
Copyright  1998 by SAS Institute Inc., Cary, NC. All rights reserved.

Sometimes You Get What You Want: SAS I/O Enhancements for Version 7
Steve Beatrous and Billy Clifford, SAS Institute Inc.

Abstract
This paper presents a high level overview of new database
features added to Version 7. Some of the features presented in
this overview have been top-vote getters when they appeared
on the SASWare Ballot (such as long mixed-case column
names and versioning). Some of the new features were added
to make the SAS System more of a DBMS (such as integrity
constraints).

Concatenation
SAS libraries and SAS catalogs may be logically combined
through library and catalog concatenation. Concatenation
provides a tool for establishing a search list for locating the
information contained in a SAS library or catalog.

Library Concatenation
Concatenation allows you to reference two or more SAS
libraries with a single libref. In Version 6, some platforms,
such as Windows and HP-UX, supported a limited form of
library concatenation. The limited support of V6 had several
problems:

• It allowed only one form of the concatenation syntax -all
the levels were specified as quoted physical names.

• It was not portable; SAS programs that used
concatenation could not be easily moved from one
platform to another.

• Concatenation was limited to the base engine.

 In Version 7, all platforms support SAS library concatenation.
The libraries to be combined may be specified as librefs or as
quoted physical names. The following are valid library
concatenations:

 libname foo (’path1’ ’path2’ ’path3’);

 libname foo (A B C);

 libname foo (’path’ A B);

 libname bar (foo C D);

 The quoted names in the above examples are physical library
names. The names that are not quoted are previously assigned
SAS librefs.

 Library concatenation allows you to combine libraries that are
processed by different engines. For example, suppose there are
some files in a Version 6 library and some other files in a
Version 7 library. Further, suppose that the application needs
to process the collection of files in both libraries. The
following syntax can be used to establish a single libref
("MYLIB") that combines the Version 6 and Version 7
libraries:

� Libname v6 ’path-to-v6-library’;

� Libname v7 ’path-to-v7-library’;

� Libname mylib (v7 v6);

 The preceding example allows you to leave some files used by
an application in Version 6 format while converting others to a
Version 7 format. (Note that converting a file from Version 6

format to Version 7 format is as simple as running a proc copy
from a Version 6 liberf to a Version 7 libref.) Someone who
wants to evolve his or her files and applications from Version
6 to Version 7 uses this construct.

 SAS Catalog Concatenation
 Catalog concatenation allows the combination of two or more
catalogs into a single logical catalog. Version 7 offers two
forms of catalog concatenation: implicit and explicit.

 Implicit catalog concatenation results from a concatenation of
libraries through a LIBNAME statement (see "Library
Concatenation" above). In implicit concatenation, all catalogs
in the concatenation with the same catalog name will be
logically combined.

 Explicit catalog concatenation is a concatenation specified by
the global CATNAME statement. In explicit concatenation,
catalogs in the concatenation may have different member
(catalog) names. An explicit concatenation establishes a
logical catalog name that may be used in any context
accepting a physical catalog name.

 The syntax of the CATNAME statement is:

 CATNAME clib.cmem (lib1.cat1 <(ACCESS =
READONLY)>lib2.cat2 <(ACCESS = READONLY)> ...);

 In the above example, you are establishing a logical catalog
named CLIB.CMEM. It is assumed that there is a libref
defined named CLIB. It is also assumed that there is not an
existing physical catalog named CLIB.CMEM.CATALOG.

 The CATNAME statement above will establish a logical in-
memory catalog that is named CLIB.CMEM. The logical
catalog name may be used in any context that accepts a
physical catalog name. The in-memory logical catalog is a
snapshot of the catalogs listed in the parentheses.

 The ACCESS option allows you to restrict which levels of the
concatenation may be written to.

 The following CATNAME commands only apply to explicitly
defined catalog concatenations:

 CATNAME clibname.cmemname CLEAR;

 Clears the concatenation definition for
CLIBNAME.CMEMNAME.

 CATNAME _ALL_ CLEAR;

 Clears all currently defined catalog concatenations.

 CATNAME clibname.cmemname LIST;

 Lists the members of the concatenation
CLIBNAME.CMEMNAME.

Copyright  1998 by SAS Institute Inc., Cary, NC. All rights reserved.
2

 CATNAME _ALL_ LIST;

 Lists all currently defined catalog concatenations.

 Implicit and explicit catalog concatenations allow
combinations of two or more catalogs into a logical unit. The
rules for navigating through the concatenation are the same for
implicit and explicit concatenations.

 The term catref will be used here to refer to a catalog name. A
catalog name consists of a libref and a SAS file name
separated by a period. For example the catref
SASHELP.BASE refers to the catalog named BASE in the
SASHELP library.

