
1

Version 7 Enhancements to SAS/ACCESS Software

Vino Gona, SAS Institute Inc., Cary, NC Jana Van Wyk, SAS Institute Inc., Cary, NC

Abstract

With the Version 7 release of the SAS System, SAS/ACCESS
software provides many important enhancements that allow SAS
users to transparently integrate their Database Management
Systems (DBMS) with their SAS business solutions.

New in Version 7, dynamic DBMS engines enable the SAS user
to assign a SAS library that dynamically connects to the DBMS
data server. SAS programs using the library can then directly list,
read, update, delete and create DBMS tables. The creation of
static access and view descriptors is no longer required.
Dynamic engines are available in the Version 7 SAS/ACCESS
interfaces for DB2, ORACLE, ODBC, INFORMIX, SYBASE,
and INGRES.

Additional features and performance improvements include
support for table and column names up to 32 characters, support
for case-sensitive DBMS object names, passing joins directly to
the DBMS server for processing, updating data in a DBMS table
via an SQL view of the table, more control over the use of DBMS
indexes, locking and concurrency control, and updating
descriptors using the ACCESS procedure.

The dynamic Data Step Interface, supported by the
SAS/ACCESS interfaces to IMS and IDMS, has been enhanced
in Version 7 to support the longer SAS names while still
maintaining Version 6 compatibility. The SAS/ACCESS interface
to IMS does not support dynamic access to the database;
however, IMS descriptors now support long SAS variable names.

The IMPORT and EXPORT facility is also supported by most
SAS/ACCESS interfaces. See the Reference section of this
paper for more information about the IMPORT and EXPORT
facility.

The ACCESS procedure, the DBLOAD procedure, PROC SQL
Pass-Through, and the use of access and view descriptors are
also supported in Version 7 releases of SAS/ACCESS software
for Version 6 compatibility.

Most information in this paper is applicable to SAS/ACCESS
software for DB2, ORACLE, ODBC, INFORMIX, SYBASE, and
INGRES. This software is available on one or more of these
platforms: Microsoft Windows 95, Microsoft Windows NT, OS/2,
Solaris, HP-UX, AIX, and MVS. See Appendix A for more
detailed information about each SAS/ACCESS interface.

Introduction

This paper introduces some of the new features available in the
Version 7 release of SAS/ACCESS software. These new
features include

• Dynamic DBMS Engines (no access or view descriptors
needed).

• Support for all native, case-sensitive DBMS object
names up to 32 characters in length, including names
which do not conform to valid SAS names.

• Improved integration with SAS SQL views, including
embedded LIBNAME statements and updateable SQL
views.

• Performance improvements, including passing joins
between tables directly to the DBMS server and the use of
DBMS indexes in queries.

• Ability to customized when DBMS connections are
issued and options to control the kind of data locking used
by the engine.

• Interactive prompting for DBMS connection options,
like username and password.

• An enhanced, fully-supported SQL Pass-Through
Facility

• Ability to update descriptors using the line mode
interface to the ACCESS procedure.

• Full Version 6 compatibility for existing SAS programs
using descriptors, the ACCESS procedure, the DBLOAD
procedure, and SQL Pass-Through.

• The dynamic Data Step Interface for IMS and IDMS

• Additional Version 7 enhancements to SAS/ACCESS
software

Examples using the SAS/ACCESS interfaces to DB2, ORACLE,
and ODBC are used to illustrate the new features.

Dynamic DBMS Engines

With the Version 7 SAS System there is no longer a need to
create access and view descriptors to read and manipulate data
in a DBMS from within the SAS System. You can now directly
use a SAS/ACCESS engine to assign a new SAS library that
describes the location of the DBMS server and also defines how
the SAS/ACCESS engine can connect to the DBMS server.

Connecting to the DBMS Server

One way to assign a SAS library using a SAS/ACCESS engine is
to submit a LIBAME statement using options to describe how to
connect to the DBMS server. When the library is assigned, a
connection is made to the DBMS server, and the tables and
views in the DBMS can be accessed using the library reference.

OLEQDPH�GEOLE�RUDFOH�XVHU VFRWW
�����SDVVZRUG WLJHU�SDWK RUVHUYHU�

In the example above, dblib is the library reference, and oracle is
the name of the dynamic DBMS engine in the SAS/ACCESS
interface to ORACLE software. User, password, and path are the
ORACLE engine LIBNAME statement options that provide the
information needed to connect to the ORACLE server. By
default, a connection to the DBMS is established when the
LIBNAME statement is submitted.

Listing the Names of your DBMS Tables

After a SAS library is assigned, the DBMS connection can be
used by the SAS System to get a list of ORACLE tables and
views. This example uses the library reference dblib defined
above with the DATASETS procedure.

SURF�GDWDVHWV�OLE GEOLE�

This statement causes the ORACLE engine to query the
ORACLE system tables and retrieve all the ORACLE tables and

2
views accessible to the ORACLE user named scott. The
DATASETS procedure prints the following output to the SAS log.

/LEUHI���������'%/,%
(QJLQH���������25$&/(
3K\VLFDO�1DPH��RUVHUYHU
8VHU�6FKHPD����VFRWW

���1DPH��������0HPW\SH
���'(37��������'7
���(03/2<((6���'7
���,19(1725<���'7
���6$/(6�������'$7$

You can also use the SAS SQL dictionary tables, which are
accessed through the predefined dictionary library reference, to
list the names of the tables and views you can access from the
ORACLE server. The following example shows a query against
one of the SQL dictionary tables named members that lists the
ORACLE tables accessible from the library named dblib.

