
Title

WHITE PAPER

How to Do Deep Learning With SAS®

An introduction to deep learning for computer vision with a guide
to build deep learning models using SAS®

ii

Contents
Introduction.. 1

Deep Learning... 2

Neural Networks Supported by SAS®... 4
Convolutional Neural Networks...4

Recurrent Neural Networks...6

Feedforward Neural Networks...7

Autoencoder..7

Applications of Deep Neural Networks in Computer Vision...................... 7
Use Case: SciSports...8

Use Case: WildTrack ...8

Build a Deep Learning Model Using SAS® ... 9

SAS® Platform Architecture for Training and Scoring Deep
Learning Models...11

SAS® Deep Learning With Python...12

Summary...12

Learn More...12

Endnotes...13

Introduction
This paper introduces deep learning, its applications and how SAS supports the
creation of deep learning models. It is geared toward a data scientist and includes
a step-by-step overview of how to build a deep learning model using deep learning
methods developed by SAS. You’ll then be ready to experiment with these methods
in SAS Visual Data Mining and Machine Learning. See page 12 for more information
on how to access a free software trial.

Deep learning is a type of machine learning that trains a computer to perform human-
like tasks, such as recognizing speech, identifying images or making predictions.
Instead of organizing data to run through predefined equations, deep learning sets
up basic parameters about the data and trains the computer to learn on its own by
recognizing patterns using many layers of processing. Computer vision (the ability
to recognize images) is used strategically in many industries (see Figure 1).

Figure 1: A few examples of how computer vision is used across a wide variety
of industries.

1

Advantages of Computer Vision

AI can improve manufacturing
defect detection rates by up to

Computer vision makes it possible to
spot defects not easily visible to the

human eye.

Business Cases and Applications

90%

© 2019 SAS Institute Inc. Cary, NC, USA. All rights reserved. 110208_G94521US.0119

Read the full report
sas.com/deeplearning-sas

To learn more about SAS® for AI solutions,
visit sas.com/ai

players analyzed for finding the next
football star with AI

Computer vision makes it possible to
analyze every player, much to the

enjoyment of the fans.

200,000
counterfeit bills in circulation in

the United States alone

Computer vision makes it possible to
spot counterfeit money and

prevent fraud.

$2 billion

estimated new cases of cancer
diagnosed in the US in 2018

Computer vision helps identify
areas of concern in the livers and

brains of cancer patients.

1,735,350
loss in US orange market

due to crop disease

Computer vision makes it possible to
detect early signs of plant disease

to optimize crop yield.

$4 billion
maximum acceptable time customers

are prepared to wait in line

Computer vision makes automated
checkout possible for a better

customer experience.

5-10 mins

miles of America's pipelines su�er
hundreds of leaks and ruptures annually

Computer vision enables detection of
leaks and spills from pipelines using
unmanned vehicles, such as drones.

2.5 million
estimated market for facial recognition

technologies by 2022

Computer vision enables facial recognition
for retail as well as security applications.

$9.6 billion
estimated cost of insurance fraud

annually in US

Computer vision makes it possible to
distinguish between staged and

real auto damage.

$40 billion

2

Deep Learning
Deep learning methods use neural network architectures to process data, which is why
they are often referred to as deep neural networks.

Neural networks are represented as a series of interconnected nodes. A node is
patterned after a neuron in the human brain. Similar in behavior to neurons, nodes
are activated when there are sufficient stimuli (input). This activation spreads throughout
the network, creating a response to the stimuli (output). Figure 2 shows an example of
a simple neural network with its three key components: input layer, hidden layers and
output layer.

 Figure 2: Organization of a simple neural network.

Here’s how neural networks operate. First, data such as images, sequence data (like
audio or text), etc., are fed into the network through the input layer, which communi-
cates to one or more hidden layers. Processing takes place in the hidden layers through
a system of weighted connections. Nodes in the hidden layer then combine data from
the input layer with a set of coefficients (which either magnifies or diminishes the input)
and assigns appropriate weights to inputs. These input-weight products are then
summed up. The sum is passed through a node’s activation function, which determines
the extent that a signal must progress further through the network to affect the final
output. Finally, the hidden layers link to the output layer – where the outputs
are retrieved.

Hidden Layers

Ouput Layer

Input Layer

Connections

3

As the number of hidden layers within a neural network increases, deep neural
networks are formed. (In this context, “deep” refers to the number of hidden layers
in the network.) A traditional neural network might contain two or three hidden
layers, while deep neural networks (DNN) can contain as many as 100 hidden layers.