 Rules for Library and Catalog Concatenation
 Once a library or a catalog concatenation is established, its
libref or catref may be used in any context that accepts a
simple (non-concatenated) libref or catref.

 When a file or catalog entry is opened or when a library or a
catalog directory is listed for a concatenation there must be
rules for locating the items among the parts of the
concatenation. The rules for searching through the libraries
and the catalogs are the same. In order to define the rules only
once, the term item is used to refer to a SAS file in a library or
to a catalog entry. The rules for library and catalog
concatenation are as follows:

� When an item is open for input or update, the parts will
be searched and the first occurrence of the item will be
used. This is important when there are items with the
same name in more than one part of the concatenation.

� When an item is open for output, it will be created in the
first part of the concatenation. This is true even if there is
an item with the same name in another part of the
concatenation.

� When you want to delete or rename an item, the
concatenation will be searched and only the first
occurrence of the item will be affected.

� Any time a list of items is displayed for you, only one
occurrence of an item name will be shown. So again, if
one item name exists in multiple levels, only the first one
will be listed for the you to see.

� When there are logically connected files (for example
A.DATA and A.INDEX), displaying a list of members
only lists the subordinate file (A.INDEX) when the parent
file (A.DATA) resides in the same library. For instance, if
the concatenation included libraries LIB1 and LIB2 and
both contained the file A.DATA but only LIB2 contained
A.INDEX, then A.INDEX wouldn’t be listed; only
A.DATA in the first library will be displayed (see
previous rule) and there isn’t an index file associated with
that data file.

 Example: Library and Catalog Concatenation
 Assume that you have two SAS libraries - path1 and path2. A
LIBNAME statement allows you to concatenate the two
libraries:

 Libname both (’path1’ ’path2’);

 If the two libraries contained the following:

 Path 1 Path 2

 MYCAT.CATALOG MYCAT.CATALOG

 TABLE1.DATA MYCAT2.CATALOG

 TABLE3.DATA TABLE1.DATA

 TABLE1.INDEX

 TABLE2.DATA

 TABLE2.INDEX

 The concatenated libref BOTH would have the following:

 BOTH

 MYCAT.CATALOG (from path1 and path2)

 MYCAT2.CATALOG(from path2)

 TABLE1.DATA (from path1)

 TABLE2.DATA (from path2)

 TABLE2.INDEX(from path2)

 TABLE3.DATA (from path1)

 Notice that TABLE1.INDEX does not show up in the
concatenation while TABLE2.INDEX does. The system
suppresses listing the index when its associated data file is not
part of the concatenation.

 The catref BOTH.MYCAT is an implicit catalog
concatenation. The concatenation is made by logically
combining the two physical files that reside in ’path1’ and
’path2’. To understand the contents of the concatenation
BOTH.MYCAT, first look at the contents of both parts of the
concatenation. Assume that MYCAT.CATALOG contains the
following in ’path1’ and ’path2’:

 Path1 Path2

 A.FRAME A.GRSEG

 C.FRAME B.FRAME

 C.FRAME

Copyright  1998 by SAS Institute Inc., Cary, NC. All rights reserved.
3

 The combined catalog BOTH.MYCAT will contain:

 BOTH.MYCAT

 A.GRSEG(from path2)

 A.FRAME(from path1)

 B.FRAME(from path2)

 C.FRAME(from path1)

 Bigger is Better
 Column names and labels, catalog entry names, SAS file
names and labels, and character column values are longer in
Version 7 of the SAS System. Bigger names and labels allow
you to be more descriptive in your naming. A longer column
value implies that you no longer have to chop things up into
200 byte chunks.

 SAS Column Names (AKA SAS Variable Names)
 The size of a column name in a SAS data set has increased
from 8 bytes to 32 bytes. The size of a column label has
increased from 40 to 256 bytes.

 Column names are not only longer, but are now stored in
mixed case. The case that is used to define a column is
retained for display purposes. For example,

 Data Bands;

 Bass = ’Boom’;

 Electric_Guitar = ’Screech’;

 Drums = ’Thud’;

 Proc print; run;

 Produces:

 The SAS System 1

 Monday, December 22, 1997

 Electric_
 Bass Guitar Drums

 Boom Screech Thud

 The above example shows that the case of column names is
preserved for presentation. For column name matching or look
up, however, the SAS System ignores case. For example, the
column names "Dolly", "dolly", "DOLLY", and "doLLy" all
refer to the same column.

 The following BY statements all have the same effect:

 proc print data=bands; by Guitar;

 proc print data=bands; by GUITAR;

 proc print data=bands; by guItAr;

 Version 7 will support long mixed-case column names by
default. However, some sites may want to restrict column
names. For this reason, the VALIDVARNAME system option
has been introduced.

