SCL Reborn -- The New SAS Component Language(SCL) in Version 7 Page 1 of 18

SCL Reborn -- The New SAS Component
L anguage(SCL) in Version 7

Y ao Chen, Display Products, SAS Institite, Inc. Cary, N.C.

Abstract

The SAS[TM] Component Language(SCL) in Version 7 is a genuine object-oriented programming
language. In addition to inheriting all the existing functionality of the Screen Control Language(SCL)
from Version 6, SCL now provides object-oriented programming constructs such as Class, UseClass,
Interface, and dot notation. With these constructs, AF/SCL users can create object-oriented
applications completely in SCL. In particular, they can use SCL to create and script the new SAS
Component Objects. This paper will also address the topic of using the Interface model to design
Model/Viewer applications, and a strategy for detecting Y ear 2000 problems by using the SCL Static
Analyzer.

| ntroduction

With its powerful functionality, AF/SCL has become the language of choice for developing business
solutions applications. For example, SASJASSIST[TM], SASEIS[TM], SAS/Warehouse-
Administrator[TM], SAS/PH-Clinical[TM], SAS Enterprise Miner[TM], SASCFO-Vision[TM],
SAS/Enterprise-Report, etc. are all written using Screen Control Language(SCL).

Two disparate seeds spawned the new SCL. First, agreat deal of valuable feedback concerning
AF/SCL was collected from the SASWARE ballot and other SAS local user groups. One of the most
frequent requests was for a VB-like user-interface in the AF BUILD environment. Second, there has
been a very strong interest within the software industry concerning the "thin"-client model. This
model is characterized by fairly limited processing on the client (WEB) side with most of the heavy-
duty actions (object method calls) being scripted on the server side. In the language of model/view,
the user will deploy models on intelligent servers and use views on intelligent clients. In order to
meet the requirements of both approaches, we created the new SAS Component Object Model
(SCOM), which not only provides an object-oriented design model for SAS/AF BUILD users, but is
also central to the server-side processing of the thin-client model. We have renamed Screen Control
Language (SCL) to SAS Component Language (SCL) to reflect these new enhancements and SCL’s
full support of the SAS Component Object Model. A discussion of SCL’s new features forms the
basis of this paper. The topics are:

Table of Contents

General Enhancementsfor Version 7

The Introduction of SAS Component Object M odel (SCOM)
GUI Functions Enhancements

Non-GUI Functions/Classes Enhancements

SCL Tools Enhancements

O O 0O O ©O

http://dpdweb.pc.sas.com/News/Sugi 23/sugi 23-scl.htm 12/3/98

SCL Reborn -- The New SAS Component Language(SCL) in Version 7 Page 2 of 18

o Conclusions

General Enchancementsfor Version 7

(1) Long Names/Long Label s(32 characters) and Long Strings(32K).
(2) A large SCL progranm ng nodel (No More 32K limtations).

(3) Primtive data types(Nuneric, Character, List, Cbject) and user-defined
data types including class type and interface type.

(4) Using the DCL statenent to define variable types and to define |ocal
vari abl es.

Using DCL statement to define SCL |ocal variables.

| nport Sashel p. Fsp. Col | ecti on. O ass;
num nl;
DCL num n2 n3 n4;
DCL num n5, char c1 c2, list 1112 13,
object ol, Collection coll col 2,
Sashel p. Fsp. Col | ecti on. d ass col 3;
DCL num arr(3);
DCL Char abc = "def’, Num def = 3;
DCL

i f def

Do;

s

LISt I {1Zsublist:(’a’,’b'),num:3}
3then

DCL num | ocal 1;
locall = 0;
End;
mlL: Met hod;
DCL Num Local 2;
endMet hod,;

(5) Dot notation to simplify method calls and get/set of object attributes.

obj.attr = 3;
DCL Num nl = obj.attr;
obj . nethod(a, b, c);
obj.attrl.attr2.attr3.attr4 = 3;
DCL Num n=obj . nl(a, b).attr2. mX(obj.attrX);
/* For new V7 frane control, you can use
* control nane on dot directly */
checkBox1. | abel = 'nyLabel’;
/* For V6 frame control, you have to use
* _getWdget nmethod to get the objld first
*/
dcl object objld;
frame. _gethget(obj2', objld);
obj 1 d. _setl abel (' myLabel’)'

(6) The Generic ProgramHalt Handler for Robust SCL programming.
The program Halt Class is designed to handle unexpected runtime errors. It contains methods
that will be called when certain runtime exceptions occur. By overriding these methods, the

user can gain control over how the exceptions are handled. For instance, the method
_onZeroDivide will be called if adivide-by-zero occurs. The user can override _onZeroDivide

http://dpdweb.pc.sas.com/News/Sugi 23/sugi 23-scl.htm 12/3/98

SCL Reborn -- The New SAS Component Language(SCL) in Version 7 Page 3 of 18

asfollows, and perform any necessary actionsinside the overriden method:

Class Wirk. A Error. d ass extends
Sashel p. O asses. Progranmhal t. d ass;
_onZerobDi vide: nethod / (STATE='O);

endnet hod,;
Endd ass;

The halt handler gives SCL developers the capability of determining whether an application
should continue executing or whether it should halt immediately. The halt handler saves any
error messages generated by SCL and stores them in an SCL list. Thislist can then be mailed to
the associated SCL developers, notifying them of potential problemsin their code.