SURF�VTO�
VHOHFW�PHPQDPH�IURP�GLFWLRQDU\�PHPEHUV
���ZKHUH�OLEQDPH µ'%/,%µ�

0HPEHU�1DPH
�����������
'(37
(03/2<((6
,19(1725<
6$/(6

The SAS SQL dictionary table named COLUMNS can be used to
find out the SAS metadata associated with the ORACLE table
named EMPLOYEES. In this query the ORACLE table
dynamically queries the ORACLE server to read the meatadata
associated with the ORACLE table and then maps this metadata
to the corresponding SAS System metadata.

SURF�VTO�
VHOHFW�QDPH��IRUPDW
���IURP��GLFWLRQDU\�FROXPQV
���ZKHUH�OLEQDPH µ'%/,%µ�DQG
���PHPQDPH µ(03/2<((6µ�

Reading from a DBMS Table

Now that you can see the names of the ORACLE tables, you can
look at the data in the table named DEPT using the PRINT
procedure.

SURF�SULQW�GDWD GEOLE�GHSW��UXQ�

The PRINT procedure displays this output in the SAS listing.

2EV����'(3712����'1$0(������/2&
�����������������$&&2817,1*�1(:�<25.
�����������������5(6($5&+���'$//$6
�����������������6$/(6������&+,&$*2
�����������������23(5$7,216�%26721

You can use the table DEPT in the SAS language just like a
SAS data file by referencing it as a two level SAS data file

named dblib.dept. The next example uses the CONTENTS
procedure.

SURF�FRQWHQWV�GDWD GEOLE�GHSW��UXQ�

This is a partial listing of the output from this example.

'DWD�6HW�1DPH��������'%/,%�'(37
0HPEHU�7\SH����������'7
(QJLQH���������������25$&/(

9DULDEOH�7\SH�/HQ�)RUPDW�,QIRUPDW�/DEHO
'(3712���1XP����������������������'(3712
'1$0(����&KDU���������������������'1$0(
/2&������&KDU���������������������/2&

Once again, just like the query above of the SQL dictionary table
COLUMNS, when the CONTENTS procedure is submitted the
ORACLE engine queries the ORACLE system tables to find
information about the table DEPT.

Updating a DBMS Table

In addition to listing table names and reading rows from DBMS
tables, the ORACLE engine can directly update the rows of a
table. This example uses the SQL procedure to change a row in
the table named DEPT.

SURF�VTO�
XSGDWH�GEOLE�GHSW�VHW�ORF µ1DVKYLOOHµ
���ZKHUH�GHSWQR ���

Creating a DBMS Table

Once a SAS library has been assigned using a DBMS engine,
the DBMS tables can now be referenced in a SAS program as if
they were SAS data files. So DBMS tables can be created in the
same way a SAS data file is created. In this example the
ORACLE table NY_DEPT is created by using the data step.

GDWD�GEOLE�Q\BGHSW�
VHW�GEOLE�GHSW�NHHS GQDPH�GHSWQR��
���ZKHUH�ORF µ1(:�<25.µ�

Note that if the table NY_DEPT had already existed, the data
step would fail with an error message. DBMS engines will not
replace a DBMS table, even though the SAS native engine will
replace a SAS data file.

DBMS tables can be created using the SAS language in the
same way a SAS data file is created. This example uses the
SQL procedure to create a DBMS table named APR_SALES
from the data file SALES and renames the variable S1 to
SALES1.

SURF�VTO�
FUHDWH�WDEOH�DSUBVDOHV�DV
��VHOHFW�
�IURP�VDVXVHU�VDOHV
��������UHQDPH �V� VDOHV����

Deleting a DBMS table

Another example showing how SAS/ACCESS engines in Version
7 fully integrate access to your DBMS tables from within the SAS
languages is that DBMS tables can be also be deleted, or

3
dropped, from your DBMS schema. The following SAS code
shows two of the ways in which you can easily delete DBMS
tables from within the SAS System. In both examples the table
named NEWSALES is deleted.

SURF�VTO�
��GURS�WDEOH�GEOLE�QHZVDOHV��TXLW�

SURF�GDWDVHWV�OLE GEOLE�QROLVW�
��GHOHWH�QHZVDOHV��UXQ��TXLW�

DBMS Dynamic Engines and the SAS Explorer

In Version 7 the SAS Explorer is the native Graphical User
Interface (GUI) to the SAS System. The Explorer serves as a
central access point from which you can easily manipulate SAS
data files, like DBMS tables and views, with a graphical
representation. You can create, copy, move, view, and delete
DBMS tables and views, using the tree and list views of the SAS
Explorer.

Clicking on a predefined DBMS library reference in the SAS
Explorer’s tree view causes the Explorer to dynamically query
the DBMS server for a list of DBMS tables. This list is presented
in the list view in the right-hand side of the SAS Explorer. After
you click on the library named DBLIB, the windows on your
screen will look like this.

Double-clicking on the table name in the list view in the right-
hand side of the SAS Explorer will cause the DBMS engine to
query the DBMS server, read, and display the data in the DBMS
table.

Assigning a DBMS Engine Library in the SAS
Explorer

There are several ways to create a new SAS library from within
the SAS Explorer windowing environment. You can use the File
pull-down and select New and then Library, or you can click on
Libraries, position the cursor on any library name, press the right
mouse button, and then select New->Library from the dialog box.

After you click on the OK push button to create a new library, the
New Library dialog window, as shown below, will appear. You
can then type in your new library reference, the name of the
engine you wish to use, and any option values that are needed
by the engine when it assigns this library. The left-hand side of
the New Library dialog drives the contents of the right hand side
of the dialog. The right-hand side of the New Library dialog
displays the names of the options that are relevant for the engine
that has been selected in the left-hand side. So as you change
the ENGINE field value, the right-hand side of the window will
refresh with the list of appropriate options needed by that
particular engine.

