
Version 6 and Version 7: A Peaceful Co-Existence
Steve Beatrous and James Holman, SAS Institute Inc., Cary, NC

Abstract
Version 7 represents a major step forward for SAS
Institute and is the first release of a new generation of
SASâ software. Customers confronted with a new
generation of software are concerned about the cost of
moving their applications to that new release and are
reluctant to move everything at once.

This paper reviews some of the reasons why customers
want to move some or all of their applications to Version
7. We recognize that many sites will not want to move
everything forward at the same time; therefore, this
paper discusses techniques to make partial migrations
(mixing Version 6 and Version 7 applications) and
techniques for running critical systems in parallel (to
facilitate comparing Version 6 to 7). Maintaining data
libraries in the proper format (Version 6 versus 7) and
cross version compatibility issues in a client/server
environment are two of the concerns addressed.

Why Convert to Version 7?
Version 7 contains a number of features that were
beyond the scope of Version 6. These are features that
required major re-writes of the SAS system. The new
Version 7 features provide the major motivation for
moving to Version 7. While this paper does not go into
detail about these features, the following is a list of the
author's favorite new features:

1. Output Delivery System (ODS): You have many
more options for the output created by SAS
procedures, allowing you to:

· Transform procedure output into a SAS data
set

· Render output as colorful HTML pages with
embedded hyperlinks

· Operate seamlessly with word processing
software using RichText and/or Postscript
files (experimental)

2. Long Variable Names: Allows for richer name
space for tables(data sets) and columns (variables)

3. SAS Explorer: Provides a rich visual front end to
the SAS System

4. Asynchronous SAS/CONNECTâ Program
Submits: Allows you to do work in the foreground
while remote submits are being processed in the
background

5. Dynamic Libnames: Gives transparent access to
external databases with SAS/ACCESSâ dynamic
libname statements

6. CEDA: Allows access to SAS datasets created by
multiple operating systems without having to go
through a transport process or bring up a server on
the machine that created the file

7. Advanced Database Features: Provides integrity
constraints to ensure data conforms to user-defined
rules and provides versioning to allow you to keep
more than one copy of the same file

You would be motivated to convert to Version 7 if any of
the previous features are important to you. Motivation,
however is only part of the story. Version 7 is a first step
in a new generation of SAS software. As any such first
step, it is not completely evolved. You must consider the
following when deciding to convert from Version 6 to
Version 7:

1. The Version 7 product line is not complete. Some
products such as Enterprise Miner and Data
Warehouse Administrator are not part of the Version
7 offering.

2. For some jobs, Version 7 uses more memory and
takes more CPU time than Version 6.

The Version 8 release (being demonstrated at this
conference) is meant to complete the product line and
address performance differences between Versions 6
and 7. If you depend on one of the products that are
not yet available in Version 7 or if your applications are
extremely performance sensitive then you may need to
wait for Version 8. The content of this paper applies
equally to those sites planning on converting from
Version 6 to 7 or from Version 6 to 8.

Model for Converting to a New Release
In the past, converting from one release of a software
product to another was like moving into a new house.
The customer made a decision to move, set up
elaborate systems to prepare for the move, and
expected to be out of commission for a while after the
move completed.

The software vendor usually supplied tools to assist in
the process. For example, when Version 6 was
introduced SAS Institute provided PROC V5TOV6 to
convert data and applications. In the best of all worlds
the conversion tool would make all of the required
changes to the user's files and source programs so that
after the tool had run, the application could run in the
new release. However, converting an application is
often like moving furniture - the old stuff just doesn’t
work right in its new home.

The move to a new release was seen as a complete
operation (all applications must migrate forward at the
same time) that was irreversible. With this kind of model,
it is no wonder that software users grimace every time a
vendor introduces a new release.

SAS Institute understands how painful upgrades to
software can be. One of the design goals of Version 7
was to facilitate a seamless transition from Version 6.

The Institute expects customers to evolve from Version 6
to 7 rather than do a massive conversion. We have
worked hard so you will not have to go through the total
and irreversible kind of conversion that you went through
between Versions 5 and 6.

To achieve the goal of seamless transition, Versions 6
and 7 complement one another. Some of the Version 7
features that facilitate a complementary relationship are:

1. SAS automatically senses the format of a library,
e.g. is it a Version 6 library or a Version 7 library?

SAS programs that access Version 6 libraries will
(for the most part) run unchanged in Version 7.