The SAS Component Object Model (SCOM)

Classes are the foundation of the SAS Component Object Model (SCOM). They contain definitions of
methods, attributes, events, eventHandlers and interfaces. There are two ways to construct a class.

Y ou can use either the AF Class Editor or SCL class syntax to construct the class entry. The Class
Editor provides away of creating a class from a GUI (with table and tree views), while SCL class
syntax provides alanguage-based method for constructing a class. The Class Editor is useful for
obtaining a graphical view of aclass and is appropriate for making simple changes to the class.
However, larger changes that may require agreat deal of editing (such as adding or deleting the
signatures for several methods) are more easily achieved viathe SCL class syntax. This paper will
focus on this latter, |language-oriented method of creating and modifying a class - using the SCL class
syntax.

Converting a classentry to SCL class syntax using the CreateSCL fucntion

The quickest way to view the contents of a class entry isto use the new ClassToSCL function which
can be used to convert any existing class (version 6 or version 7) into SCL class syntax. An example
of the ClassToSCL function,

cl assld

= Cl assToSCL(’ yourLi b. your Cat.yourd ass. cl ass’,
"wor k. a. your SCL, scl ",
"anyDesc’);

This classToSCL function converts the yourLib.yourCat.yourClass.class to another SCL entry
work.a.yourSCL .scl with the the description of anyDesc. If you open the entry work.a.yourClase.scl
inthe AF BUILD environment, you will see the attributes and methods defined for this class. This
same thing can a so be achieved through the AF Class editor by using the Save As command and then
choosing the SCL entry that will contain the SCL class syntax of the converted class entry.

Constructing a class

Y ou can construct a new class entry by using SCL Class syntax and the SaveClass command. A
simple example of the class syntax is shown below,

Cl ass sinple extends nyParent;

http://dpdweb.pc.sas.com/News/Sugi 23/sugi 23-scl.htm 12/3/98

SCL Reborn -- The New SAS Component Language(SCL) in Version 7 Page 4 of 18

Public Num numnt;

ml: Met hod n: Num Ret ur n=Num
/ (SCL="work.a.uSinple.scl’);
ml: Met hod Ret ur n=Num
num = 3;
DCL Numn = mi(nunj;
Return(n);
EndMet hod;
Endd ass;

Entering the above SCL into the entry work.a.simple.scl and using the SaveClass command (or the
Save as Class pmenu entry from File pmenu) will compile this SCL entry and store the resulting class
in the new class entry work.a.simple.class. If the entry work.a.simple.class already exists, it will be
erased and replaced by the new generated class. This new class’simple’ specifies
work.amyParent.class asits parent class by using the’extends’ clause. If you do not specify an
"extends’ clause, the SCL compiler will assume Sashelp.Fsp.Object.Class is the default parent class.
The’/ delimiters are used to provide optional information for the class, attributes or methods.

Defining M ethod Scope: Public/Private/Protected

All methods in version 6 were public methods, which means they could be accessed anywhere in your
application. In version 7, SCL provides more flexibility regarding method scope. Public methods are
the same - they can be inherited by subclasses and accessed anywhere the corresponding object exists.
Private methods can only be accessed by other methods in the same class. They will not be inherited
by a subclass. Protected methods can be accessed by the methods in the current class and any
subclass. The Public/Private/Protected keyword must be listed before the keyword Method. The
default is Public method.

Cl ass scope;
ml: Public Method n: Num Ret ur n=Num
[/ (SCL="wor k. a. uScope. scl’);
m2: Private Method :char
/ (SCL="wor k. a. uScope. scl’);
n3: Protected Method Return=Num
num = 3;
DCL Num n = ni(nuny;
Ret urn(n);
EndMet hod;
md: Met hod; endMet hod;
EndC ass;

The method m4 in the above class’ scope’ is by default a public method.
Defining Parameter Typesusingthe":" operator

In Version 6, a parameter type can only be numeric and character. In version 7, a parameter type can
be either a primitive data type such as numeric, character, list and object type, or a user-defined data
type such as the class type or the interface type.

| mport Sashel p. Fsp. Col | ecti on. d ass;
Cl ass col on;
ml: Method n: Num c: Char Ret urn=Num
/ (SCL="work. a.uCol on. scl’);
n2: Method s: Col |l ection o: Qhj ect

http://dpdweb.pc.sas.com/News/Sugi 23/sugi 23-scl.htm 12/3/98

SCL Reborn -- The New SAS Component Language(SCL) in Version 7 Page 5 of 18

/ (SCL="work. a.uCol on. scl’);
n3: Method n(*):List
/ (SCL="work. a.ucol on.scl’);
Endd ass;

