputs  
are retrieved.

Hidden Layers

Ouput Layer

Input Layer

Connections
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As the number of hidden layers within a neural network increases, deep neural 
networks are formed. (In this context, “deep” refers to the number of hidden layers  
in the network.) A traditional neural network might contain two or three hidden  
layers, while deep neural networks (DNN) can contain as many as 100 hidden layers.

Deep neural networks are typically represented by a directed acyclic graph (DAG) 
consisting of interconnected layers (see Figure 3).

Figure 3: Example of a directed acyclic graph (DAG).

Deep learning networks minimize the need for explicit, time-consuming feature  
engineering techniques because of their built-in capacity to extrapolate new features 
from the set of features in the training set. They scale well to classification tasks that 
often require complex computations and are widely used for difficult problems that 
require real-time analysis, such as speech and object recognition, language translation 
and fraud detection. Finally, deep learning networks can also be used for multitask 
learning where models are trained to predict multiple targets simultaneously.

However, deep learning networks do have limitations. Models built from deep neural 
networks are not easily interpretable. Though it is mathematically possible to identify 
which nodes of a deep neural network were activated, it is hard to interpret what the 
neurons were supposed to model and what these layers of neurons were doing collec-
tively to choose the final output. Because deep neural networks require substantial 
computational power, they can be difficult to deploy, especially in real time. Due to  
the many network layers, a huge number of parameters are needed to build the model. 
This can lead to model overfitting, which negatively affects how well the model general-
izes. Last, deep learning is data-hungry, typically requiring very large data sets.
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Neural Networks Supported by SAS®

SAS supports different types of deep neural network layers and models. Layers allow 
users to experiment and build their own deep learning architectures. Some common 
layers that SAS supports include:

•	 Batch normalization layers.

•	 Convolutional layers.

•	 Fully connected layers.

•	 Pooling layers.

•	 Residual layers.

•	 Recurrent layers.

Convolutional Neural Networks
Convolutional neural networks (CNNs) preserve the spatial structure of a problem. They 
are widely used in image analysis tasks. These networks use numerous identical replicas 
of the same neuron, enabling a network to learn a neuron once and use it in numerous 
places. This simplifies the model learning process and reduces errors (Waldran 2016).i

Unlike traditional neural networks, CNNs are composed of neurons that have shared 
weights and biases (i.e., all hidden neurons in the same layer share the same weights 
and biases). Hence, they use fewer parameters to learn and are designed to be 
invariant to object position and distortion in the given image.

The hidden layers in the network can be convolutional, pooling or fully connected:

•	 Convolutional. The neurons in this layer are responsible for extracting features from 
the input image by performing a convolution operation. This step preserves the 
spatial relationship between the image pixels by using only small inputs of data  
to learn the features.

•	 Pooling. The neurons in this layer help further reduce the dimensionality of the 
feature maps by performing downsampling. For example, max pooling takes the 
maximum value from a group of neurons in the previous layer and passes it as input 
to the next layer.

•	 Fully connected. All neurons in this layer are connected to every neuron from the 
previous layer. Using a softmax activation function produces output from this layer  
as a vector of probability values that corresponds to various target class labels. Each 
value for the class label suggests the probability that the given input image is classi-
fied as that class label.

LeNet

LeNets have a fundamental architecture with image features distributed across the 
entire image and convolutions that are used to extract similar features at multiple  
locations. They use a sequence of three layers: convolution to extract spatial features 
from an image, introduction of nonlinearity in the form of sigmoids and pooling using 
spatial average of maps to reduce dimensionality. A multilayer perceptron (MLP) is  
used as a final classifier.
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VGG

Visual geometry group (VGG) networks are typically used for object recognition 
purposes. They are characterized by their simplicity, using only 3×3 convolutional layers 
stacked on top of one another. Reducing volume size is handled by max pooling. Two 
fully connected layers are then followed by a softmax classifier. Some of the model 
variants of VGG supported by SAS include VGG11, VGG13, VGG16 and VGG19.