 The VALIDVARNAME system option lets you control what
type of column names will be allowed in a SAS session. The
VALIDVARNAME option will restrict the column names on
new files that are created within a SAS session and will

restrict the names of columns on files that are being read by
the SAS session.

 The VALIDVARNAME option has four possible values:

� ANY No restrictions on column names.
Only the DATA step and the SQL procedure will be
certified to run with this setting in Version 7. You will get
a warning message when VALIDVARNAME is set to
"ANY".

� V7 (default) Names may be up to 32 bytes in length and
mixed case. Names must begin with an alphabetic
character or an underscore and may contain only
alphanumerics and underscores in the 2nd through nth
character.

� UPCASE Like VALIDVARNAME=V7 except all
column names are uppercased.

� V6 Column names are limited to uppercased 8
byte SAS names (like Version 6). For most applications,
the column names created on new files when
VALIDVARNAME=V6 will be automatically truncated
to 8 bytes.

 The VALIDVARNAME=ANY setting is used with
SAS/ACCESS libname engines to allow SAS applications
to process column names with embedded blanks or other
special characters that are not normally allowed in SAS
names. Please reference Vino Gona’s paper titled "Version 7
Enhancements to SAS/ACCESS Software" in the
"Proceedings of the Twenty Third Annual SAS User’s Group
International Conference" for more details on how
SAS/ACCESS engines use VALIDVARNAME=ANY.

 Entry Names
 The size of a catalog entry name has increased from 8 to 32
bytes in Version 7. Entry names, unlike column names, are
uppercased by the system.

 SAS File Names
 The size of a SAS file name has increased from 8 to 32 bytes
in Version 7. The size of a SAS data set label has increased
from 40 bytes to 256 bytes. For the native SAS engines (V5,
V6, V7, etc) SAS file names will be normalized by the system.
The normalization of the file name will be host dependent.
For example, VMS and MVS will upper case SAS file names
while UNIX and Windows implementations will lower case
SAS file names. SAS/ACCESS libname engines, however,
will support true mixed-case file names. . Please reference
Vino Gona’s paper titled "Version 7 Enhancements to
SAS/ACCESS Software" in the "Proceedings of the Twenty
Third Annual SAS User’s Group International Conference" for
more details on how SAS/ACCESS engines handle file (or
table) names.

 Character Values
 The maximum length of a character column value has
increased from 200 bytes to 32K bytes. In Version 6,
applications that processed character data that was longer than
200 bytes had to chop the data up into 200 byte pieces. In
Version 7, character columns may be as long as 32K.

 Cross Environment Data Access (CEDA)
 Version 7 recognizes that diverse and distributed computers
have become more common than they were when Version 6
was introduced. It is no longer unusual to have a site where
multiple CPU’s share access to a single disk or to a single
networked file system. CEDA is the facility that allows any
V7 SAS data file created on any directory-based host (for
example, Solaris, Windows, HP-UX, VMS, MVS HFS, etc) to
be read by the SAS System running on any other platform.

Copyright  1998 by SAS Institute Inc., Cary, NC. All rights reserved.
4

 In practical terms, with CEDA you can:

• Process a file that has gone through a binary transfer from
one host to another (with FTP or similar file transfer
software).

• Directly access a foreign file (one made by another CPU)
residing on a shared network.

 In Version 6, the SAS System required you to either use the
data transfer services of SAS/CONNECT software (the
UPLOAD and DOWNLOAD procedures) or to use
SAS/SHARE or SAS/CONNECT’s Remote Library
Services (RLS) to access a data file created by and residing on
another host. Data transfer services require you to establish
two SAS sessions with a SIGNON command. RLS requires
that a SAS/SHARE server be running or that a
SAS/CONNECT SIGNON be established in order to access
foreign data with a LIBNAME statement. RLS and data
transfer services require a client and server SAS session in
order to process a foreign file.

 The advantage of CEDA over data transfer services and RLS
is that you can FTP your file from one host to another or NFS
mount a disk from another host and automatically be able to
access your data without any extra steps. CEDA eliminates
the need to execute any other procedure, maintain a running
server, or even SIGNON to the remote host.

 It is important to note that CEDA does not replace data
transfer services or RLS. There are some restrictions the
CEDA user must be aware of:

� Limited to Version 7 SAS data files - views and utility
files are not processed by CEDA.

� Update opens are not supported. (Input and Output opens
are supported.)

� No WHERE expression optimization with an index.

� Limited to directory-based libraries (bound libraries on
MVS and CMS files are not part of CEDA).