Deep neural networks are typically represented by a directed acyclic graph (DAG)
consisting of interconnected layers (see Figure 3).

Figure 3: Example of a directed acyclic graph (DAG).

Deep learning networks minimize the need for explicit, time-consuming feature
engineering techniques because of their built-in capacity to extrapolate new features
from the set of features in the training set. They scale well to classification tasks that
often require complex computations and are widely used for difficult problems that
require real-time analysis, such as speech and object recognition, language translation
and fraud detection. Finally, deep learning networks can also be used for multitask
learning where models are trained to predict multiple targets simultaneously.

However, deep learning networks do have limitations. Models built from deep neural
networks are not easily interpretable. Though it is mathematically possible to identify
which nodes of a deep neural network were activated, it is hard to interpret what the
neurons were supposed to model and what these layers of neurons were doing collec-
tively to choose the final output. Because deep neural networks require substantial
computational power, they can be difficult to deploy, especially in real time. Due to
the many network layers, a huge number of parameters are needed to build the model.
This can lead to model overfitting, which negatively affects how well the model general-
izes. Last, deep learning is data-hungry, typically requiring very large data sets.

2

53

4

1

4

Neural Networks Supported by SAS®

SAS supports different types of deep neural network layers and models. Layers allow
users to experiment and build their own deep learning architectures. Some common
layers that SAS supports include:

•	 Batch normalization layers.

•	 Convolutional layers.

•	 Fully connected layers.

•	 Pooling layers.

•	 Residual layers.

•	 Recurrent layers.

Convolutional Neural Networks
Convolutional neural networks (CNNs) preserve the spatial structure of a problem. They
are widely used in image analysis tasks. These networks use numerous identical replicas
of the same neuron, enabling a network to learn a neuron once and use it in numerous
places. This simplifies the model learning process and reduces errors (Waldran 2016).i

Unlike traditional neural networks, CNNs are composed of neurons that have shared
weights and biases (i.e., all hidden neurons in the same layer share the same weights
and biases). Hence, they use fewer parameters to learn and are designed to be
invariant to object position and distortion in the given image.

The hidden layers in the network can be convolutional, pooling or fully connected:

•	 Convolutional. The neurons in this layer are responsible for extracting features from
the input image by performing a convolution operation. This step preserves the
spatial relationship between the image pixels by using only small inputs of data
to learn the features.

•	 Pooling. The neurons in this layer help further reduce the dimensionality of the
feature maps by performing downsampling. For example, max pooling takes the
maximum value from a group of neurons in the previous layer and passes it as input
to the next layer.

•	 Fully connected. All neurons in this layer are connected to every neuron from the
previous layer. Using a softmax activation function produces output from this layer
as a vector of probability values that corresponds to various target class labels. Each
value for the class label suggests the probability that the given input image is classi-
fied as that class label.

LeNet

LeNets have a fundamental architecture with image features distributed across the
entire image and convolutions that are used to extract similar features at multiple
locations. They use a sequence of three layers: convolution to extract spatial features
from an image, introduction of nonlinearity in the form of sigmoids and pooling using
spatial average of maps to reduce dimensionality. A multilayer perceptron (MLP) is
used as a final classifier.

5

VGG

Visual geometry group (VGG) networks are typically used for object recognition
purposes. They are characterized by their simplicity, using only 3×3 convolutional layers
stacked on top of one another. Reducing volume size is handled by max pooling. Two
fully connected layers are then followed by a softmax classifier. Some of the model
variants of VGG supported by SAS include VGG11, VGG13, VGG16 and VGG19.

Residual Neural Network (ResNet)

The depth of a neural network is commensurate to its performance in classification
tasks. However, simply adding layers to a network often increases the training error and
causes degradation problems where the accuracy degrades rapidly after saturating.

ResNets overcome these difficulties by building deeper networks in such a way that:

•	 The layers fit the residual of the mapping instead of allowing the layers to fit an
underlying desired mapping. This solves the degradation problem.

•	 Initial layers are copied from the shallow neural net counterparts, and the added
deeper layers are skip connections (or identity mapping) where the input is directly
connected to the output. If the residual becomes small, the mapping becomes an
identity mapping. This way, training error does not increase. (Dietz 2017).ii

Research by Ioffe and Szegedy shows that network training becomes particularly
hard when the distribution of the input keeps changing whenever the weights in the
previous layer change. The training time is increased by the need to use smaller
learning rates and carefully initialize parameters.iii ResNets use batch normalization to
overcome this problem. Each layer’s input is normalized for each mini-batch size that is
defined. This process makes the network less susceptible to bad initialization and over-
fitting. It also accelerates the training process.