Residual Neural Network (ResNet)

The depth of a neural network is commensurate to its performance in classification 
tasks. However, simply adding layers to a network often increases the training error and 
causes degradation problems where the accuracy degrades rapidly after saturating.

ResNets overcome these difficulties by building deeper networks in such a  way that:

•	 The layers fit the residual of the mapping instead of allowing the layers to fit an 
underlying desired mapping. This solves the degradation problem.

•	 Initial layers are copied from the shallow neural net counterparts, and the added 
deeper layers are skip connections (or identity mapping) where the input is directly 
connected to the output. If the residual becomes small, the mapping becomes an 
identity mapping. This way, training error does not increase. (Dietz 2017).ii

Research by Ioffe and Szegedy shows that network training becomes particularly  
hard when the distribution of the input keeps changing whenever the weights in the 
previous layer change. The training time is increased by the need to use smaller 
learning rates and carefully initialize parameters.iii ResNets use batch normalization to 
overcome this problem. Each layer’s input is normalized for each mini-batch size that is 
defined. This process makes the network less susceptible to bad initialization and over- 
fitting. It also accelerates the training process.

For these reasons, ResNets are considered state-of-the-art convolutional neural network 
models (Tamang 2017).iv

Faster R-CNN

Faster R-CNN is a region-based approach to object detection. This means that regions 
of the image likely to contain an object are selected either with traditional computer 
vision techniques (such as selective search), or by using a deep learning-based region 
proposal network (RPN). Once you have gathered the small set of candidate windows, 
you can formulate a set number of regression models and classification models to solve 
the object detection problem. Faster R-CNN is referred to as a two-stage method, 
which is generally more accurate, but slower, than single-stage methods such as YOLO 
discussed below.

YOLO V2

YOLO V2 (an acronym for you only look once) is a real-time object detection system. 
YOLO algorithms identify common objects that can be recognized in a single glance. 
YOLO is considered a single-stage method. The YOLO model looks for objects at fixed 
locations with fixed sizes. These locations and sizes are strategically selected so that 
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most scenarios are covered. These algorithms usually separate the original images into 
fixed-size grid regions. For each region, YOLO tries to predict a fixed number of objects 
of certain, predetermined shapes and sizes. YOLO algorithms usually run faster but are 
less accurate than two-stage methods.  

U-Net

The U-Net algorithm was first developed for biomedical image segmentation. The  
goal is to segment the image into coherent parts and classify each pixel with its corre-
sponding class. This is a pixel-level image classification algorithm instead of a bounding 
box (object detection) or a label (image classification) approach. The output of a U-Net 
algorithm is a high-resolution image in which each pixel is classified as belonging to a 
particular class. For example, an image of a person riding a horse would be displayed 
as an image with the person shaded in blue and the horse shaded in green.

Xception

The output of an Xception model is a list of classifications that an image could belong 
to, including their probabilities of correctness.

MobileNet 

MobileNet is a computer vision algorithm created for use on mobile devices. It can 
support image classification, object detection and image segmentation but is  
optimized for devices with lower computing power.

Recurrent Neural Networks
Recurrent neural networks (RNNs) use sequential information such as sequence data 
from a sensor device (time series) or a spoken sentence (sequence of terms). Unlike 
traditional neural networks, all inputs to a recurrent neural network are not independent 
of each other because the output for each element depends on the computations of  
its preceding elements. Hence, connections between the nodes form a directed cycle, 
creating an internal memory within the networks. These networks are recurrent because 
they perform the same task for every element of a sequence. RNNs are often used in 
forecasting and time series applications, sentiment analysis, text categorization and 
automatic speech recognition.

LSTM

LSTMs are long short-term memory models, capable of remembering dependencies 
for long periods of time. These models are RNN variants consisting of LSTM units. A 
typical LSTM unit comprises a cell, an input, an output and a forget gate. The forget 
gate is responsible for short-term memory in LSTMs. It controls how long a value 
residing in a cell must be remembered. This aspect of short-term memory is important 
because it makes the networks learn to forget undesired data and adjust accordingly  
to better fit the models. LSTMs are one of the most preferred models in deep learning 
because of their high accuracy measures. However, computation takes longer. The 
trade-off between performance and computation time should be considered when 
choosing the most pertinent model. 
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GRU

GRUs are gating mechanisms in RNNs where the flow of information is similar to LSTM 
networks, but a memory unit is not used. They are considered computationally more 
efficient than LSTMs.