2. Read, Write, and Update access to Version 6 SAS
data files are supported.

3. Read access to Version 6 SAS catalogs and SQL
views are supported.

4. You can mix Version 6 and 7 clients and servers.
For example, a Version 7 client can process data
from a Version 6 SAS/SHARE server (and vice
versa).

5. Library and catalog concatenation (a new Version 7
feature) allows you to move some data forward into
a V7 format while leaving other data in Version 6
format.

All of these features taken together mean that most1
Version 6 applications can run unchanged in Version 7
and that it is possible to migrate part of an application to
Version 7 while leaving other parts in Version 6. The
conversion from Version 6 to Version 7 can be painless
and does not have to be complete.

In later sections, two of the above features
(concatenation and mixed release client/server) will be
discussed in detail.

Library Concatenation
 Library concatenation allows you to reference two or
more SAS libraries with a single libref. A complete
description of library concatenation may be found on the
CD ROM SAS Language Reference: Dictionary, First
Edition.

 Library concatenation allows you to combine libraries
that are processed by different engines. For example,
suppose there are some files in a Version 6 library and
some other files in a Version 7 library. Further, suppose
that the application needs to process the collection of
files in both libraries. The following syntax can be used
to establish a single libref ("MYLIB") that combines the
Version 6 and Version 7 libraries:

 The preceding example allows you to leave some files
used by an application in Version 6 format while
converting others to a Version 7 format. (Note that
converting a file from Version 6 format to Version 7
format is as simple as running a PROC COPY from a
Version 6 libref to a Version 7 libref.)

SAS Catalog Concatenation
 Catalog concatenation allows the combination of two or
more catalogs into a single logical catalog. A complete
description of catalog concatenation may be found on
the CD ROM SAS Language Reference: Dictionary, First
Edition .

 In the above example a Version 6 and a Version 7 library
were concatenated into a single library named MYLIB.
All of the catalogs in the concatenation with the same
catalog name will be logically combined.

1 There are some exceptions where data must be
converted to Version 7 format before the application can
run in Version 7. These are discussed in Appendix 1 of
this paper.

An Example: Library and Catalog
Concatenation
 Library and catalog concatenation provides a method of
combining Version 6 and 7 libraries. You can then
decide which parts of the library to upgrade and which
parts should remain in a Version 6 format.

 You would want to upgrade a data file, a data view, a
catalog file, or a catalog entry for any one of the
following reasons:

1. To exploit new Version 7 features. For example, you
may want to have update access through an SQL
view.

2. The Version 6 format is incompatible with your
intended usage in Version 7 (see Appendix 1 of this
paper for details). For example, suppose your
application expects to be able to update FRAME
entries in a catalog. Version 7 will only allow
updates to catalog entries that are in Version 7
format2.

3. To change or extend your application such that
some parts of the application run only in Version 7.

You would not want to upgrade your data if either of the
following were true.

1. You expect Version 6 and 7 clients to need access
to the data and you do not want or you cannot have
multiple copies of the data.

2. You are comparing Versions 6 and 7 and you need
the data stored in a form that both releases can get
to.

Effectively using library concatenation assumes that you
start with a Version 6 library. You then decide which
pieces of this library you need to convert to a Version 7
format (see reasons 1-3 above). You copy any SAS files
to the Version 7 library with PROC COPY and you copy
selected catalog entries with PROC CATALOG.

To illustrate how this might work for you, consider an
example of a Version 6 library, which contains:

2 It is important to note that the engine creating a SAS
catalog determines its format (the actual file format).
Furthermore, this format is different in Versions 6 and 7
of the SAS System.

On the other hand, the format of a SAS catalog entry is
determined by the SAS program or application that
created it and may or may not be forwards or backwards
compatible.

libname v6lib 'path-to-v6-library';
libname v7lib 'path-to-v7-library';
libname mylib (v7lib v6lib);

 V6LIB

 FORMATS.CATALOG

 ONE.FORMAT
TWO.FORMAT
THREE.FORMAT

MYPROG.CATALOG

A.FRAME
B.FRAME
C.FRAME
PIC1.GRSEG
PIC2.GRSEG

 TABLE1.DATA

 TABLE2.DATA

 In the above example the user could initially run their
application in Version 7 without changing a thing.