Note the checkbox in the window named ‘Enable at startup’. If
this box is checked when the library is assigned, this library
assignment will automatically be made every time you invoke the
SAS System.

SAS and DBMS Naming Conventions

In Version 7 of the SAS System, the SAS naming rules for
member and variable names have changed. The SAS System
now allows member and variable names up to 32 characters in
length. Valid characters are a-z, A-Z, 0-9, and the underscore
character. The first character must be either an alphabetic
character or an underscore. Also, SAS variable names are now
case-sensitive. This means that when the SAS data file is
created the exact case of the variable names is preserved.
However, when the variable name is used in a SAS program the
variable name can be typed in upper, lower, or mixed case.

These case-sensitive long names in SAS version 7 are very
important and convenient to SAS/ACCESS software users since
most Database Management Systems have similar rules for their
DBMS object names. In Version 6 of SAS/ACCESS software,
DBMS object names longer than eight characters had to be
truncated and renamed for uniqueness. This restriction is lifted
for most Version 7 SAS/ACCESS software (see Appendix A for
the exceptions).

The default behavior of each SAS/ACCESS engine with regard
to DBMS object names and case sensitivity is chosen to reflect
the standards set by the DBMS product itself. For example, the
SAS/ACCESS to DB2 engine operating in the MVS environment
normalizes DB2 names to upper case by default but allows the
user to override this default behavior.

This example creates the DB2 table named PHONE_NUMBERS
with the columns HOME_PHONE and WORK_PHONE. Note
that the names are uppercased-normalized by default.

4

OLEQDPH�P\OLE�GE��VVLG XVHU��

GDWD�P\OLE�SKRQHBQXPEHUV�
LQSXW�KRPHBSKRQH���ZRUNBSKRQH���
�����������������
�����������������
�

The CONTENTS procedure prints the following output to the
SAS log.

'DWD�6HW�1DPH��0</,%�3+21(B180%(56
0HPEHU�7\SH����'7
(QJLQH���������'%�

��9DULDEOH���7\SH�/HQ�3RV�/DEHO
��+20(B3+21(�&KDU���������+20(B3+21(
��:25.B3+21(�&KDU���������:25.B3+21(

You can override the default behavior and create any valid
DBMS table or column name by using library options supported
by the dynamic DBMS engine. For example, the DB2 engine
supports options named PRESERVE_TAB_NAMES and
PRESERVE_COL_NAMES. When set to the value YES, these
options preserve the case sensitivity of SAS member and
variable names when a DBMS table is created and also preserve
the case of table and column names when a DBMS table is read.

This example creates the DB2 table PhoneNumbers with the
columns HomePhone and WorkPhone.

OLEQDPH�P\OLE�GE��VVLG XVHU�
SUHVHUYHBWDEBQDPHV \HV
SUHVHUYHBFROBQDPHV \HV�

GDWD�P\OLE�3KRQH1XPEHUV�
LQSXW�+RPH3KRQH���:RUN3KRQH���
�����������������
�����������������
�

The CONTENTS procedure output shows this information, which
is the metatdata describing the table PhoneNumbers, as it is
retrieved from the DB2 system tables.

'DWD�6HW�1DPH��0</,%�3KRQH1XPEHUV
0HPEHU�7\SH����'7
(QJLQH���������'%�

��9DULDEOH��7\SH�/HQ�3RV�/DEHO
��+RPH3KRQH�&KDU���������+RPH3KRQH
��:RUN3KRQH�&KDU���������:RUN3KRQH

Notice that the table and column names preserve the exact case
used when the table was created in the SAS language using the
data step.

Names with Special (non-alphanumeric)
Characters

In addition to these new naming rules in the SAS language, the
version 7 release of the SAS System supports DBMS object
names that contain special characters, like the blank character.
Most DBMS systems support the use of special characters in
table and column names. Using table and column names with
special characters in a SAS program will result in a syntax error,

unless the names are used in the SQL procedure with the SAS
SQL language.

To enable the support for names with special characters, the
SQL procedure can be invoked with the new option
DQUOTE=ANSI. When this option is used, table and column
names specified in the SQL statements can be double-quoted to
preserve any special characters. For example, this SQL
program creates the table “Table Name”” with one column
named “My Column”.

SURF�VTO�GTXRWH DQVL�
FUHDWH�WDEOH�P\OLE�µ7DEOH�1DPHµ
���´0\�&ROXPQµ�LQWHJHU��
LQVHUW�LQWR�P\OLE�µ7DEOH�1DPHµ
���´0\�&ROXPQµ��YDOXHV������

Note that this table cannot be referenced outside of the SQL
procedure unless the table is enclosed in an SQL view, as this
SAS code demonstrates.

SURF�VTO�GTXRWH DQVL�
FUHDWH�YLHZ�VDVXVHU�GE�YLHZ�DV
��VHOHFW�´0\�&ROXPQµ�DV�P\FRO
��IURP�P\OLE�µ7DEOH�1DPHµ��TXLW�

SURF�SULQW�GDWD VDVXVHU�GE�YLHZ�UXQ�

When this SQL view named db2view is used in the SAS System,
the DB2 column “My Column” is referenced as mycol. The
PRINT procedure will use the view to display the data in the DB2
table named “Table Name”. This output from the CONTENTS
procedure shows the metadata of the view as stored in the SAS
System.