 If your application can operate within the above restrictions,
CEDA provides a simpler cross-platform strategy than the
Version 6 data transfer services and remote library services. If
your needs go beyond these restrictions then data transfer
services and remote library services are still available in
Version7.

 A user on a different platform cannot use CEDA software to
reference an MVS bound library. However, the Version 7 SAS
System for MVS supports unbound (or directory-based)
libraries processed with Hierarchical File System (HFS). As
an MVS user, you can use the IBM NFS Client to get to
UNIX files from an MVS SAS session. As a UNIX user, you
can use an IBM NFS Server to reference MVS HFS files from
a UNIX platform. CEDA performs the necessary translations
so that these cross-platform references seem like local
references.

 CEDA technology has spawned two new options -- OUTREP
and TRANTAB. These options may appear as data set or
LIBNAME options. As LIBNAME options they provide
defaults for the library. As data set options they apply to
individual data set opens.

 The OUTREP option is used on OUTPUT opens to determine
the new file’s data representation.

 By default, the SAS System creates new files using the native
representation of the CPU running the SAS System. In other
words, a PC user creates a file with ASCII characters and
byte-swapped integers.

 The OUTREP= option allows the creator of a SAS data file to
decide how the data should be represented on that file. This is
useful when the readers of a file will be using a different CPU
than the creator of the file. For example, an administrator
running on MVS may wish to create a file on an NFS system.

The readers of this file will all be running HP-UX. The
creator can force the data representation to be in the reader’s
format by specifying OUTREP= HPUX. The readers will
get better performance because reading the file does not
require any data conversions.

 The list of values allowed for OUTREP is:

� ALPHA_VMS

� ALPHA_OSF

� HP_UX

� MAC

� OS2

� MVS

� RS_6000_AIX

� SOLARIS

� VAX_VMS

� WINDOWS

 The TRANTAB option is used to provide a translation table
for character conversions. For example:

 libname foo ’.’ trantab=mytable;

 proc print data=foo.a;

 If FOO.A is a foreign data set, the translate table named
MYTABLE will be used to translate the characters from
foreign encoding to local encoding. Note that the system
searches for translate tables in
SASUSER.PROFILE.CATALOG and in
SASHELP.BASE.CATALOG.

 The TRANTAB and OUTREP options may be used together:

 data stuff.three(outrep=HP_UX trantab=mytab2);

 The file STUFF.THREE will be created in HP-UX format.
The translate table MYTAB2 will be used for converting from
local format to ASCII.

 CEDA is licensed as part of SAS/CONNECT in Version 7.

 SAS Data Set Versioning (Generations)
 Generations were added as a feature in Version 7 to allow you
to keep multiple copies of the same file. Multiple copies
represent distinct versions or historical snapshots of a
particular SAS file. Generations are supported for SAS data
files (member type DATA) and for SAS data views (member
type VIEW).

 A generation group is a collection of files with the same name
but different version numbers. Two new data set options have
been added to support processing generation groups:
GENMAX and GENNUM.

 GENMAX is an OUTPUT data set option that specifies how
many versions you want the system to maintain. The
GENMAX option value ranges from 1 to 999. The SAS
System cannot keep more than 999 versions at one time. A
generation group, however, can support version numbers from
1 to 32,767.

 For example, "data a(GENMAX=10);" will establish a file
named "A" and will initialize a generation group. The next
nine replacements of the file named "A" will retain the older
versions as back copies. The 10th replacement of the file
named "A" will delete the oldest (version number 1) while
retaining the 2nd through 10th versions in the generation
group. As time passes, the system will always maintain the

Copyright  1998 by SAS Institute Inc., Cary, NC. All rights reserved.
5

last 10 copies of the file named A. After 3000 replacements,
the version numbers will range from 2,991-3,000.

 Note that file names in a generation group are limited to 28
(rather than 32) bytes. The last four bytes of the name in a
generation group will be used to hold an escape character and
a version number.

 GENNUM is an input dataset option that specifies which
historical version you wish to process. A positive GENNUM
value is used to reference a specific generation number. For
example, "proc print data=a(gennum=2999);" will print the
2,999th version of the file named A. A negative generation
number is used to reference a version relative to the top of the
generation group. For example, "proc print data=a(gennum=-
3)" asks for three versions back from the current version. After
3,000 replacements of A the above proc print would yield the
2998th version. A GENNUM=0 is used to reference the
current (or most recently created) version of a file.