Defining Parameter Storage using I nput/Ouput/Update

In version 6, parameter storage is aways Update. This means the value of the caller’ s argument will
be copied into (COPY -IN) the caller’s corresponding parameter when the method isinvoked. Then
when the endM ethod statement is executed, the value of the callee’ s parameter will be copied back
(COPY-OUT) to the corresponding caller’ s argument. Some flexibility in this behavior has been
introduced in version 7. Parameter storage can now be defined as Input and Output as well as Update.
In SCL class syntax, thisis done by using the symboal :I, :O or :U after the parameter name but before
the :type (:I isinput, :O is output, and :U is update). By using an Input parameter, you can avoid the
COPY-OUT from the callee' s parameter to the caller’ s argument when the endMethod statement is
executed. By using an Output parameter, you can avoid the COPY -IN from the caller’ s argument to
the callee’ s parameter when the method isinvoked.

| mport Sashel p. Fsp. Col | ecti on. d ass;
Cl ass storage;
ml: Method n:1:Num c: O Char Return=Num
/ (SCL="work. a.uStorage. scl’);
nm2: Method s:Input:Collection
/ (SCL="work. a.uStorage. scl’);
n3: Method s: Obj ect
/ (SCL="work. a.uStorage. scl’);
m4: et hod
/ (SCL="work. a.uStorage. scl’);
Endd ass;

Defining Return Type using Return= clause

One of the major complaints regarding the method syntax for version 6 SCL was the lack of a Return
value. Thisissue has been addressed in version 7. Y ou can now use RETURN=type in the method
declaration to specify the return type. For example, in the previous class’scope’ example, the m3
method has Numeric return type. The existing Return statement in version 6 has also been enhanced
with the following syntax:

Ret ur n(expr essi on);

If amethod has areturn type, the Return(expression); statement is required in the associated method
statement block. The type in the Return= clause must match the type of the expression in the Return
(expression); statement. In the previous class’ scope’ example, the method m3 has a return(n)

statement, where n is numeric and which matches Return=Num specified in the method declaration.

Method Signatures and Method Overloading

Method overloading is the process of generalizing a method’ s name to include the method parameter
list. Thisalowsthe user to create methods with the same basic name, but whose parameters differ in
number, type, or both. Thisis especially useful for creating methods that are related conceptually, but
have different parameter interfaces. The method signature is a datum representing a method' s
parameter types. It isbasically shorthand for the method’ s type interface, and is used by the SCL

http://dpdweb.pc.sas.com/News/Sugi 23/sugi 23-scl.htm 12/3/98

SCL Reborn -- The New SAS Component Language(SCL) in Version 7 Page 6 of 18

compiler (and runtime) to distinguish the different forms of a given overloaded method. In the
following example, there are four overloaded methods. The first (public) m1 method has the
signature (N)C where C is the return type for the method. The second (private) method m1 has the
signature ([C)V where [C means an array parameter with char type, and V stands for Void which
means there is no return value. The third (protected) method m1 has the signature ()V, which means it
has no parameters and does not have areturn value. The fourth m1 method has the signature (NC)V
(which means it takes a numeric and a character and does not have areturn value).

Class sig ;
ml: Met hod n: Num r et urn=Char;
/ (scl="work.a.uSig.scl’);

ml: Private Method N(*): Char /*array*/
/ (scl="work.a.uSig.scl’);
ml: Protected Method
/ (scl="work.a.uSig.scl’);
ml: method N: Num C: Char;
endMet hod;
md: nethod / (Signature="N);
/* any SCL statenment .. */
endMet hod;
EndC ass;

In version 6, there were no method signatures. There could only be one method with a given name. In
version 7, thisis equivalent to having the Signature="N’ option set for a method, which indicates that
there is no signature for the method (and so it cannot be overloaded). An example of thisisthe
method m4 in the above example.

Method State and Overwritten Methods

Method definitions can be either new methods or "Overwritten” methods. A new method is one
whose name and signature do not exist in any parent of the given class. An overwritten method is one
which overrides a method with the same name and signature in a parent class of the current class. The
_init method in the following example is an "Overwritten" method (which isindicated by state="0Q").
All other methods (which have no State= options) are "new" method methods by default. It should be
noted that while the AF Class Editor will display all methods for aclass, including all of its parents
methods, it is not necessary (and isin fact an error) to define parent methods in a given class' s method
statement block. Only those methods belonging to that particular class should appear there, not any of
its parents methods. To improve readability, the naming convention for V7 system-provided methods
is- capital letters should be used to separate compound words, and there should be only one "prefix
underscore”. AF/SCL users cannot create methods with "prefix underscore”.