SURF�FRQWHQWV�GDWD VDVXVHU�GE�YLHZ�UXQ�

'DWD�6HW�1DPH��6$686(5�'%�9,(:
0HPEHU�7\SH����9,(:
9DULDEOHV�������
(QJLQH���������64/9,(:

�����9DULDEOH����7\SH����/HQ����3RV���/DEHO
�����P\FRO�������1XP������������������0\�&ROXPQ

SQL Views with Embedded LIBNAME
Statements

Another enhancement in the version 7 release of the SAS
System is the support of embedded LIBNAME statements within
the definition of an SQL view. For SAS/ACCESS users this
means that all the information needed to connect to the DBMS
server and retrieve the DBMS data can be stored within the
definition of an SQL view. The LIBNAME statements embedded
in a view in this fashion will be assigned by PROC SQL any time
the view is read and will be deassigned as soon as the view has
been processed.

This type of SQL views are like the SAS/ACCESS view
descriptors in that view descriptors also contain the DBMS
connection information, in addition to the DBMS table metadata.
The advantage of this type of view is that they can be referenced
and used without dependence on any predefined SAS library
reference.

This example creates the SQL view MYVIEW, which is a view of
an ORACLE table DEPT. In this example, the ODBC engine is
used to connect to an ORACLE data server using an ODBC

5
ORACLE driver. The ORACLE server is defined to ODBC with
the name orsrv. Before storing the password in the SQL view,
the SQL procedure encrypts the password.

SURF�VTO�
FUHDWH�YLHZ�VDVXVHU�P\YLHZ�DV
��VHOHFW�GQDPH�IURP�GEOLE�GHSW

XVLQJ�OLEQDPH�GEOLE�RGEF�XVHU VFRWW
SZ WLJHU�GDWDVUF RUVUY�

When using the SQL view named myview in a SAS program, the
library dblib is assigned using the ODBC engine. This causes a
connection to ORACLE, via the ODBC driver, using the
username and password information provided in the SAS SQL
view. After the view is closed, the library is deassigned and the
DBMS connection to ORACLE is ended.

There can be more than one LIBNAME statement embedded in
a view. Here is an example with multiple libraries assigned from
within an SQL view.

SURF�VTO�
FUHDWH�YLHZ�VDVXVHU�P\YLHZ�DV
VHOHFW�GQDPH
��IURP�RGEOLE�GHSW�W���RUDOLE�GHSW��W�
��ZKHUH�W��GHSWQR� �W��GHSWQR
��XVLQJ
���OLEQDPH�RGEOLE�RGEF�XVHU VFRWW�SZ WLJHU

GDWDVUF RUVUY�
���OLEQDPH�RUDOLE�RUDFOH�XVHU P\LG�SZ P\SZ

SDWK RUVHUYHU�

Updating DBMS Data using SQL Views

In Version 6 of the SAS System, all PROC SQL views were
read-only, i.e., they could only be used to read data. In the
Version 7 release of the SAS System, SQL views can be used to
update the underlying data that the view references. However,
for a PROC SQL view to be qualified as updateable, the
following rules apply.

• The SQL view must be based on only one DBMS table or
view. SQL views referring to more than one table or view
can not be used to update data.

• The SQL view can not refer to DBMS data via the SQL
Pass-Through facility.

• The SQL view may contain derived columns; however, the
derived columns can not be updated.

In this example, a row in the ORACLE table DEPT is updated
using an SQL view with a library defined by the ODBC dynamic
engine.

SURF�VTO�
FUHDWH�YLHZ�VDVXVHU�P\YLHZ�DV
��VHOHFW�
�IURP�P\OLE�GHSW

XVLQJ�OLEQDPH�P\OLE�RGEF�XVHU VFRWW
SZ WLJHU�GDWDVUF RUVUY�

The SQL view can now be used to update the ORACLE table.

SURF�VTO�
XSGDWH�VDVXVHU�P\YLHZ
��VHW�ORF µ1DVKYLOOHµ�ZKHUH�GHSWQR ���

Passing Joins to the DBMS for Better
Performance

In SAS versions prior to Version 7, an SQL query involving one
or more DBMS tables (view descriptors in Version 6) was
processed by the SQL engine as if the DBMS tables were
individual SAS data files. The SQL procedure fetched all the
rows from each individual DBMS table and then performed the
join processing within the SAS software. This algorithm
performed poorly, especially if each of the tables is large, and
the SAS software and the DBMS data server communicate over
a network.

A better way to perform this join is to let the DBMS server
perform the join and return only the results of the join to the
client, i.e., the SAS software. This is exactly what happens with
the Version 7 release of the SAS System and will provide a
major performance enhancement for many of your programs that
perform joins across tables in a single DBMS.

For example, assume two large DBMS tables named TABLE1
and TABLE2 have a column named DEPTNO, and you want to
retrieve the rows from an inner join of these tables where the
DEPTNO value in TABLE1 is equal to the DEPTNO value in
TABLE2.

SURF�VTO�
VHOHFW�WDE��GHSWQR��GQDPH�IURP
��GEOLE�WDEOH��WDE��
��GEOLE�WDEOH��WDE�
��ZKHUH�WDE��GHSWQR� �WDE��GHSWQR

XVLQJ�OLEQDPH�GEOLE�RUDFOH�XVHU VFRWW
SDVVZRUG WLJHU�SDWK P\VHUYHU�

In version 7, this join between two tables within the same library
will be detected by the SQL procedure and passed by the
ORACLE engine directly to the DBMS server. The ORACLE
engine will pass this query directly to ORACLE.

VHOHFW�WDE��GHSWQR��GQDPH
��IURP�WDEOH��WDE���WDEOH��WDE�
��ZKHUH�WDE��GHSWQR� �WDE��GHSWQR�

The DBMS processes the inner join between the two tables and
only the result rows are passed back to the SAS System. Both
inner and outer joins between two or more DBMS tables are
supported in this new enhancement.