Feedforward Neural Networks
These are simple neural networks where each perceptron in one layer is connected  
to every perceptron from the next layer. Information is constantly fed forward from  
one layer to the next in the forward direction only. There are no feedback connections 
in which outputs are fed back into themselves. Feedforward networks are mainly 
deployed in applications such as pattern classification, object recognition and  
medical diagnosis.

Autoencoder
Autoencoders are unsupervised neural network algorithms, primarily used for dimen-
sionality reduction tasks. They transform the input into a lower dimensional space and 
then reconstruct the output back from this compact representation. In this way, the 
output obtained from the network is the same as the input given to the autoencoder. 
The layers of an autoencoder are stacked on top of each other and trained internally. 
The output labels are generated by the network themselves instead of learned from  
the labeled data (Dertat 2017).v

Applications of Deep Neural Networks in 
Computer Vision
Deep learning plays a major role in the field of computer vision. The ability to interpret 
raw photos and videos has been applied to problems in retail, medical imaging and 
robotics, to name a few. CNNs are used in applications such as facial recognition, image 
question answering systems, scene labeling and some image segmentation tasks. With 
respect to image classification, CNNs achieve a better classification accuracy on large- 
scale data sets because of their joint feature and classifier learning capabilities. 

How computer vision works
Computer vision works in three basic steps:

Acquiring an image Processing the image Understanding the image

Images, even large sets, can be 
acquired in real time through 

video, photos or 3D technology 
for analysis.

Deep learning models automate 
much of this process, but the 

models are often trained by first 
being fed thousands of labeled 

or pre-identified images.

The final step is the interpretative 
step, where an object is identified 

or classified.
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Use Case: SciSports
SciSports, a Dutch sports analytics company, uses streaming data and applies the SAS AI 
capabilities of machine learning and computer vision to capture and analyze this data to 
determine the influence of individual players on team results, track player development, 
determine potential market value for a player and predict game results.  

Traditional soccer data companies generate data only on players who have the ball, 
leaving everything else undocumented. This provides an incomplete picture of player 
quality. SciSports developed a camera system called BallJames − a real-time tracking tech-
nology that automatically generates 3D data from video. Fourteen cameras placed around 
the stadium record every movement on the field. BallJames then generates data such as 
the precision, direction and speed of the passing, sprinting strength and jumping strength 
to assess player movements.

Using player identification as a starting point, the machine is presented with many photos 
of different jerseys to learn which name is associated with which uniform and player 
number. This process begins by using still images to train the computer. Once the machine 
has learned how to process those images, the next step is to automate the process and 
increase the scale of application. The computer may see player number 15 in a red jersey 
and can identify that player with the same speed and accuracy as fans watching the game 
and have the same speed and accuracy in simultaneously identifying every other player  
on the field.

But that is just a starting point, a tactical step, in a greater strategy to achieving more 
in-depth performance assessments. Further development allows the computer to move 
beyond image classification of the team and individual player to using object detection  
to identify the position of both the players and the ball on the field to determine how fast  
a player runs or how high they jump. This data can be used to identify rising stars or under-
valued players by benchmarking their performance against others. About 90,000 active 
players are analyzed in SciSports’ SciSkill index every week.

Use Case: WildTrack 
SAS has worked with biologists to reduce the impact of traditional tracking methods  
on wildlife conservation efforts. Endangered species are often monitored using invasive 
and costly approaches such as radio-telemetry (e.g., fitting tracking devices to the animal), 
marking (e.g., ear-notching, or transponder-fitting) and close observation from vehicles  
or the air. All of these approaches involve disturbance or direct physical handling of the 
animal, and some methods can cause long-term harm to the animal.