For these reasons, ResNets are considered state-of-the-art convolutional neural network
models (Tamang 2017).iv

Faster R-CNN

Faster R-CNN is a region-based approach to object detection. This means that regions
of the image likely to contain an object are selected either with traditional computer
vision techniques (such as selective search), or by using a deep learning-based region
proposal network (RPN). Once you have gathered the small set of candidate windows,
you can formulate a set number of regression models and classification models to solve
the object detection problem. Faster R-CNN is referred to as a two-stage method,
which is generally more accurate, but slower, than single-stage methods such as YOLO
discussed below.

YOLO V2

YOLO V2 (an acronym for you only look once) is a real-time object detection system.
YOLO algorithms identify common objects that can be recognized in a single glance.
YOLO is considered a single-stage method. The YOLO model looks for objects at fixed
locations with fixed sizes. These locations and sizes are strategically selected so that

6

most scenarios are covered. These algorithms usually separate the original images into
fixed-size grid regions. For each region, YOLO tries to predict a fixed number of objects
of certain, predetermined shapes and sizes. YOLO algorithms usually run faster but are
less accurate than two-stage methods.

U-Net

The U-Net algorithm was first developed for biomedical image segmentation. The
goal is to segment the image into coherent parts and classify each pixel with its corre-
sponding class. This is a pixel-level image classification algorithm instead of a bounding
box (object detection) or a label (image classification) approach. The output of a U-Net
algorithm is a high-resolution image in which each pixel is classified as belonging to a
particular class. For example, an image of a person riding a horse would be displayed
as an image with the person shaded in blue and the horse shaded in green.

Xception

The output of an Xception model is a list of classifications that an image could belong
to, including their probabilities of correctness.

MobileNet

MobileNet is a computer vision algorithm created for use on mobile devices. It can
support image classification, object detection and image segmentation but is
optimized for devices with lower computing power.

Recurrent Neural Networks
Recurrent neural networks (RNNs) use sequential information such as sequence data
from a sensor device (time series) or a spoken sentence (sequence of terms). Unlike
traditional neural networks, all inputs to a recurrent neural network are not independent
of each other because the output for each element depends on the computations of
its preceding elements. Hence, connections between the nodes form a directed cycle,
creating an internal memory within the networks. These networks are recurrent because
they perform the same task for every element of a sequence. RNNs are often used in
forecasting and time series applications, sentiment analysis, text categorization and
automatic speech recognition.

LSTM

LSTMs are long short-term memory models, capable of remembering dependencies
for long periods of time. These models are RNN variants consisting of LSTM units. A
typical LSTM unit comprises a cell, an input, an output and a forget gate. The forget
gate is responsible for short-term memory in LSTMs. It controls how long a value
residing in a cell must be remembered. This aspect of short-term memory is important
because it makes the networks learn to forget undesired data and adjust accordingly
to better fit the models. LSTMs are one of the most preferred models in deep learning
because of their high accuracy measures. However, computation takes longer. The
trade-off between performance and computation time should be considered when
choosing the most pertinent model.

7

GRU

GRUs are gating mechanisms in RNNs where the flow of information is similar to LSTM
networks, but a memory unit is not used. They are considered computationally more
efficient than LSTMs.

Feedforward Neural Networks
These are simple neural networks where each perceptron in one layer is connected
to every perceptron from the next layer. Information is constantly fed forward from
one layer to the next in the forward direction only. There are no feedback connections
in which outputs are fed back into themselves. Feedforward networks are mainly
deployed in applications such as pattern classification, object recognition and
medical diagnosis.

Autoencoder
Autoencoders are unsupervised neural network algorithms, primarily used for dimen-
sionality reduction tasks. They transform the input into a lower dimensional space and
then reconstruct the output back from this compact representation. In this way, the
output obtained from the network is the same as the input given to the autoencoder.
The layers of an autoencoder are stacked on top of each other and trained internally.
The output labels are generated by the network themselves instead of learned from
the labeled data (Dertat 2017).v

Applications of Deep Neural Networks in
Computer Vision
Deep learning plays a major role in the field of computer vision. The ability to interpret
raw photos and videos has been applied to problems in retail, medical imaging and
robotics, to name a few. CNNs are used in applications such as facial recognition, image
question answering systems, scene labeling and some image segmentation tasks. With
respect to image classification, CNNs achieve a better classification accuracy on large-
scale data sets because of their joint feature and classifier learning capabilities.