Passing Where Clauses to the DBMS for Better
Performance

Sometimes you may have a situation where you want to perform
a join between a large DBMS table and a relatively small SAS
data file. This code illustrates this functionality.

SURF�VTO�
VHOHFW�WDE��GHSWQR��ORF�IURP
��GEOLE�P\WDEOH�WDE��
��VDVXVHU�VDVGV�WDE�
��ZKHUH�WDE��GHSWQR� �WDE��GHSWQR�

In this example, PROC SQL will retrieve all the rows from the
DBMS table named MYTABLE and then apply the where clause
in the SAS SQL procedure processing. This processing could be
both cpu-intensive and I/O-intensive, if MYTABLE is large.

With version 7 SAS/ACCESS software there is an option that will
enable the SQL procedure to pass a where clause to the DBMS

6
so that only the rows that match the where clause are retrieved
from the DBMS table. This can be a huge performance boost,
especially in a networked environment.

OLEQDPH�GEOLE�RUDFOH�XVHU VFRWW�SZ WLJHU�
SURF�VTO�
VHOHFW�WDE��GHSWQR��ORF�IURP
����GEOLE�WDEOH��GENH\ GHSWQR��WDE��
����VDVXVHU�VDVGV�WDE�
����ZKHUH�WDE��GHSWQR WDE��GHSWQR�

In this example, the DBKEY option tells the SQL procedure to
pass the where clause in a form similar to “where
deptno=<hostvariable>” to the DBMS engine. The engine then
passes this optimized query with the where clause to the DBMS
server. The <hostvariable> is substituted, one at a time, with the
values of the DEPTNO variables from the observations of the
smaller SAS data file SASDS.

Thus, only the rows that match the where clause are retrieved
from the DBMS server. Without this option, PROC SQL retrieves
all the rows from TABLE1. With the DBKEY option as specified
in the example above, the SQL statement created by the
ORACLE engine and passed to the DBMS look something like
this:

VHOHFW�GHSWQR��ORF
��IURP�WDEOH�
��ZKHUH�GHSWQR �KRVWYDULDEOH�

The <hostvariable> above has the value of the DEPTNO variable
from the SAS data file SASDS. The number of selects issued will
be equal to the number of rows in SASDS. A general rule of
thumb to use is that the SAS data file should have relatively
fewer rows compared to the DBMS table with which it is being
joined.

The DBKEY option can also be used in a SAS data step to
improve the performance when performing a data join using the
KEY= option of the SET statement. This data step creates a
new data file which joins the data file KEYVALUES with the
DBMS table MYTABLE using the variable DEPTNO in the where
clause issued by the DBMS engine.

GDWD�VDVXVHU�QHZ�
��VHW�VDVXVHU�NH\YDOXHV�
��VHW�GEOLE�P\WDEOH�GENH\ GHSWQR�
��������NH\ GENH\�

[In addition to the DBKEY option, SAS/ACCESS software also
allows the option DBINDEX=YES, DBINDEX=NO, and
DBINDEX=<index name>. You can use the DBINDEX option if
you know that the DBMS table you are using has one or more
indexes using the column(s) on which the join is being
performed. You can use the DBINDEX=<index name> option if
you know the name of the index, or use DBINDEX=YES if you
do not know the index name.]

Options to control DBMS Connections

Since the overhead of executing a connection or attach to a
DBMS server can be very resource intensive and expensive,
SAS/ACCESS engines now provide options with which you can
control when the connection is made to your DBMS server. You
can also control when a DBMS connection should be shared
between more than one library. In general, a connection to a
DBMS begins one transaction, so all statements issued in this
connection are done within the context of the active transaction.

By default, a SAS/ACCESS engine executes a DBMS
connection whenever a library is assigned, e.g., every time a

LIBNAME statement is issued. Every reference to a table in this
library that reads data from a table will share the read-only
connection. However, if the SAS program attempts to update a
DBMS table using this library reference, another separate
connection is issued and all the updates occur in the new
connection. These rules are followed so that there is one
connection for all READ-ONLY transactions and separate,
distinct connections for each UPDATE transaction.

The following LIBNAME statement, using the DB2 engine under
the MVS system, executes a connection, which is a DB2 Call
Attach facility command, to the DB2 DBMS server.

OLEQDPH�GEOLE�GE��DXWKLG XVHU��

If you want to assign more than one SAS library to your DBMS
server, and if you will not be updating the DBMS tables,
SAS/ACCESS engines provide an option to allow you to optimize
the way the engine performs connections. Your SAS libraries
can share a single READ-ONLY connection to the DBMS, if your
library definitions use the CONNECTION option. This next
example shows you how to use the CONNECTION option to
control your connection together with the ACCESS option to
specify your read-only data access requirements.

OLEQDPH�GEOLE��GE��DXWKLG XVHU�
FRQQHFWLRQ JOREDOUHDG�DFFHVV UHDGRQO\�

OLEQDPH�GEOLE��GE��DXWKLG XVHU�
FRQQHFWLRQ JOREDOUHDG�DFFHVV UHDGRQO\�

You can also delay when the connection to the DBMS occurs. If
you do not want the connection to occur when the library is
assigned, you can use the DEFER option when defining the
library. If you indicate DEFER=YES, the connection to the
DBMS will be issued by the engine the first time a DBMS table is
used in the SAS program.