 However, after things have run successfully in Version 7
the user wants to replace FORMATS.ONE.FORMAT,
MYPROG.B.FRAME, and TABLE2.DATA with versions
that exploit new features. For example, PROC FORMAT in
Version 7 supports a NOTSORTED option that allows the
user to list most likely values for a format first and
therefore get better performance with long lists of format
values. The user would create an overriding
ONE.FORMAT in the catalog V7LIB.FORMATS.

 Also, suppose you want to add Integrity Constraints and
long variable names to TABLE2. In doing so, the user
knows that (s)he still needs a Version 6 form of these
upgraded files. However, the user does not want to
have to create a Version 7 format of the unchanged
data. The results are a Version 7 library that looks like
this:

 V7LIB

 FORMATS.CATALOG

 ONE.FORMAT

MYPROG.CATALOG

B.FRAME

 TABLE2.DATA

 The concatenated libref MYLIB would be set up as
follows:

MYLIB would have the following contents:

 MYLIB Libref

 FORMATS.CATALOG

 ONE.FORMAT (from V7LIB)
TWO.FORMAT (from V6LI B)
THREE.FORMAT(from V6LIB)

MYPROG.CATALOG

A.FRAME (from V6LIB)
B.FRAME (from V7LIB)
C.FRAME (from V6LI B)
PIC1.GRSEG (from V6LIB)
PIC2.GRSEG (from V6LIB)

 TABLE1.DATA (from V6LI B)

 TABLE2.DATA (from V7LIB)

Running Version 6 and Version 7 at the
Same Time
There are going to be some sites that want to run their
applications in Version 6 and Version 7. A cautious
customer, for example, would experiment with Version 7
by running their applications in both releases. Another
customer may be comfortable with moving some groups
of users to the new release. For example, you may want
to have your applications developers running Version 7,
but your end users run Version 6. Finally, there will be
customers in the business of delivering data in the form
of SAS data files. These customers will want to deliver a
Version 6 or a Version 7 form of the same file. The data
producer, however, wants their Version 7 file not to be
restricted to Version 6 features. For example, the data
producer would want their Version 7 deliverables to have
long descriptive variable names.

The SAS System offers some features to assist those
customers who need to run Version 6 and Version 7 at
the same time.

Writing Version 6 Compliant Code in Version 7
The SAS option VALIDVARNAME=V6 forces all variable
names to be eight or fewer characters. This option
prevents a developer from writing SAS code that would
fail to compile in Version 6.

For example,

compiles and runs in Version 7, but produces a syntax
error in Version 6. If you perform the above DATA step
after setting VALIDVARNAME=V6, the DATA step will fail
to compile in Version 7.

The option may be set with the options statement:

or in the SAS configuration file. For example, on a UNIX
system,

libname mylib (v7lib v6lib);

data a; long_var_name=1; run;

options VALIDVARNAME=V6;

-VALIDVARNAME V6

The VALIDVARNAME=V6 option setting is useful when
you have developers working in Version 7 writing code
that must compile in Versions 6 or Version 7.

Making a Version 6 Copy of a Version 7 File
There will be some customers who want to run Version 7
and fully exploit Version 7 features, but who have the
need to create Version 6 data files to deliver to their
clients. To do this, however, requires stripping out all of
the Version 7 specific feature set from the file. For
example, all variable names greater than eight
characters would have to be renamed to fit the Version 6
eight-character limit. A SAS customer who is in the
business of delivering SAS data sets will want to be able
to easily deliver a Version 6 or Version 7 form of the file.
Manually stripping out Version 7 specific features is
tedious.

PROC COPY, when used with VALIDVARNAME=V6
(see above), will do this for you3.

For example,

 data employee;
 LastName = 'Smith';
 FirstName = 'John';
 EmployeeID = 50;
 run;

libname v6lib 'path';
options validvarname=v6;

 proc copy in=work out=v6lib;
 select employee;
 run;

The resulting Version 6 data file, V6LIB.EMPLOYEE will
contain the variables LASTNAME, FIRSTNAM, and
EMPLOYEE and will be usable by any Version 6 or
Version 7 application or SAS program.

Mixing Version 6 and Version 7 Client /
Servers
Up to now this paper has been covering traditional SAS
applications represented by one user and one process
on one machine. The SAS System, however, has
client/server extensions represented in products like
SAS/SHAREâ and SAS/CONNECTâ.