How computer vision works
Computer vision works in three basic steps:

Acquiring an image Processing the image Understanding the image

Images, even large sets, can be
acquired in real time through

video, photos or 3D technology
for analysis.

Deep learning models automate
much of this process, but the

models are often trained by first
being fed thousands of labeled

or pre-identified images.

The final step is the interpretative
step, where an object is identified

or classified.

8

Use Case: SciSports
SciSports, a Dutch sports analytics company, uses streaming data and applies the SAS AI
capabilities of machine learning and computer vision to capture and analyze this data to
determine the influence of individual players on team results, track player development,
determine potential market value for a player and predict game results.

Traditional soccer data companies generate data only on players who have the ball,
leaving everything else undocumented. This provides an incomplete picture of player
quality. SciSports developed a camera system called BallJames − a real-time tracking tech-
nology that automatically generates 3D data from video. Fourteen cameras placed around
the stadium record every movement on the field. BallJames then generates data such as
the precision, direction and speed of the passing, sprinting strength and jumping strength
to assess player movements.

Using player identification as a starting point, the machine is presented with many photos
of different jerseys to learn which name is associated with which uniform and player
number. This process begins by using still images to train the computer. Once the machine
has learned how to process those images, the next step is to automate the process and
increase the scale of application. The computer may see player number 15 in a red jersey
and can identify that player with the same speed and accuracy as fans watching the game
and have the same speed and accuracy in simultaneously identifying every other player
on the field.

But that is just a starting point, a tactical step, in a greater strategy to achieving more
in-depth performance assessments. Further development allows the computer to move
beyond image classification of the team and individual player to using object detection
to identify the position of both the players and the ball on the field to determine how fast
a player runs or how high they jump. This data can be used to identify rising stars or under-
valued players by benchmarking their performance against others. About 90,000 active
players are analyzed in SciSports’ SciSkill index every week.

Use Case: WildTrack
SAS has worked with biologists to reduce the impact of traditional tracking methods
on wildlife conservation efforts. Endangered species are often monitored using invasive
and costly approaches such as radio-telemetry (e.g., fitting tracking devices to the animal),
marking (e.g., ear-notching, or transponder-fitting) and close observation from vehicles
or the air. All of these approaches involve disturbance or direct physical handling of the
animal, and some methods can cause long-term harm to the animal.

To reduce negative impacts to the animals, conservationists have created a new technique
to take photos of animal footprints and use the images to determine the population size
of a species in a given area. Each species has a different foot anatomy. And within each
species, each individual has its own unique foot characteristics, similar to our fingerprints.
Experts take individual photos of wildlife footprints and analyze them to determine what
species, and even the gender the prints belonged to. In the past, such tracking was
a tedious process that required a lot of time to identify and classify the tracks.

9

Using image recognition capabilities, SAS was able to analyze these images and
automate identification. Raw images are entered into the system, and the computer
is able to complete feature extraction and classification automatically and simultane-
ously for fast, accurate identification of prints by species.

In the past, experts would have measured photos with a ruler to determine the footprint
size. Now, the computer is able to derive all that information − no ruler required. This
advancement enables non-experts to take photos and provide more data to the
project. It also enables the use of drones to further reduce human impact to animal
habitats. Experts can use the time saved to gain a deeper understanding of wildlife
populations in a given area and focus on new and enhanced conservation efforts.

Build a Deep Learning Model Using SAS®
SAS offers the flexibility to run deep learning models alongside other machine learning
models in SAS Visual Data Mining and Machine Learning. This SAS solution supports
clustering, different flavors of regression, random forests, gradient boosting models,
support vector machines, sentiment analysis and more, in addition to deep learning.
An interactive, visual pipeline environment presents each project (or goal) as a series
of color-coded steps that occur in a logical sequence. The flexibility of including all
models in a visual pipeline provides data scientists with the power to test different
modeling approaches in a single run and compare results to quickly identify champion
models.

SAS Visual Mining and Machine Learning takes advantage of SAS Cloud Analytic
Services (CAS) to perform what are referred to as CAS actions. You use CAS actions to
load data, transform data, compute statistics, perform analytics and create output. Each
action is configured by specifying a set of input parameters. Running a CAS action
processes the action’s parameters and data, which creates an action result. CAS actions
are grouped into CAS action sets.