 SAS utilities (like the Datasets procedure) have added support
for managing generation groups. For example:

� Version numbers are displayed in directory listings

� Deleting of a SAS file takes an optional version number
argument. For example, "delete a(gennum=2);" deletes
the 2nd version of the file named A while leaving the
other versions intact. To delete the whole generation
group enter "delete a(gennum=all). To delete only the top
copy and restore the most recent version as the top copy
enter: "delete a;"

� Renaming of a SAS file allows you to rename the entire
group "change a=newa" ; or to rename a single historical
version ("change a(gennum=2)=newa);"

� Support has been added for raising or lowering the
GENMAX value for a generation group. For example, to
change the GENMAX of a group from the current value
to 5 enter "modify a(genmax=5)". Note that lowering the
GENMAX value will have the effect of deleting enough
of the eldest versions so as not to exceed the new
maximum.

 Integrity Constraints
 Integrity Constraints is a new Version 7 feature that allows
you to guarantee the correctness and consistency of your data.
The design adheres to the SQL ANSI standards. An integrity
constraint stored in a SAS data set restricts the data values
that can be updated or inserted into a data set. They can be
specified at data set creation time or after data already exist in
the data set. In the latter situation, all data are checked to
verify that they satisfy the candidate constraints before the
constraints are added to the data set. Integrity constraints are
enforced automatically by the SAS System for each add,
update, and delete of data to the data set containing the
constraints.

 There are five basic types of integrity constraints:

� Not NULL—NULL (that is, missing) values are not
allowed for the column

� Check—any valid WHERE expression

� Unique—all values for the column must be unique

� Primary Key—all data values must be unique and not
NULL. A Primary Key may or may not be linked to a
Foreign Key.

� Foreign Key—Foreign keys link one or more records in a
data set to a specific record in another data set (containing
a Primary Key). This linkage ensures the integrity of the
parent-child relationship between a Primary Key (parent)
record and its Foreign Key (child) records. This link
exists when a Foreign Key value in one data set matches a
Primary Key value in another data set. This relationship

limits modifications to both the Primary Key and the
Foreign Key as follows:

 - a Primary Key value cannot be changed without
accounting for all matching values in the Foreign Key.

 - a Foreign Key value can only be changed to NULL or
to a value found in the referenced Primary Key.

 Not Null, Check, and Unique constraints are called 'general'
constraints. A Primary Key that is not linked to any Foreign
Key is a 'general' constraint also. A Foreign Key and the
Primary Key it is linked to constitute a 'referential' constraint.

 General constraints are limited in scope to a single data set.
That is, they operate on data within one data set. Referential
constraints associate columns and their values across data set
boundaries.

 You can create and delete integrity constraints using the
DATASETS procedure, the SQL procedure, and Screen
Control Language (SCL). The CONTENTS procedure lists
constraints on a data set.

 Given a data set about students and their grades, here is an
example:

Copyright  1998 by SAS Institute Inc., Cary, NC. All rights reserved.
6

 /*-------------------------------------*/

 /* Use the DATASETS procedure to add */

 /* integrity constraints. */

 /*-------------------------------------*/

 proc datasets lib=work nolist;

 modify grades;

 ic create ck_grade = check (where=(grade in (’A’ ’B’ ’C’ ’D’ ’F’)));

 NOTE: Integrity constraint ck_grade defined.

 ic create nn_testid = not null (testid);

 NOTE: Integrity constraint nn_testid defined.

 ic create nn_student = not null (student);

 NOTE: Integrity constraint nn_student defined.

 run;

 /*-------------------------------------*/

 /*Use the CONTENTS procedure to list the*/

 /*constraints */

 /*--------------------------------------*/

 proc contents data=grades; run;

 Alphabetic List of Variables and Attributes

 # Variable Type Len Pos

 1 grade Char 1 8

 2 student Char 10 9

 3 testid Num 8 0

 -----Alphabetic List of Integrity Constraints-----

 Integrity Where

 # Constraint Type Variables Clause

 --

 1 ck_grade Check grade in (’A’,’B’,’C’,
 ’D’,’F’)

 2 nn_student Not Null student

 3 nn_testid Not Null testid

 /*--*/

 /* Insert an invalid value for GRADE. */

 /*--*/

 proc sql;

 insert into work.grades

 set student = "Fred",

 testid = 130,

 grade = "x";

 ERROR: Data value(s) do not comply with integrity constraint ck_grade for
file GRADES.

 Addressing Compressed Files by Observation
Number
 Data sets can be compressed in Version 6, but they cannot be
addressed by observation number. This means you cannot use
POINT= and FIRSTOBS= with compressed data sets. Version
7 removes these limitations.

 Observation number (or record number) addressability allows
you to access observations by their relative physical position
within the data set. For example, the first observation in the
data set is referred to as observation 1, the second is 2, and so
on. This is illustrated by the use of the POINT= option of the
DATA step SET statement and the use of observation numbers
on the command line of the FSEDIT procedure.