When moving a client/server application forward, you
have the choice of:

1. Moving some or all of the clients forward

2. Moving just the server forward or

3. Moving both client(s) and server forward

You may ask which of these three approaches makes
the most sense. The answer to that question is going to
be "it depends". The point is that the Version 7 system
gives you the ability to mix and match Version 6 and
Version 7 client/server scenarios. For example, one
customer may wish to move their SAS/SHAREâ clients
to Version 7 so that the clients can take advantage of

3 It is important to note that PROC COPY will be able to
create a truncated name for variables that use the new
Version 7 feature of long names. This truncation is
based on the stem of the variable name and is
guaranteed to be unique, though not as descriptive as
the long name.

some of the new Version 7 client side report writing
features (such as ODS). That same customer may see
no advantage to moving their server forward.

A SAS/CONNECTâ or SAS/SHAREâ customer may be
using a server on another machine. At your site it may
be that one machine environment has Version 7
available before another. A customer may wish to move
their client or server forward to Version 7 when Version 7
is available on their machine. You do not have to wait
until Version 7 is available on all of the machines that
make up your client/server application.

There are some restrictions to mixing Version 6 and
Version 7 client and servers. See Appendix 2 for a set
of summary tables detailing what you can and cannot do
in a mixed setting.

Conclusions
Version 7 was built with features that enable a slow
migration or a complete and total migration. Many
applications will require no changes at all to run under
Version 7, while others may require some minor
adjustments (such as using PROC COPY to move your
data from a Version 6 format to a Version 7 format).

The new features in Version 7 provide the primary
motivation for moving forward. The move can be total or
partial, but either way it should be relatively painless.

Appendix 1: Conversion Gotchas
For the most part, Version 6 applications can run
unchanged in Version 7. There are some features,
however, which require a customer to do something to
their source or their data in order to run in Version 7. If
you do not use any of these features, your transition
from 6 to 7 should be seamless. If you do use some of
these features, then this section tells what you need to
do to convert from Version 6 to Version 7.

1. Problem: Version 6 Data Step Views cannot be read
by Version 7. If your Version 6 application
processes Data Step Views then it will not run in
Version 7.
Solution: Recreate your Data Step Views in a
Version 7 library. Concatenate the Version 7 library
with the Version 6 library that contains the rest of
your data or migrate all of the Version 6 files to
Version 7 format. Note that this will not be a
problem in Version 8. Version 8 will be able to read
Version 6 data step views.

2. Problem: Version 6 Catalogs cannot be updated by
Version 7. If your application updates catalog
entries then the application cannot run unchanged in
Version 7.
Solution: Copy the catalog entries that your
application updates to a Version 7 catalog. Use
catalog concatenation to combine this partial Version
7 catalog to the full Version 6 catalog or copy all of
the required entries to a Version 7 catalog.

3. Problem: Version 7 cannot create data step or SQL
views in a Version 6 library. If your application
creates SQL or Data Step Views then it may not run
unchanged in Version 7.
Solution: Modify your application to use library
concatenation to insert a Version 7 library in front of
the Version 6 library.

4. Problem: Customizations stored in a Version 6
SASUSER.PROFILE are not available in Version 7.

The SASUSER.PROFILE catalog is used to store
customizations to the SAS System. These
customizations, for the most part, relate to the look
and feel of the SAS GUI. The Version 7 GUI is so
different from the Version 6 GUI that there are no
provisions for moving your SASUSER.PROFILE
forward from Version 6 to 7.
Solution: Customize the Version 7 GUI after
installation. Non-GUI data stored in a Version 6
SASUSER.PROFILE may be moved to a Version 7
catalog with a PROC COPY. The OUTPUT from
PROC COPY may be used as the Version 7
SASUSER.PROFILE although the Version 6 GUI
settings will be lost.

5. Problem: MVS, CMS, and VAX VMS customers
cannot read 6.06 data sets in Version 7. If your
application processes SAS data files in the 6.06
format then it will not run in Version 7.
Solution: Use Version 6 to reformat your data. A
simple DATA step: DATA MYLIB.A; SET MYLIB.A;
will reformat a 6.06 file to be compatible with Version
7.

6. Problem: MVS and CMS customers will have READ
ONLY access to Version 5 data libraries. If your
application requires updating or creating Version 5
data then it cannot be run in Version 7.
Solution: Use PROC COPY in Version 6 or 7 to
migrate your Version 5 data to either Version 6 or
Version 7 format.