Deep neural net models are trained and scored using the actions in the “deepLearn”
CAS action set. This action set consists of several actions that support the end-to-end
preprocessing, developing and deploying deep neural network models. This action set
provides users with the flexibility to describe their own model DAGs to define the initial
deep net structure. There are also actions that support adding and removing of layers
from the network structure.

Appropriate model descriptions and parameters are needed to build deep learning
models. We first need to define the network topology as a DAG and use this model
description to train the parameters of the deep net models.

The steps involved in training deep neural network models, using the deepLearn
CAS action set, are as follows:

1. Create an empty deep learning model.

•	 The BuildModel() CAS action in the deepLearn action set creates an empty deep
learning model in the form of a CASTable object.

•	 Users can choose from DNN, RNN or CNN network types to build the respective
initial network.

10

2. Add layers to the model.

•	 This can be implemented using the addLayer() CAS action.

•	 This CAS action provides the flexibility to add various types of layers, such as
the input, convolutional, pooling, fully connected, residual or output as desired.

•	 The specified layers are then added to the model table.

•	 Each new layer has a unique identifier name associated with it.

•	 This action also makes it possible to randomly crop/flip the input layer when images
are given as inputs.

 3. Remove layers from the model.

•	 Carried out using the removeLayer() CAS action.

•	 By specifying the necessary layer name, layers can be removed from the
model table.

4. Perform hyperparameter autotuning.

•	 dlTune() helps tune the optimization parameters needed for training the model.

•	 dlPrune to prune the model.

•	 Some of the tunable parameters include learning rate, dropout, mini batch size,
gradient noise, etc.

•	 For tuning, we must specify the lower and the upper bound range of the parameters
within which we think the optimized value would lie.

•	 An initial model weights table needs to be specified (in the form of a CASTable),
which will initialize the model.

•	 An exhaustive searching through the specified weights table is then performed
on the same data multiple times to determine the optimized parameter values.

•	 The resulting model weights with the best validation fit error is stored in a CAS
table object.

5. Train the neural net model.

•	 The dlTrain() action trains the specified deep learning model for classification
or regression tasks.

•	 By allowing the user to input the initial model table that was built, the best model
weights table that was stored by performing hyper-parameter tuning and the
predictor and response variables, we train the necessary neural net model.

•	 Trained models such as DNNs can be stored as an ASTORE binary object to be
deployed in the SAS Event Stream Processing engine for real-time online scoring
of data.

6. Score the model.

•	 The dlScore() action uses the trained model to score new data sets.

•	 The model is scored using the trained model information from the ASTORE binary
object and predicting against the new data set.

11

7. Export the model.

•	 The dlExportModel() exports the trained neural net models to other formats.

•	 ASTORE is the current binary format supported by CAS.

8. Import the model weights table.

•	 dlImportModelWeights() imports the model weights information (that are
initially specified as CAS table object) from external sources.

•	 The currently supported format is HDF5.

SAS® Platform Architecture for Training and
Scoring Deep Learning Models
Deep learning models are highly computationally intensive. Because of this, you need
a flexible and robust in-memory server for training and scoring these complex models.

Traditionally, CPUs are the processing choice for machine learning. However, GPUs are
optimal for linear algebra calculations and have a long streak of performance advantages
over CPUs on many parallel computations. With a good GPU, it is possible to iterate
quickly over deep learning networks and run experiments much faster, reducing the
latency of operationalizing the model.

The SAS Platform architecture (see Figure 4) uses massively parallel processing and
parallel symmetric multiple processors (SMP) with multiple threading for extremely
fast processing. One or more GPU processors are provided with SMP servers.
Real-time training and scoring is supported by SAS Event Stream Processing.

Figure 4: The SAS Platform architecture for training and scoring deep learning models.

Deep Learning With SAS®

Any data source:
(Hadoop, relational databases, S3, flat files, sashdat, etc.)

Deep Learning Action Sets

APIs
(CASL, Python DLPy, R)

CPU GPU

SAS® Cloud Analytic Services (CAS)

SAS®

Event Stream
Processing

(for scoring)

Model

Data

Model

Data

Data Data

12

SAS® Deep Learning With Python
SAS Deep Learning With Python (DLPy) is an open-source package that data scientists
can download to apply SAS deep learning algorithms to image, text and audio data.
And you don’t need to write SAS code to reap the benefits of deep learning. DLPy is a
toolset in a Python-style shell for the SAS scripting language and the SAS deep learning
actions from SAS Visual Data Mining and Machine Learning.