To reduce negative impacts to the animals, conservationists have created a new technique 
to take photos of animal footprints and use the images to determine the population size  
of a species in a given area. Each species has a different foot anatomy. And within each 
species, each individual has its own unique foot characteristics, similar to our fingerprints. 
Experts take individual photos of wildlife footprints and analyze them to determine what 
species, and even the gender the prints belonged to. In the past, such tracking was  
a tedious process that required a lot of time to identify and classify the tracks.
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Using image recognition capabilities, SAS was able to analyze these images and 
automate identification. Raw images are entered into the system, and the computer  
is able to complete feature extraction and classification automatically and simultane-
ously for fast, accurate identification of prints by species.  

In the past, experts would have measured photos with a ruler to determine the footprint 
size. Now, the computer is able to derive all that information − no ruler required. This 
advancement enables non-experts to take photos and provide more data to the 
project. It also enables the use of drones to further reduce human impact to animal 
habitats. Experts can use the time saved to gain a deeper understanding of wildlife 
populations in a given area and focus on new and enhanced conservation efforts.

Build a Deep Learning Model Using SAS® 
SAS offers the flexibility to run deep learning models alongside other machine learning 
models in SAS Visual Data Mining and Machine Learning. This SAS solution supports 
clustering, different flavors of regression, random forests, gradient boosting models, 
support vector machines, sentiment analysis and more, in addition to deep learning.  
An interactive, visual pipeline environment presents each project (or goal) as a series  
of color-coded steps that occur in a logical sequence. The flexibility of including all 
models in a visual pipeline provides data scientists with the power to test different 
modeling approaches in a single run and compare results to quickly identify champion 
models.

SAS Visual Mining and Machine Learning takes advantage of SAS Cloud Analytic 
Services (CAS) to perform what are referred to as CAS actions. You use CAS actions to 
load data, transform data, compute statistics, perform analytics and create output. Each 
action is configured by specifying a set of input parameters. Running a CAS action 
processes the action’s parameters and data, which creates an action result. CAS actions 
are grouped into CAS action sets.

Deep neural net models are trained and scored using the actions in the “deepLearn” 
CAS action set. This action set consists of several actions that support the end-to-end 
preprocessing, developing and deploying deep neural network models. This action set 
provides users with the flexibility to describe their own model DAGs to define the initial 
deep net structure. There are also actions that support adding and removing of layers 
from the network structure.

Appropriate model descriptions and parameters are needed to build deep learning 
models. We first need to define the network topology as a DAG and use this model 
description to train the parameters of the deep net models.

The steps involved in training deep neural network models, using the deepLearn  
CAS action set, are as follows:

1.   Create an empty deep learning model.

•	 The BuildModel() CAS action in the deepLearn action set creates an empty deep 
learning model in the form of a CASTable object.

•	 Users can choose from DNN, RNN or CNN network types to build the respective 
initial network.
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2.   Add layers to the model.

•	 This can be implemented using the addLayer() CAS action.

•	 This CAS action provides the flexibility to add various types of layers, such as  
the input, convolutional, pooling, fully connected, residual or output as desired.

•	 The specified layers are then added to the model table.

•	 Each new layer has a unique identifier name associated with it.

•	 This action also makes it possible to randomly crop/flip the input layer when images 
are given as inputs.

 3.  Remove layers from the model.

•	 Carried out using the removeLayer() CAS action.

•	 By specifying the necessary layer name, layers can be removed from the  
model table.

4.   Perform hyperparameter autotuning.

•	 dlTune() helps tune the optimization parameters needed for training the model.

•	 dlPrune to prune the model.

•	 Some of the tunable parameters include learning rate, dropout, mini batch size, 
gradient noise, etc.

•	 For tuning, we must specify the lower and the upper bound range of the parameters 
within which we think the optimized value would lie.

•	 An initial model weights table needs to be specified (in the form of a CASTable), 
which will initialize the model.

•	 An exhaustive searching through the specified weights table is then performed  
on the same data multiple times to determine the optimized parameter values.

•	 The resulting model weights with the best validation fit error is stored in a CAS  
table object.

5.   Train the neural net model.

•	 The dlTrain() action trains the specified deep learning model for classification  
or regression tasks.