Cl ass state ;
mL: nmet hod N: Num C: Char;

/[* - - Any SCL statenents - - */
endMet hod;
n2: nmethod N Num return=Num
/* any SCL statenent ... */
Ret urn(3);
endMet hod;
_init: Method / (State="O);
_Super () ;
/* Any SCL statenents */
EndMet hod;

Endd ass;

http://dpdweb.pc.sas.com/News/Sugi 23/sugi 23-scl.htm 12/3/98

SCL Reborn -- The New SAS Component Language(SCL) in Version 7 Page 7 of 18

Other Method Options

Method implementations can be defined either inside the class statement block or outside the current
SCL entry. Y ou can use the option SCL=sclEntryName to specify the location of a method
implementation. Usually, there is no need to distinguish the method name and label name, but if
necessary you can use Label=option to specify a different label name for a method. The Enabled=
option can be applied to limit the usage of a method - specifying Enable="N’ makes a method
inaccessible.

Cl ass others ;
ml: nmethod N: Num C:. Char
/ (SCL="work. a. ot hers. scl,
Label =" nyl abel ',
Enabl ed=" N);
Endd ass;

Creating Method implementations Using Class/UseClass Statement Block

The object-oriented model in version 6 applied a"dynamic binding" approach which associated the
class meta information with the SCL method information during run-time. This late binding approach
provided extensive flexibility in such areas as method delegation and per Instance methods, but a
price was paid in performance because of the runtime association of meta and SCL information.
Observations indicated that for the majority of class methods the meta information could be matched
during compile-time. This concept of " Static-Binding” not only improves runtime performance by
pushing the meta-SCL checks back to compile time, but also allows for the earlier (compile-time)
detection of some errors. This approach requires that method implementations be coded inside a
Class or UseClass statement block. The UseClass statement block is syntactically similar to the Class
Statement block, with the exceptions of disallowing construction of class attributes and class events
in UseClass. SCL users can directly reference attributes in a Class or Useclass statement block
without specifying the object (similar to how regular SCL variables are referenced). Similarly,
method calls can be coded without the object reference (just like regular function calls). This short-
cut programming style tremendously improves the code readability and maintainability.

Approach 1: Method implementations directly coded inside a Class Statement block:

C ass one ;
Public num sum
_init: Method / (State="O);
_Super ();
sum = O;
EndMet hod;
sum nethod N: Num Ret ur n=Num
sum = sum + N;
return(sum;
endMet hod,;
sum nethod NI1: Num N2: Num
Ret ur n=Num
sum = sum + N1 + N2;
return(sum;
endMet hod,;

Endd ass;

http://dpdweb.pc.sas.com/News/Sugi 23/sugi 23-scl.htm 12/3/98

SCL Reborn -- The New SAS Component Language(SCL) in Version 7 Page 8 of 18

Approach 2: Method implementations coded inside a UseClass statement block (which is a separate
SCL entry from the entry where the Class Statement block is defined).

Coding the following scl program in work.a.one.scl,

C ass one ;
Public numtotal;
_init: Method
/ (State="'O,
SCL="wor k. a. uOne. scl ') ;
ml: met hod N Num Ret ur n=Num
/ (SCL="work. a.uOne. scl’);
ml: met hod N1: Num N2: Num
Ret ur n=Num
/ (SCL="work. a.uOne. scl’);
Endd ass;

Coding the following SCL program in work.a.uOne.scl,

UseC ass one ;

_init: Method / (State="O);
_Super ();
total = O;

EndMet hod;

ml: et hod N: Num Ret ur n=Num
total = total + N;
return(sum;

endMet hod,;
ml: met hod N1: Num N2: Num
Ret ur n=Num
total = sum(Nl, N2) + mil(nl);
return(sum;
endMet hod,;
EndUseCl ass;

The first approach is simple and clean. It is appropriate for asmall project where all the class
methods are maintained by one or two developers. However, for alarger project which involves
several developers maintaining a specific class, the second approach will probably be more
appropriate. Each developer maintains a separate SCL entry which contains a UseClass statement
block for the methods he or she is responsible for.

Comparing the method implementation style with the style used in version 6, we find there are
several advantages to the Class/UseClass statement block:

(1) Paranmeters belong to the nmethod scope.
(2) Method nane Overl oadi ng

(3) Short-cut notation

(4) Error Detection in Conpile-tine

(5) Link label is not allowed.

(6) _Super call

(7) Performance |nprovenents

http://dpdweb.pc.sas.com/News/Sugi 23/sugi 23-scl.htm 12/3/98

SCL Reborn -- The New SAS Component Language(SCL) in Version 7 Page 9 of 18

Instantation of a Classwith the _NEW __Operator and Importing a Class

To instantiate the class’one’ from the previous example in an application, the _ NEW _ operator must
be used. The NEW __operator is equivalent to NEW__method defined in the
Sashelp.Fsp.Object.Classin version 6. To allow abbreviated class name usage in your SCL entry, you
can use the Import statement. The Import statement defines class entry search rules (during compile-
time), and allows shortened (typically one and two-level) names to be used for classes. By fully
qualifying a class name in an Import statement, you can then use its one-level name anywhere elsein
the program. Y ou can also use Import to specify a catalog in which to search for abbreviated class
name entries.

| mport wor k. a. one. cl ass;
I nit:
/* short-cut notations of
* DCL work. a.one. cl ass
* obj = work. a.one.class();
* [
DCL one obj
DCL Num suml
Put sumil=;
DCL num sun?
Put sun=;
Ret ur n;

NEW one();
obj . sum 3);

obj.sum 3, 4);

The above example should print sum1=3 and sum2=10.