DLPy is available in SAS® Viya® 3.4 and accessed via Jupyter Notebook. DLPy is
designed to provide an efficient way to apply deep learning functionalities to solve
computer vision, natural language processing, forecasting and speech processing
problems. DLPy APIs are created following the Keras APIs.

With DLPy, you can enter data and build deep learning models for image, text, audio
and time-series data. There are high-level APIs for:

•	 Deep neural networks for tabular data.

•	 Image classification and regression.

•	 Object detection.

•	 RNN-based tasks – text classification, text generation and sequence labeling.

•	 RNN-based time-series processing and modeling.

Many of the models have predefined network architectures such as LeNet, VGG,
ResNet, DenseNet, Darknet, Inception, YOLOv2 and Tiny YOLO and are provided
with pretrained weighting. With DLPy, you can import and export deep learning
models in Open Neural Network Exchange (ONNX) format.

This library is available on GitHub (https://github.com/sassoftware/python-dlpy),
and it also contains a series of example videos.

DLPy supports the ONNX project to easily move models between frameworks. For
example, you can train a model in SAS then export it to ONNX, or you can import an
ONNX model into SAS. SAS is a member of the ONNX community.

Summary
This paper has provided detailed information and use cases about how deep learning
works in terms of deep neural network architectures such as convolutional neural
networks for computer vision. Applications of deep neural networks in computer
vision were also discussed. Lastly, the deepLearn CAS action set developed by SAS
was presented, as was SAS DLPy. As advances in deep learning and computer vision
are made, SAS will also continue to advance its deepLearn CAS action set and its
DLPy capabilities.

Learn More
SAS deep learning capabilities are included in SAS Visual Data Mining and Machine
Learning. Give it a free try at sas.com/tryvdmml.

https://onnx.ai/
https://github.com/sassoftware/python-dlpy
https://www.sas.com/en_us/trials/software/data-mining-machine-learning/ep-form.html

13

Endnotes
i � � �Waldron, Mike (2016). “10 Deep Learning Terms Explained in Simple English.”

Retrieved from https://www.datasciencecentral.com/profiles/
blogs/10-deep-learning-terms-explained-in-simple-english.

ii � � �Dietz, Michael (2017). “Understand Deep Residual Networks – A Simple, Modular
Learning Framework That Has Redefined State-of-the-Art.” Retrieved from
https://medium.com/@waya.ai/deep-residual-learning-9610bb62c355.

iii � �Ioffe, Sergey and Szegedy, Christian (2015). Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. Retrieved from
http://proceedings.mlr.press/v37/ioffe15.pdf.

iv � �Tamang, Apil (2017). “Yet Another ResNet Tutorial (or Not).” Retrieved from
https://medium.com/@apiltamang/yet-another-resnet-tutorial-or-not-f6dd9515fcd7.

v � � �Dertat, Arden (2017). “Applied Deep Learning – Part 3: Autoencoders.”
Retrieved from https://towardsdatascience.com/applied-deep-learning-part-3-
autoencoders-1c083af4d798.

https://www.datasciencecentral.com/profiles/blogs/10-deep-learning-terms-explained-in-simple-english
https://www.datasciencecentral.com/profiles/blogs/10-deep-learning-terms-explained-in-simple-english
http://proceedings.mlr.press/v37/ioffe15.pdf
https://medium.com/@apiltamang/yet-another-resnet-tutorial-or-not-f6dd9515fcd7
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries.
® indicates USA registration. Other brand and product names are trademarks of their respective companies. Copyright © 2019, SAS Institute Inc.
All rights reserved. 109610_G102016.0519

To contact your local SAS office, please visit: sas.com/offices

https://www.sas.com/en_us/contact/global-office-locations.html

	Introduction
	Deep Learning
	Neural Networks Supported by SAS
	Convolutional Neural Networks
	Recurrent Neural Networks
	Feedforward Neural Network
	Autoencoder

	Applications of Deep Neural Networks in Computer Vision
	Use Case: SciSports
	Use Case: WildTrack

	Build a Deep Learning Model Using SAS®
	SAS® Platform Architecture for Training and Scoring Deep Learning Models
	SAS® Deep Learning With Python (DLPy)
	Summary
	Learn More
	Endnotes