 An uncompressed data set contains fixed length records. Thus,
randomly accessing an observation by its number is
accomplished by using a relatively simple algorithm. In
contrast, a compressed data set is a data set containing variable
length records, each with a data-dependent size. Without some
auxiliary data, locating the beginning of a given observation
can only be accomplished by sequentially reading
observations until the desired one is found.

 In Version 7, an index is embedded in the compressed data
set. This index provides rapid translation of an observation
number into its disk address so that POINT= and FIRSTOBS=
are fully supported for compressed data sets with negligible
performance penalty.

 The REUSE= option is not compatible with the internal index
because it can cause observations to be stored in the ’middle’
of the file. Thus, accessing such a data set could provide
observations from a sequential pass in a different order than
from a random pass. If REUSE= is specified, the internal
index is not created and the data set is not addressable by
observation number.

 User-Specified Compression for Data Sets
 In Version 6, compressed data sets were introduced with a
single compression algorithm that compressed adjacent
identical bytes. This compression algorithm works well for
character data, but it may not provide much compression for
numeric data. Users have complained about the limitations of
the current algorithm and have asked for other algorithms,
including the ability to supply their own compression function.

 The Version 6 data set compression routine compresses
identical consecutive bytes into a maximum of three bytes
using RLE (Run Length Encoding) technology.

� 3 to 129 blanks are compressed into 2 bytes

� 3 to 66 binary zeros are compressed into 2 bytes

� 3 to 63 occurrences of any other character are compressed
into 3 bytes

 The RLE algorithm is good for character data.

 In Version 7, an additional compression routine, RDC (Ross
Data Compression) is supported. RDC is good for
compressing binary (for example, numeric) data and is most
effective when the size of the data exceeds several hundred
bytes. Since compression operates on a single data set record
at a time, the RDC algorithm may not work well on small
records.

 Some applications may be able to benefit from specialized
compression algorithms. The SAS System will allow the use
of a user-written compression function in place of the
Institute-supplied functions. SAS/TOOLKIT will be used to
install the user’s compression function. Further details of user-
written compression can be found in the New Features,
Changes, and Enhancements document for SAS/TOOLKIT.

 In Version 6, compression is specified using the
COMPRESS= global or data set option with values of YES or

Copyright  1998 by SAS Institute Inc., Cary, NC. All rights reserved.
7

NO. In Version 7, the old syntax as well as new values are
valid.

� CHAR | YES - RLE algorithm

� BINARY - RDC algorithm

 The CONTENTS procedure will display the name of the
compression routine you specify, including the user-written
routine.

 Use of YES | CHAR in Version 7 is backward compatible
with Version 6. Use of BINARY in Version 7 is not backward
compatible with Version 6.

 In general, RLE has an advantage over RDC in two areas:
CPU resources and compressed size. However, the CPU
difference is not large, and the compressed size advantage of
RLE changes as the record size grows. RDC is likely to
provide better compression on records larger than 1000 bytes.

 As with most data-dependent performance enhancements, you
will need to try them with your data to see which one works
best for you.

 Miscellaneous Performance Improvements

 Creating an Index Honors Sort Assertion
 The SORT procedure stores the sort order, called the sort
assertion, in the sorted data set. Certain procedures can save
resources by knowing that the data are sorted.

 In Version 7, when an index is created with the base engine,
the software examines the sort assertion and does not invoke
the sort if the data are already sorted as needed. No new
syntax is required.

 Centiles
 A primary use of an index is to optimize a WHERE
expression. The base engine must decide if it is cheaper (that
is, faster) to satisfy the WHERE expression by reading all the
records sequentially or using an index to randomly access only
a subset of the records. The cost of using an index in Version
6 is based upon two data values: the minimum and maximum
values for the indexed column. If the data are uniformly
distributed, the cost analysis is quite accurate. However, data
distributed according to some other scheme can cause the base
engine to make the wrong decision. The Version 6 cost
estimate could be off by 100% in extreme cases.

 The error can be reduced by storing additional statistics with
each index. These are conventional statistics called cumulative
percentiles, or sometimes "quantiles" or "centiles" for short.
What exactly are these new statistics, in everyday terms? Here
is an intuitive definition: the nth centile is the value that is
greater than or equal to the values in n% of all the records.
The 100th centile is the maximum value; the 50th is the
median. It turns out to be handy to have the minimum value
also, which we may think of as the zero’th percentile. So the
software stores a list of twenty-one values from the index:
centiles 0, 5, 10, 15,... 95, 100. This allows the cost estimate
for the number of records qualified by the WHERE expression
to be accurate within 5%.

 Let’s take an example using the age of college students. Say
the youngest is 16 and the oldest is 75, with most of them in
the 19-25 range. In the tables below, the first row of numbers
is the centiles, the second is the index values.