The above example should print sum1=3 and sum2=10.

Creating Class Attributesto Replace V6 Instance Variables

In comparing the SAS Component Object Model (SCOM) with typical object-oriented programming
models, one finds that the major distinguishing feature is the attribute concept in SCOM. Most
object-oriented programming languages do not provide an attribute concept in their language syntax,
but require class devel opers to construct a class for each attribute. In SCOM, thisis handled
automatically. In the typical object-oriented language, the devel oper is forced to design methods to
handle the actions of getting and setting an attribute, not to mention any associated actions that may
be required. In the SAS Component Language, we have simplified these potentially complex steps by
combining the concepts of class variable and attribute class construction into a simple SCOM
attribute. In particular, SCL alows the user to get/set attributes by using dot syntax, and implicitly
handles such actions as attribute value validations and event driven custom access method invocation
(the associated actions mentioned above). By handling many of these actions automatically, and
removing the burden from the user, the attribute concept greatly simplifies the AF/SCL object-
oriented coding process.

Defining the Attribute Scope(Public/Private/Protected) and the type

Just as SCOM class methods have scope (PUBLIC, PRIVATE, PROTECTED), so do SCOM class
attributes. By default, the attributes are assumed public. Public attributes can be accessed anywhere
inside the application. Private attributes can only be accessed inside the current class. Protected
attributes can be accessed by the current class and its subclass. The type of the attribute (which is
given immediately following the scope) can be a primitive basic type (Num, Char, List, Object), or a

http://dpdweb.pc.sas.com/News/Sugi 23/sugi 23-scl.htm 12/3/98

SCL Reborn -- The New SAS Component Language(SCL) in Version 7 Page 10 of 18

user-defined data type(Class or Interface). Attribute can also be defined as arrays.

Cl ass nyAttr;
Public Num n;
Private Char(20) c(3);
Protected List I|;
DCL obj ect o;
Endd ass;

The above example shows the attribute o has public scope by default. The private attribute cisa
character array of three elements with each element 20 characters in length.

Autocreate for SCL list

When aclassisinstantiated, the storage for each attribute is also created. Thisincludes attributes
which have list type and four-level classtype. The optional clause AutoCreate="Y’ (whichisthe
default) specifiesthat list attributes and class attributes will be created automatically (i.e. thelistld or
classid will be created). However, an attribute which has the generic object type will not be created
(because the specific class is unknown). Conversely, the optional AutoCreate="N’ will specify that list
and class attribute should not be created when the classisinstantiated. If thisoption is used, it isthe
user’ s responsibility to create any associated list or class attributes after the classisinstantiated.

| mport Sashel p. Fsp. Col | ecti on. d ass;
Class nmyAttr;
Public List |1
/ (AutoCreate="N);
DCL List s1;
Public Collection cl;
Public Collection c2
/ (Autocreate="N);
Endd ass;

The above example shows attributes s1 and c1 have the default AutoCreate="Y"’, and attributes |1 and
c2 have the explicit AutoCreate="N'.

InitialValuesand SCL List Initialization Syntax

Like SCL variables, all numeric attributes will be implicitly initialized to missing values and all
character attributes will be implicitly initialized to blank strings. Attributes can also be explicitly
initialized by using the optional initialValue= clause. List attributes can be initialized using the
convenient and powerful SCL list constant syntax (which includes support for nested lists). To
improve performance, the user should initialize values whenever possible.

| nport Sashel p. Fsp. Col | ecti on. O ass;
Class myAttr;
Public Num nl

/ (InitialValue = 3);

DCL Char cl1

/ (InitialValue = "abc");

DCL list listl

[(initialVal ue=

CoPY = {

POPMENUTEXT=" Copy here’,
ENABLED=' Yes' ,

http://dpdweb.pc.sas.com/News/Sugi 23/sugi 23-scl.htm 12/3/98

SCL Reborn -- The New SAS Component Language(SCL) in Version 7 Page 11 of 18

VETHOD=" _dr op’ } o,
MOVE = {
POPMENUTEXT=" Move here’,
ENABLED=’ Yes’ ,
VETHOD=" _dr op’ } o,
LINK = {
POPMENUTEXT=" Li nk here’,
ENABLED=’ Yes’ ,
VETHOD=" _dr op’ }
}
FE
lic list list2
[/ (initialVal ue=
{ 1, 2, "abc’, 'def’ }

public

(
)

Endd ass

ValidValues Syntax and Value Delimeters

The optional ValidVaues= clause specifies that an attribute value is validated when dot syntax or
short-cut syntax is used. If the valid values clause contains more than one value, you should use a
space as the delimiter to separate valid values. If the valid values contain space, then you should use
' asthe aternative delimiter to separate the valid values.