7. Problem: MVS and CMS cannot be used to build AF
FRAME, RESOURCE, or CLASS entries.
Solution: You can build the application on another
platform (for example UNIX or Windows) and then
import them to MVS or CMS.

8. Problem: On the AIX operating system, Version 7
SAS cannot read Version 6 Catalog files.
Solution: Run PROC CPORT in Version 6 to create
a transport file. Version 7 PROC CIMPORT can
read a Version 6 transport file and create a Version
7 Catalog.

9. Problem: HOSTFMT= dataset option on VMS has
been replaced by the OUTREP= dataset option.
Solution: Change all occurrences of the HOSTFMT=
VAX to OUTREP=VAX _ VMS and all occurrences of
HOSTFMT=ALPHA or HOSTFMT=AXP to
OUTREP=ALPHA_VMS.

Appendix 2: Restrictions on mixed Version 6 and
Version 7 Client/Server

The tables in this appendix use the following
conventions:

R = Read Access

W= Write Access

U = Update Access

Depending on the SAS Data Library member that is
being accessed, compatibility between Version 6 and
Version 7 varies. For example, under SAS/SHAREâ
and SAS/CONNECTâ Remote Library Services (RLS),
SAS Data Files are compatible as follows:

Version 6 Server Version 7 Server

V6 Data
File

V7 Data
File

V6 Data
File

V7 Data
File

V6
Client

R/W/U R/W/U R/W/U†

V7
Client

R/W/U† R/W/U† R/W/U

† No Version 7 specific features are allowed

For SAS Data Views, compatibility varies, this time
depending on the type of Data View - Data Step,
SAS/ACCESSâ and PROC SQL and the setting of the
RMTVIEW option. Again, considering SAS/SHAREâ
and SAS/CONNECTâ RLS, for Data Step and PROC
SQL SAS Data Views,

Version 6 Server Version 7 Server

V6
View

V7 View V6 View V7 View

V6
Client

R/W/U R/W/U† R‡

V7
Client

R‡ R± R/W/U

†RMTVIEW=NO has been set
‡RMTVIEW=YES has been set
± PROC SQL views only

while for SAS/ACCESSâ views we have

Version 6 Server Version 7 Server

V6
View

V7 View V6 View V7 View

V6
Client

R/W/U R/W/U R/W/U

V7
Client

R/W/U R/W/U R/W/U

Finally, again from the standpoint of SAS/SHAREâ and
SAS/CONNECTâ RLS, for SAS Catalogs we have:

Version 6 Server Version 7 Server

V6
Catalog

V7
Catalog

V6
Catalog

V7
Catalog

V6
Client

R/W/U R R/W/U†

V7
Client

R/W‡ R/W‡ R/W/U

† The catalog produced will be a Version 7 catalog with Version 6 data
‡ Limited writing is allowed so that PROC COPY can copy a Version 6
catalog to another Version 6 library

It is important to note, however, that there are two other
facets to SAS/CONNECTâ - Remote Compute Services
(RCS) and Remote Data Transfer Services (RDTS).
Compatibility of SAS Data Library members must take
into account the version of the SAS System the local and
the remote hosts are using.

For example, with SAS/CONNECTâ RCS:

· A Version 6 local host can resubmit a SAS program
that references either Version 6 or Version 7 data
files to a Version 7 remote host with no
complications.

· A Version 7 local host can remote submit a SAS
program to a Version 6 remote host but the
programs must not contain any references to
Version 7 specific features.

Another example, this time with SAS Catalogs, again
using SAS/CONNECTâ RCS, compatibility varies as
follows:

Version 6
Remote

Version 7 Remote

V6
Catalog

V7
Catalog

V6
Catalog

V7
Catalog

V6
Local

R/W/U R† R/W/U‡

V7
Local

R/W‡ R/W† R/W/U

† PROC UPLOAD cannot create a Version 6 catalog entry
‡ Relies on the entry's backwards compatibility code

Authors
Steve Beatrous
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
(919) 677-8000
sassmb@wnt.sas.com (Steve Beatrous)

James Holman
SAS Institute Inc.
SAS Campus Drive
Cary. NC 27513
(919) 677-8000
jaholm@wnt.sas.com (James Holman)

SAS, SAS/ACCESS, SAS/CONNECT, and SAS/SHARE
are registered trademarks or trademarks of SAS Institute
Inc in the USA and other countries. â indicates USA
Registration.

Other brand and product names are registered
trademarks or trademarks of their respective companies.