•	 By allowing the user to input the initial model table that was built, the best model 
weights table that was stored by performing hyper-parameter tuning and the 
predictor and response variables, we train the necessary neural net model.

•	 Trained models such as DNNs can be stored as an ASTORE binary object to be 
deployed in the SAS Event Stream Processing engine for real-time online scoring  
of data.

6.  Score the model.

•	 The dlScore() action uses the trained model to score new data sets.

•	 The model is scored using the trained model information from the ASTORE binary 
object and predicting against the new data set.
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7.   Export the model.

•	 The dlExportModel() exports the trained neural net models to other formats.

•	 ASTORE is the current binary format supported by CAS.

8.   Import the model weights table.

•	 dlImportModelWeights() imports the model weights information (that are  
initially specified as CAS table object) from external sources.

•	 The currently supported format is HDF5.

SAS® Platform Architecture for Training and 
Scoring Deep Learning Models
Deep learning models are highly computationally intensive. Because of this, you need  
a flexible and robust in-memory server for training and scoring these complex models.

Traditionally, CPUs are the processing choice for machine learning. However, GPUs are 
optimal for linear algebra calculations and have a long streak of performance advantages 
over CPUs on many parallel computations. With a good GPU, it is possible to iterate 
quickly over deep learning networks and run experiments much faster, reducing the 
latency of operationalizing the model.

The SAS Platform architecture (see Figure 4) uses massively parallel processing and 
parallel symmetric multiple processors (SMP) with multiple threading for extremely  
fast processing. One or more GPU processors are provided with SMP servers.  
Real-time training and scoring is supported by SAS Event Stream Processing.

Figure 4: The SAS Platform architecture for training and scoring deep learning models.
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SAS® Deep Learning With Python
SAS Deep Learning With Python (DLPy) is an open-source package that data scientists 
can download to apply SAS deep learning algorithms to image, text and audio data. 
And you don’t need to write SAS code to reap the benefits of deep learning. DLPy is a 
toolset in a Python-style shell for the SAS scripting language and the SAS deep learning 
actions from SAS Visual Data Mining and Machine Learning.

DLPy is available in SAS® Viya® 3.4 and accessed via Jupyter Notebook. DLPy is 
designed to provide an efficient way to apply deep learning functionalities to solve 
computer vision, natural language processing, forecasting and speech processing 
problems. DLPy APIs are created following the Keras APIs. 

With DLPy, you can enter data and build deep learning models for image, text, audio 
and time-series data. There are high-level APIs for:

•	 Deep neural networks for tabular data.

•	 Image classification and regression.

•	 Object detection.

•	 RNN-based tasks – text classification, text generation and sequence labeling.

•	 RNN-based time-series processing and modeling.

Many of the models have predefined network architectures such as LeNet, VGG, 
ResNet, DenseNet, Darknet, Inception, YOLOv2 and Tiny YOLO and are provided  
with pretrained weighting. With DLPy, you can import and export deep learning  
models in Open Neural Network Exchange (ONNX) format.

This library is available on GitHub (https://github.com/sassoftware/python-dlpy),  
and it also contains a series of example videos.

DLPy supports the ONNX project to easily move models between frameworks. For 
example, you can train a model in SAS then export it to ONNX, or you can import an 
ONNX model into SAS. SAS is a member of the ONNX community.

Summary
This paper has provided detailed information and use cases about how deep learning 
works in terms of deep neural network architectures such as convolutional neural 
networks for computer vision. Applications of deep neural networks in computer  
vision were also discussed. Lastly, the deepLearn CAS action set developed by SAS  
was presented, as was SAS DLPy. As advances in deep learning and computer vision 
are made, SAS will also continue to advance its deepLearn CAS action set and its  
DLPy capabilities.

Learn More
SAS deep learning capabilities are included in SAS Visual Data Mining and Machine 
Learning. Give it a free try at sas.com/tryvdmml.

https://onnx.ai/
https://github.com/sassoftware/python-dlpy
https://www.sas.com/en_us/trials/software/data-mining-machine-learning/ep-form.html
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