Cl ass busi ness_graph_c;
Public Char statistic
/ (Validval ues=
" Frequency/ Mean/ Cunul ati ve Percent"

Public Char highlightEnabl ed
/ (Validval ues="Yes No");,

Endd ass;

Set/Get Custom Access M ethod(setCAM and getCAM)

The Custom Access Method (CAM) is a user-defined method that allows implicit actions to be
associated with the getting and or setting of attributes. The CAM method must provide one parameter
which stores the current value of the attribute. In the following example, the attribute A has the
optional getCAM="M1" method specified. This means that the user-defined SCL method M1 will
automatically be invoked after every fetch of the attribute A. Similarly, the method M2 will be
invoked after every set of the attribute B.

Cl ass CAM
Public Char A
/ (get CAME" ML’) ;
Public Num B
!/ (setCan¥"M");,
ML: Met hod c: Char;
put 'In nl’;
EndMet hod;
M2: Met hod n: Num
put 'in n2’;
EndMet hod;
Endd ass;

Version 6 Compatability: IV=and Purel V=

http://dpdweb.pc.sas.com/News/Sugi 23/sugi 23-scl.htm 12/3/98

SCL Reborn -- The New SAS Component Language(SCL) in Version 7 Page 12 of 18

The object model in version 6 contains instance variables. These have been replaced in version 7 by
attributes. In order to provide compatibility, the class |oader will automatically convert version 6
class formats to the new version 7 SCOM format when the class is first loaded. This step includes
converting all instance variables into protected attributes with the option IV="ivName'. An exception
is pure instance variables, which will not be directly converted to attributes. To ensure compatibility,
however, we' ve provided the optional clause purelV="Y". This directs the SCL compiler to construct
the IV_ listinside the class. In the following example, the variable B is not actually an attribute - it
isanumeric list item stored inan _1V_list. The attribute A has been converted from the instance
variable’abc’.

d ass 1V,
Public Char A
/ (1v="abc’);
Public Num B
/ (Purel V="Y");,

Endd ass;
Other Attributes Properties: Editor/Category/Linkable

Attributes can also be declared with the optional Editor="editorName’ clause, which is used to specify
the default editor (aframe program) to be used when the initial Values or validVaues with ... options
are invoked in the class editor or property sheet. The optional category="name' can be used to group
attributes into a specific tree node inside the tree view when the class editor is displayed. The optional
Linkable="Y|N’ is used for attribute linking, but the linkTo information can only be specified from the
Frame property sheet.

Cl ass ot her;
Public List A
/ (Editor="nyListEditor’,
Cat egory="List’);
Public list B
/ (Category='List");,

Endd ass;
Creating User-Defined Events and EventHandlers

In SCOM, you can programatically design user-defined Events and EventHandlers. Events are
essentially generic messages that are sent to objects from the system or from SCL applications. For
example, these messages may direct an object to perform some action (e.g. run a method) based on
the occurrence of some event. EventHandlers are methods that are invoked when a certain Event
occurs. Attributes can be declared with the optional clause SendEvent="Y |N’. The default is
SendEvent="Y’ which implies that an attribute event definition will be automatically created when the
attribute is created. This means that when that attribute is accessed via dot or short-cut syntax, an
attribute event will be triggered. This event can be received by using an EventHandler, which can be
created by using the new EventHandler syntax in the class statement block. An EventHandler isa
essentialy a’listener’ method which is executed whenever the associated event occurs. A user-defined
event can be triggered by using the _sendEvent method. User defined events can be constructed using
the EVENT syntax inside the class statement block.

http://dpdweb.pc.sas.com/News/Sugi 23/sugi 23-scl.htm 12/3/98

SCL Reborn -- The New SAS Component Language(SCL) in Version 7 Page 13 of 18

For readability and for compatibility with version 6 events, the event name is a string. The following
ehclass exampl e shows two events which will be created when the class is constructed. One isthe
system-provided event for attribute n which has event name "n Changed” (SCOM will aways create
the suffix "Changed" after the attribute name to distinguish between system-provided events and
user-defined events). The other event is a user-defined event and is called "myEvent”. There are three
eventHandlers defined - m1, m2 in ehclass.scl and m3 in ehclassl.

Edit the following program in work.a.ehclass.scl, using the Saveclass command to save the class.

cl ass ehcl ass;
public num n; /* system event */
event ’'nyEvent’
/ (method = "nm2");

event Handl er ml
/ (sender = "_SELF ",
event =" n Changed’);

event Handl er nR
/ (sender = "_SELF ",
event =" nyEvent’);

nml: nethod a:list;
put "Event is triggered by attribute n";
endnet hod;

n2: nmethod a:string nl:Num n2: Num;
put "event is triggered by _sendEvent";
put a= nl= n2=;
endnet hod;
endcl ass;

Edit the following program in work.a.ehclassl.scl, using Saveclass command to save the class. This
class has an eventHandler m3 which listens for myEvent defined in the previous class. The sender="*’
means the sender is determined at run-time.

cl ass ehcl assi;
event Handl er nB
/ (sender = "*"|
event =" nyEvent’);

n8: nethod a:string nl:Num n2: Num;
put "event nyEvent is defined in
anot her class which
is triggered by _sendEvent";
put a= nl= n2=;
endnet hod;
endcl ass;