OLEQDPH�GEOLE��GE��DXWKLG XVHU��GHIHU \HV�

You may want to use DEFER=YES if you are assigning DBMS
engine libraries in an AUTOEXEC SAS program. The processing
of the AUTOEXEC will be faster if you use DEFER=YES so that
the DBMS connection is not made every time SAS is invoked.

Locking and Concurrency Control

Version 7 SAS/ACCESS engines support options that allow you
to control some of the row, page, or table locking performed by
the DBMS engine as it executes your SAS programs. For
example, the ORACLE engine has the options
READLOCK_TYPE, UPDATELOCK_TYPE,
READ_ISOLATION_LEVEL, UPDATE_ISOLATION_LEVEL and
LOCKWAIT options. By default, the ORACLE engine does not
lock any data when reading rows from ORACLE tables.
However, this behavior can be overridden by using the locking
options. For example, if you want to lock the data pages of a
table while the SAS system is reading the data and prevent other
processes from updating the table, you can use the
READLOCK_TYPE option.

SURF�VRUW
GDWD GEOLE�GEWDEOH�UHDGORFNBW\SH WDEOH�
RXW VDVXVHU�P\WDEOH��E\�P\FRO�

In this example the ORACLE engine obtains a TABLE SHARE
lock on the table so that the table can not be updated by other
processes while your SAS program is reading it.

7
Locking options may be given as libname options also as shown
in the example below.

OLEQDPH�GEOLE�RUDFOH�XVHU VFRWW
SDVVZRUG WLJHU�SDWK RUVHUYHU
XSGDWHORFNBW\SH URZ�

ORACLE will acquire row level locks on rows read for update on
tables using this library reference.

Dynamic Prompting for DBMS Connection
Options

In Version 6 of SAS/ACCESS software, users stored their DBMS
connection information, like username and password, in SAS
programs or (encrypted) in the contents of view and access
descriptors. In version 7 of SAS/ACCESS software, a dynamic
way of specifying DBMS connection information is supported.
When a dynamic DBMS engine is used to assign a SAS library
and the option DBPROMPT=YES is specified in the library
definition, a dialog window appears and will prompt the user to
interactively enter DBMS connection options, such as a
username and password.

OLEQDPH�OLE��RUDFOH�GESURPSW \HV�GHIHU QR�

When this LIBNAME statement is issued, a prompt window
similar to the one shown below appears. The window will contain
connection options that are valid for the DBMS engine being
used.

This new feature of DBMS engines provides several advantages.
It provides a more secure way to allow use of DBMS account
passwords. The passwords do not have to be stored in a SAS
program or in a descriptor file. Also, when a password, or even
a username, changes, the SAS program itself does not have to
change. Another advantage is that the same SAS program can
be used by any username and password combination that is
specified dynamically in the prompt dialog during the SAS job
execution. It may also be appropriate to use the interactive use
of connection options when moving from a test-only DBMS
server to a production server. In this case, only the server name
needs to be changed when the prompt dialog window appears.

Enhanced SQL Pass-Through Facility

The SQL Pass-Through facility continues to be a very important
feature in the SAS/ACCESS software in the Version 7 release.
This powerful feature provides a way for you to directly pass

SQL statements to your DBMS when using special syntax in the
SAS SQL procedure. This component is usually only supported
by the SAS/ACCESS interfaces to relational databases. New in
Version 7, case-sensitive SAS names up to 32 characters in
length are supported when your DBMS names are mapped to
internal SAS names for use within the SAS System.

If you wish to use the SQL Pass-Through views you created in
Version 6 and continue to have your DBMS names automatically
conform to Version 6 naming conventions, this is supported
using the VALIDVARNAME global system option, as shown in
the next example.

Suppose this SQL view was created in Version 6 using
SAS/ACCESS Pass-Through facility.

SURF�VTO�
FRQQHFW�WR�RUDFOH
�XVHU VFRWW�SDVVZRUG WLJHU�SDWK RUVHUY��

FUHDWH�YLHZ�VDVXVHU�P\SDVV�DV
��VHOHFW�
�IURP�FRQQHFWLRQ�WR�RUDFOH
���VHOHFW�´HPSOR\HHBQDPHµ�IURP�HPSWDEOH���
GLVFRQQHFW�IURP�RUDFOH��TXLW�

If you use this SQL view in Version 7, the long, case-sensitive
DBMS name is mapped to the internal SAS name as shown here
in the PRINT procedure output.

SURF�SULQW�GDWD VDVXVHU�P\SDVV�UXQ�

2EV�������HPSOR\HHBQDPH
����������-RQHV��0DU\
����������6PLWK��+RZDUG

However, if you want to use this SQL Pass-Through view in
“version 6 compatibility mode” and use SAS names that were
valid in Version 6, you can specify the options statement, as
shown in this example.

RSWLRQV�YDOLGYDUQDPH Y��
SURF�SULQW�GDWD VDVXVHU�P\SDVV�

2EV�������(03/2<((
����������-RQHV��0DU\
����������6PLWK��+RZDUG

Note that the column name was uppercased and truncated to
eight characters when it was assigned to a SAS variable name.
This is consistent with Version 6 naming conventions.

Line Mode Updating of Descriptors

In Version 7 of SAS/ACCESS software, the ACCESS procedure
supports updating access and view descriptors via line mode
syntax. The UPDATE statement is provided in the ACCESS
procedure for modifications such as re-specifying a password or
DBMS server name that may have changed since the
descriptors were created.

SURF�DFFHVV�GEPV RUDFOH�
��PRGLI\�VDVXVHU�RUWDEOH�YLHZ�
��RUDSZ µPLQHµ�
��SDWK µ1(:B6(59(5µ��UXQ�

8
This ACCESS procedure code modifies an existing view
descriptor to update the ORAPW and PATH options with new
values.

SAS Version 6 Compatibility

The Version 7 release of SAS/ACCESS software provides
complete compatibility for any existing SAS programs that were
developed in the Version 6 SAS environment.