 Version 6 statistics (percentiles)

 Min Max

 0 100

 16 75

 Version 7 statistics (percentiles)

 Min Max

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

 16 18 18 19 19 19 20 20 20 21 21 21 22 23 24 24 25 28 30 40 75

 For the expression "where age > 24", the Version 6 cost
estimate (of the number of qualified records) will be computed
as (1-((24-16) / (75-16))) *100 or 86%. This is due to the
(incorrect) assumption that the data are distributed uniformly
between 16 and 75. The index would not be chosen.

 In Version 7, the centiles show that the percent of selected
records will really be around 20% and the index would likely
be used.

 While this change does result in much more accurate estimates
for the number of qualified records, it is only one of several
numbers that must be considered in the overall cost analysis.
There are still cases when the base engine may make the
wrong choice, but the number of such cases has been reduced
substantially. See "Control over Index Usage in Where
Expression" for syntax to override the base engine’s choice.

 Greater Use of Composite Indexes
 Data sets often have multiple indexes, and some of them may
be composite (that is, composed of multiple columns).
Compound optimization is the process of optimizing multiple
WHERE expression conditions with a single composite index.

 In Version 6, the base engine makes some use of compound
optimization. Simple WHERE expressions with EQ conditions
ANDed together are supported. For example, "where frstname
eq ’JOHN’ and lastname eq ’SMITH’" can be optimized with a
composite index on the columns LASTNAME and
FRSTNAME. The IN operator and fully bounded range
conditions (for example, 19<AGE <=25) are supported also.

 Version 7 expands the list of WHERE expressions that can be
compound optimized to include these examples:

Copyright  1998 by SAS Institute Inc., Cary, NC. All rights reserved.
8

 Inequalities and Nots Truncated Comparisons

 i ^= 5 ch =: ’abc’

 i not in (5,10) ch ^=: ’abc’

 not 1 < i < 5 ch >=: ’abc’

 not 1 <= i < 5 ch <=: ’abc’

 not 1 <= i <= 5 ch >: ’abc’

 not 1 < i <= 5 ch <: ’abc’

 i > 5

 i >= 5

 i < 5

 i <= 5

 For compound optimization to occur, the following must

 be true:

� Starting at the left side of the index description (that is,
the list of columns in the composite index), at least the
first two columns must be used in suitable WHERE
expression conditions, specifically, conditions that use EQ
or IN, a range operation, inequalities, nots, or truncated
comparisons on literals.

� At least one of the matching WHERE expression
conditions must be EQ or IN. You cannot have, for
example, all range conditions.

� The conditions in the WHERE expression must be
connected with AND and can occur in any order.

 The MSGLEVEL=I option directs the software to log a
message identifying which index is selected for optimization.

 Let’s look at some examples. Assume a composite index on
columns I, J, and CH:

 where I = 1 and J not in (3,4) and ’abc’ < CH;

 This WHERE expression can be compound optimized because
every condition specifies a column in the composite index,
and each condition uses one of the supported operators. The
base engine will position the composite index to the first entry
that meets all three conditions and retrieve only records that
exactly match the WHERE expression.

 where I in (1,4) and J = 5 and K like ’%c’;

 This WHERE expression can be compound optimized, but
only on the columns I and J. Only records where "I in (1,4)"
and "J = 5" will be retrieved, and then the base engine will
reject those that fail to satisfy the pattern-matching
comparison "K like ’%c’".

 where J = 1 and K = 2;

 This WHERE expression cannot be compound optimized
because neither J nor K is the leftmost column in the index.

 PROC APPEND With an Index
 Adding records to a data set requires additional processing
when the data set has one or more indexes. The base engine
automatically keeps the values in the index consistent with the
values in the data set. When many records are added, as with
the APPEND procedure, the index overhead may be
substantial. Changes to the base engine and the APPEND
procedure in Version 7 have reduced this overhead in two
areas.

 Inserting Multiple Occurrences
 A non-UNIQUE index stores multiple occurrences of the same
value as one occurrence of the value followed by the RID
(Record IDentifier) for each of the occurrences of the value.
For large data sets with many multiple occurrences, the list of
RIDs for a given value may require several pages in the index
file. Since the RIDs are stored in physical order, any new
record added to the data set with the given value will be stored
at the end of the list of RIDs. Navigating through the index
structures to find the end of the RID list can cause many I/O
operations.

 The base engine was modified to remember the previous
position in the index tree so that when inserting more
occurrences of the same value, the end of the RID list will be
found quickly.

 As an example, a test case based upon a customer-reported
problem that appends 2000 new occurrences of a value
required 4,494 I/O operations on the index file using Version
6. In Version 7, this test requires only 76 I/O operations, less
than 2% of the cost in Version 6.