The following test program will demonstrate event triggering for attribute and user-defined events.
The m1 method in ehclass will be invoked first, followed by the m2 method in the ehclass, followed
by the m3 method in the ehclassl.

i mport work. a. ehcl ass. cl ass;
i mport work. a. ehcl assl. cl ass;
init:
dcl ehclass obj = _new_ ehclass();

http://dpdweb.pc.sas.com/News/Sugi 23/sugi 23-scl.htm 12/3/98

SCL Reborn -- The New SAS Component Language(SCL) in Version 7

dcl ehclassl objl = new_ ehclassl();

[* (1) triggers the attribute event */
obj.n = 3;

/* (2) triggers the user-defined event */
obj . _sendEvent ("nyEvent", 'abc’', 3, 4);
return;

Implicit Actions When Executing Dot Syntax or Short-Cut Syntax

The SCL compiler will parse the short-cut syntax inside Class or UseClass statement blocks and
generate internal SCL intermediate code as if regular dot syntax (with object references) had been
used. In other words, the internal representations of short-cut and regular dot syntax are the same.
Additionally, when an attribute is referenced via dot syntax (or equivalently via short-cut syntax), a
get/set-attribute value method call is generated to perform the get/set. That is, the internal
representation of dot syntax for attributes is a method call. Due to the complexity of the get/set
attribute value method call, we will discuss the following associated actions:

Execution Sequence for Get/Set AttributeValue

For getAttributeValue, the attribute value is determined in the following way:

(1) If a getCAMis defined, then it is executed to determine the val ue.
(2) If the value has been set previously, then it is returned.

(3) If the value has not been set, then the class initial value is returned.

For setAttributeValue, the sequence of actionsis as follows:

(1) Check if the value is contained in the valid values list (if the valid va
nmetadata is an SCL entry, it is executed first to get the list of values t
check against).

(2) Run the setCAMif it is defined (gives the user a chance to perform addit
val i dati on and process their own direct side effects)

(3) Store the given value on the object.

Page 14 of 18

(4) If the send event metadata is set to 'Yes', then the ’'<attribute name> cha

event i s broadcast.

Object-Oriented Design Using I nterface M odel

The fundamental object-oriented design in SCL is based on public methods that can be invoked on
objects. An alternative to thisis to use something called Interfaces. An Interface typically consists of
aset of definitions of abstract methods, which are essentially just prototypes for methods whose
implementations are given in some other entry. An Interface contains only the information needed to
call amethod, it does not contain the actual implementation itself. An interface can be viewed isan
expression of pure design, whereas aclassisamix of design and implementations. The syntax of an
SCL interfaceis similar to the syntax of an SCL class. The Interface entry is anew catalog entry
which has the entry type INTRFACE. Y ou can use the previous mentioned classToSCL function to
convert an INTRFACE entry into SCL Interface syntax and then use the SAVECLASS command to
compile an SCL entry into INTRFACE entry.

http://dpdweb.pc.sas.com/News/ Sugi 23/sugi 23-scl.htm

12/3/98

SCL Reborn -- The New SAS Component Language(SCL) in Version 7 Page 15 of 18

Edit the following program in work.a.intfacel.scl and use the SAVECLASS command to create the
work.a.intfacel.intrface entry. Methods defined in the interface statement block cannot contain
method implementations. They cannot specify the SCL= clause either.

Interface intfacel;

get Val ue: Met hod return=Num

set Val ue: Method n:num c:string return=num
Endl nt er f ace;

Edit another program in work.a.intface2.scl and use the SAVECLASS command to create the
work.a.intface2.intrface entry.

Interface intface2;

get Nanme: Met hod ret ur n=Num

set Nanme: Method n:numc:string return=num
Endl nt er f ace;

Unlike SCOM classes, interfaces support multi-inheritance. The following interface intface3 inherits
both intfacel.intrface and intface2.intrface through the Extends syntax. The intface3 inherits all the
methods defined in intfacel and intface2 with an extra"new" method m1b defined in the interface.

Interface intface3 Extends intfacel, intface2;
mlb: Met hod return=Num
Endl nt er f ace;

Supported Interface and Required Interface

Interfaces describe "contracts' in a pure, abstract form, but an interface isinteresting only if aclass
supportsit. Two related concepts - Supported I nterface and Required interface - can be used to
simplify the design of the model/viewer environment. For example, the following class "model"
supports the previous interfaces "intfacel". and "intface2". The class "model” must implement al the
methods specified in all supported interfaces.

Cl ass nodel supported intfacel, intface2;
get Val ue: Met hod return=Num
/ (scl =" work. a.ulMbdel .scl’);
set Val ue: Method n:numc:string return=num
/ (scl =" work. a.uMbdel .scl’);
get Nanme: Met hod return=Num
/ (scl =" work. a.ulMbdel . scl’);
set Nanme: Method n:numc:string return=num
/ (scl =" work. a.ulMbdel . scl’);
endcl ass;

For an example of a Required interface, assume we have several models (say listModel class,
SCLArrayMode class, and SASDataSetModel class) which support the interfaces "intfacel" and
"intface2". Assume further that we have the following class’viewer’” which has the Required
interfaces "intfacel” and "intface2". This means any of the above models can be used in conjunction
with the class viewer (for instance, used as a parameter to amethod in’viewer’). By specifying which
interfaces are Required, you allow the compiler to generate information that will be used to validate
whether the actual model used at runtime matches the required interface.