Any existing programs using the ACCESS procedure or the
DBLOAD procedure will continue to run in Version 7. However,
the interactive, full-screen interface to the ACCESS and
DBLOAD procedures is not supported in Version 6.

All existing SQL Pass-Through views created in Version 6 and all
existing access and view descriptors created with Version 6 are
fully supported by the Version 7 release of SAS/ACCESS
software.

Data Step Interface for IMS and IDMS

The Data Step Interface component of the IMS and IDMS
engines provides you with a powerful tool for dynamically
reading and updating your IMS or IDMS data using special SAS
data step functions. New in Version 7, the Data Step Interfaces
support SAS variable names up to 32 characters in length.

This example shows how the INFILE statement in the data step
is used to define the IMS data to read. When the data step is
submitted, the IMS data is read into the SAS data file
SASUSER.CUSTLIST.

GDWD�VDVXVHU�FXVWOLVW�
��LQILOH�DFFWVDP�GOL�VWDWXV VW�SFEQR ��
��LQSXW�#��VRFBVHFBQXPEHU��FKDU���
��LQSXW�#���FXVWRPHUBQDPH��FKDU����
��LI�VW�A �¶�¶�WKHQ�GR�
����SXWBDOOB��DERUW��HQG�

The resulting data file can be used in any SAS program, like this
PRINT procedure�

SURF�SULQW�GDWD VDVXVHU�FXVWOLVW�
��YDU�FXVWRPHUBQDPH�
��WLWOH��¶&XVWRPHU�/LVW·��UXQ�

Defining the “Scope” of a SAS Library when
using a DBMS engine

Each dynamic DBMS engine supports library definition options to
restrict or qualify the “scope”, or “schema”, of the tables that can
be used via the library reference. For example, the DB2 engine
supports the AUTHID and LOCATION library options, and the
ORACLE engine supports SCHEMA and DBLINK library options.
This example uses the ORACLE engine.

OLEQDPH�GEOLE�RUDFOH�XVHU VFRWW
SDVVZRUG WLJHU�VFKHPD RXUJURXS�

SURF�GDWDVHWV�OLE GEOLE�

���1DPH��������0HPW\SH
���2857$%/(����'$7$
���2859,(:�����'7

The dblib library reference is scoped to the ORACLE schema
named ourgroup. The DATASETS procedure lists only the
tables and views that are accessible to the ourgroup schema.
Any reference to a table using the library reference dblib will be
passed to the ORACLE server as a qualified table name. For
example, if a SAS program reads a table by specifying the SAS
reference dblib.ourtable, the engine passes this query to the
server.

VHOHFW�
�IURP�´RXUJURXS�RXUWDEOHµ�

DBMS Connect and Disconnect Exits

There is a DBMS engine library definition option that can be
defined to execute a DBMS command or stored procedure after
a successful connection to the DBMS. Similarly, an option can
be specified so that a DBMS command is executed in the
connection immediately prior to the disconnection from the
DBMS server.

OLEQDPH�GEOLE�RUDFOH
XVHU VFRWW�SDVVZRUG WLJHU
GELQLWFPG µ(;(&�0<B352&('85(µ�

When this library is assigned, the engine connects to the DBMS
and the stored procedure MY_PROCEDURE is executed. The
stored procedure or command can not return any rows of data,
and if the command fails, the library assignment fails with the
DBMS error message displayed in the SAS log and assigned to
the macro variables SYSDBRC and SYSDBMSG.

Character Variables up to 32,768 characters

Version 7 SAS allows character variables with a length up to
32,768 characters (32K bytes). Therefore SAS/ACCESS engines
can now retrieve (or insert) SAS character variables with a length
of up to 32,768 characters from (or into) DBMS columns of this
size. Prior to Version 7 of the SAS System, the size limit of
character variables was 200 characters.

SYSDBRC & SYSDBMSG SAS Macro Variables

SAS/ACCESS software now supports two new global system
macro variables. The macro variables are SYSDBRC and
SYSDBMSG and their values indicate the status of the last
SAS/ACCESS engine statement executed. The value of
SYSDBRC is 0 and the value of SYSDBMSG is a blank string, if
the statement completed successfully. If an error was
encountered, SYSDBRC has the DBMS error number or error
code, and SYSDBMSG has the DBMS error message.

The macro variables supported in Version 6 for SQL Pass-
Through facility are also supported in Version 7. The SQLXRC
and SQLXMSG macro variables are available in SQL Pass-
Through only.

OLEQDPH�GEOLE�RUDFOH�XVHU EDG�SZ ZURQJ�

This library assignment fails with an error because the
connection to the DBMS fails due to invalid username and
password. When the ORACLE engine attempts to connect to the
ORACLE server, the server returns an error message that is
retrieved by the engine. The engine updates the values of the
global system macro variables SYSDBRC and SYSDBMSG with
the values shown below.

�SXW�	V\VGEUF�

9

�����
�SXW�	V\VGEPVJ�
25$&/(��25$��������LQYDOLG
XVHUQDPH�SDVVZRUG��ORJRQ�GHQLHG�

These new SAS macro variables will be especially useful in SCL
programs when the exact DBMS error code and error text can be

retrieved via the macros and displayed to the user�

Summary

With Version 7 of the SAS System, accessing data in DBMS
systems from the SAS System is easier than ever before. SAS
users whose business and information solutions require the use
of a variety of data sources from within the SAS system can now
use the powerful dynamic DBMS engines provided by
SAS/ACCESS software. The tools supported by SAS/ACCESS
allow you to easily integrate your SAS system solutions with
virtually any external data source. The Version 7 release of
SAS/ACCESS software integrates with the SAS language to
provide powerful and easy-to-use SAS system techniques to
seamlessly read and update data in a variety of DBMS sources.