 The APPEND Procedure
 Adding records to a data set usually means appending them to
the end of the file; they are added sequentially in the order
they are received. Updating the index with the new values
requires navigating through the index to find the correct
physical location. If the data are sorted in the same order as
the index, then index updates are more efficient because the
navigation is performed in a sequential manner. For example,
all multiple occurrences will be sorted together and the RID
list for a given value can be updated once, rather than having
to revisit the RID list multiple times.

 Sorting the data to be appended prior to using the APPEND
procedure can reduce the index update overhead. However,
this technique may not work for you if you don’t want the data
records sorted in this manner, or if you have multiple indexes.
In the case of multiple indexes, you can only sort the data to
help one index.

 In Version 7, the APPEND procedure and the base engine
cooperate to perform the sorting for you. The base engine
delays the index updates until all the records have been
appended to the data set. Then it sorts the data going into each
index before updating the index. It does not sort the data
appended to the data set.

 Since the index is not updated until all the records have been
appended, it is possible that errors may occur during the
delayed index update. For example, a column with a UNIQUE
index will not have its uniqueness validated until index update
time. If a non-unique value is detected, the offending record
will be deleted from the data set. This may cause deleted
records in the data set after the append operation. In Version 6,
these records are rejected before they are added to the data set.

 There are situations that prevent the SAS System from using
the new faster algorithm. You can enable the display of INFO
messages to determine if the fast algorithm is being used, and
if not, why not. The MSGLEVEL= option controls the display
of these messages.

 options msglevel=i;

Copyright  1998 by SAS Institute Inc., Cary, NC. All rights reserved.
9

 If the fast algorithm is being used, you should see a message
like this:

� INFO: Engine’s fast-append process in use.

 If the fast algorithm cannot be used, you may see any
combination of the messages below:

� INFO: Engine’s fast-append process cannot be used
because

� INFO: - There is no member level locking

� INFO: - Referential Integrity Constraints exist

� INFO: - Cross Environment Data Access is being used

� INFO: - There is a where clause present (on the BASE
data set)

The default processing in Version 7 is to use the faster
algorithm described here. However, you may want to use the
Version 6 algorithm. Use the APPENDVER=V6 option on
the APPEND procedure statement to obtain that behaviour.
Here’s an example:

 proc append base=a data=b appendver=v6;

 run;

Control Over Index Usage in a WHERE Expression
As mentioned earlier, the base engine’s ability to select
between using an index for optimization of a WHERE
expression and doing a sequential pass of the data set has been
improved in Version 7. However, there may still be cases
when you want to override the base engine’s decision.

Two new data set options are available to control the use of
indexes for optimization. Note that these are not global
options.

IDXWHERE=YES

This option instructs the base engine to use the best available
index to process the WHERE expression, even if a sequential
pass is faster.

IDXWHERE=NO

This option instructs the base engine to perform a sequential
pass of the data set, regardless of any indexes that could be
used.

IDXNAME=<name>

This option specifies that existing index <name> is to be used
regardless of performance considerations.

Absence of the IDXWHERE= option means the base engine
will make the choice to use an index or not for optimization.

This example forces the use of index SIZE to process the
WHERE expression.

data foo.houses;

 set bar.materials (where=(size > 3)

 idxname=size);

 run;

Conclusions
This paper has presented a wide variety of new data features
that have been added to Version 7 of the SAS System. The
variety of topics prevents the authors from going into great
detail on any one feature. This paper is meant to give you an
overview of some of the new features that will be in store for
you with Version 7.

When Version 7 is in the field we hope to present more in-
depth papers on these and other enhancements.

Acknowledgments
Many people were involved in the development of the features
described in this paper. They include:

Lisa Brown Library concatenation.
Barbara Foster CEDA.
Jim Craig Where clause optimization and centiles
Greg Dunbar Testing and verification.
Gary Franklin Integrity constraints.
Cynthia Grant Index performance.
Art Jensen Radix addressable compressed files,

 long variable names, and fast append.
Kevin Mosman Generations, testing, and verification.
Diane Olson Integrity constraints and generations.
Rebecca Perry Catalog concatenation.
Kanthi Yedavalli CEDA and long variable names.

SAS, SAS/ACCESS, SAS/CONNECT, SAS/SHARE, and
SAS/TOOLKIT are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries.  indicates
USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

Authors
Steve Beatrous
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
(919) 677-8000
sassmb@wnt.sas.com (Steve Beatrous)

Billy Clifford
SAS Institute Inc.
11920 Wilson Parke Ave.
Austin, TX 78720-0075
(512) 258-5171
saswdc@wnt.sas.com (Billy Clifford)