Acknowledgements

SAS and SAS/ACCESS are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. R indicates
USA registration. DB2 and OS/2, are registered trademarks or
trademarks of International Business Machines Corporation.
ORACLE is a registered trademark or trademark of Oracle
Corporation.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

References

For information about accessing external data from your PC:

Sanders, Roger E., ”Accessing Data from your PC using Version
7 of the SAS System”, Proceedings of the Twentry-Third Annual
SAS Users Group International Conference. Cary, NC: SAS
Institute Inc., 1998.

For information about general SAS I/O Enhancements:

Beatrous, Steve & Clifford, Billy, “Sometimes You Do Get What
You Want: SAS I/O Enhancements in Version 7”, Proceedings of
the Twenty-Third Annual SAS Users Group International
Conference. Cary, NC: SAS Institute Inc., 1998

For information about SAS/ACCESS software for Version 6:

SAS Institute Inc., SAS/ACCESS Software for Relational
Databases: Reference, Version 6, First Edition, Cary, NC: SAS
Institute Inc., 1994, 196 pp.

Appendix A.

SAS/ACCESS interfaces and their components.

These are the individual features available in SAS/ACCESS software
products. SAS/ACCESS interfaces contain a subset of this list of
features.

• The engine: Dynamic Engine. SAS libraries can be dynamically
assigned and metadata about tables is dynamically returned to the
SAS System. Tables can be listed, read, updated, deleted, and
created.

• The engine: the SQL Pass-Through facility. The engine supports
the SQL procedure statements CONNECT, EXECUTE, SELECT,
and DISCONNECT. The native DBMS SQL language is used to
directly query the DBMS server.

• The engine: the Data Step Interface. This engine component
provides access to the DBMS by surfacing the DBMS data to the
SAS program via data step functions.

• The DBLOAD procedure creates, and appends to, DBMS tables.
Any SAS data file can be used as the input data to the DBLOAD
procedure. This procedure supports line mode syntax.

• The engine: the view descriptor interface. The ACCESS procedure
is used to create static descriptors that contain metadata about a
table. The descriptor is used to read and update data in a table.
Only SAS names up to 8 characters are supported.

• The ACCESS procedure creates access and view descriptors that
are customized views of the data in a DBMS table that SAS
programs use to read and update the tables. This procedure
supports line mode syntax.

• The IMPORT and EXPORT facility. This engine component
provides a point-and-click style interface to import external file
formats into SAS data files and to export SAS data files to an
external file format.

SAS/ACCESS interface to DB2

The interface supports the Dynamic Engine, the SQL Pass-Through
facility, the ACCESS procedure, the view descriptor interface, and the
DBLOAD procedure. The SAS/ACCESS interface to DB2 is supported on
MVS.

SAS/ACCESS interface to DB2 for Common Servers

The interface supports the Dynamic Engine, the SQL Pass-Through
facility, and the DBLOAD procedure. The SAS/ACCESS interface to DB2
for Common Servers is supported on Microsoft Windows 95, Microsoft
Windows NT, OS/2, Solaris, HP-UX, and AIX.

SAS/ACCESS interface to ODBC

The interface supports the Dynamic Engine, the SQL Pass-Through
facility, the IMPORT/EXPORT facility, and the DBLOAD procedure.
SAS/ACCESS to ODBC is available on Windows 95, Windows NT, OS/2,
Solaris, HP-UX, and AIX.

SAS/ACCESS interface to ORACLE

The interface supports the Dynamic Engine, the SQL Pass-Through
facility, the ACCESS procedure, the view descriptor interface, and the
DBLOAD procedure. SAS/ACCESS to ORACLE is supported on Windows
95, Windows NT, OS/2, Solaris, HP-UX, AIX, and MVS.

SAS/ACCESS interface to INFORMIX

The interface supports the Dynamic Engine and the SQL Pass-Through
facility. SAS/ACCESS to INFORMIX is available on Solaris, HP-UX, and
AIX.

SAS/ACCESS interface to INGRES

The interface supports the Dynamic Engine, the SQL Pass-Through
facility, the ACCESS procedure, the view descriptor interface, and the
DBLOAD procedure. SAS/ACCESS to INGRES is supported on Solaris,
HP-UX, and AIX.

SAS/ACCESS interface to SYBASE

The interface supports the Dynamic Engine, the SQL Pass-Through
facility, the ACCESS procedure, the view descriptor interface, and the
DBLOAD procedure. SAS/ACCESS to SYBASE is available on Windows
95, Windows NT, OS/2, Solaris, HP-UX, and AIX.

SAS/ACCESS interface to IMS

The interface supports the ACCESS procedure, the view descriptor
interface, and the Data Step Interface. SAS/ACCESS to IMS is available
on MVS.

SAS/ACCESS interface to IDMS

The interface supports the ACCESS procedure, the view descriptor
interface, and the Data Step Interface. SAS/ACCESS to IDMS is available
on MVS.

Check with your SAS representative for more product functionality and
availability details.

Author Information

Vino Gona, SAS Institute Inc., 100 SAS Campus Drive, Cary, NC 27513,
(919) 677-8000, email: sasvxg@unx.sas.com

10
Jana Van Wyk, SAS Institute Inc., 100 SAS Campus Drive, Cary, NC
27513, (919) 677-8000, email: sasjvw@unx.sas.com

	Main TOC