Class viewer required intfacel, interface2;

http://dpdweb.pc.sas.com/News/Sugi 23/sugi 23-scl.htm 12/3/98

SCL Reborn -- The New SAS Component Language(SCL) in Version 7 Page 16 of 18

[* - -
endcl ass;

Q her inplementations- - */

GUI Functions Enhancements

(D

(2)

(3)

(4)

new MessageBox function: allows the SCL user to call the host message bo
wi thin SCL applications.

lid = makelist();

rczinsertc(lid,"Type:"|]|type);
rczinsertc(lid,"Line:"|]|lineNunber);
rczinsertc(lid, "Entry:"||entry);

rc = nessageBox(lid);

new QpenSasFi | eDi al og, SaveSasFil eD al og, OpenEntryDi al og, and
SaveEntryDi al og functions: OpenSasFil eDi al og and SaveSasFi | eDi al og
functions are simlar to the existing DI RLIST function which can open
and saveas all kinds of SAS files(two levels) with sonme user custom zed
capability. OpenEntryDi al og and SaveEntryDi al og functions are simlar to
t he existing CATLI ST function which can open and saveas SAS catal og
entries(four levels) with sone user custom zed capability.

new GQJ interface for SCL selection list functions: Mst of the selector
new GUJ | ook.

new Di al og routine: provides a real nodal application environnent. It is
to CALL DI SPLAY except that all other SAS wi ndows will be disabled as Dl
brings up the specified frane wi ndow. Note the DI ALOG routine can also b
used as a function if the specified frane entry returns a value. The D
routine/function can only be used to display a FRAVE entry.

Non-GUI Functions/Classes Enhancements

(D

(2)

(3)
(4)

(5)

(6)

new | cCreate, lcDelete, IcValue and | cType functions:
all ow users to create/delete/query the integrity constraints
to guarantee the correctness and consi stency of the SAS data.

new I nitRow function: initializes the Table Data Vector to mssing valu
This is useful when you are doing an APPEND with the NON T option while
you only want to explicitly set sone of the table colums in the Table D
Vector, but not all of them

new Dcreate: allows the SCL user to create a new directory.

new NameDi vi de and NameMerge functions: The NAMEDI VI DE function divides
a 2, 3, or 4-level SAS nanme and returns how nany pieces are in

the nane as well as each individual information in the variables

such as lib, cat, nem type. The NAMEMERGE function is the opposite of
t he NAMEDI VI DE function which takes the two, three, or four pieces of

a valid SAS nane and concatenated theminto a valid 2, 3, or 4-leve
SAS nane.

new ConpareLi st function
gives the SCL programmer the ability to programmatically determ ne
if two lists contain the same information

New Getlteno, GetNitenp, Setltenp, SetNtenop, |Inserto, Popo and

http://dpdweb.pc.sas.com/News/Sugi 23/sugi 23-scl.htm 12/3/98

SCL Reborn -- The New SAS Component Language(SCL) in Version 7 Page 17 of 18

Searcho functions: allow mani pulating any list itens of the new object
data type

(7) Delete and Renane functions: both now support the FILE type.

(8) new attribute nanme NLOBSF for Attrn function: returns the nunber of rows
wi th WHERE cl ause bei ng appl i ed.

(9) Lock function: no | onger needs to run under SAS/ Share.

SCL Debugging and Analysis Tools Enhancements

SCL debugger supports the dot syntax:

debug> exanine objl.attrl
debug> set obj.attr2.attr2 =1

debug> describe a.b

Monitoring the SCL list contents changes

debug> cal c setlattr(obj1, ' NOUPDATE)

The SCL Coverage Anayzer is awhite-box run-time testing tool which measures SCL statement
coverage, and can be used to verify the completeness of atest library. The SCL developer can use this
tool to determine the frequency with which specific statements are executed, and add tests to the test
library accordingly. Please reference the SCL PROF command under the release 6.12 to find related
information.

Verifying Year 2000 Problemsusing SCL Static Analyzer

As the software industry’ s annus miserabilis approaches, much time and effort is being devoted to the
problem, "Is My Application Y ear 2000 Compliant? . For SCL application writers faced with such
difficulties, the SCL Static Analyzer (which has been in production since 6.12) can prove to be an
effective tool for identifying potential problems. SAS formats are saved internally as numeric doubles
- which precludes any Y ear 2000 problems. Problems arise, however, when programmers convert the
datainto an mmddyy-related format and use the year information (2-digits) to compare with other
data. The collection phase of the SCL Static Analyzer can be used to scan all SCL programsin a
project to find every SCL source statement which references a SAS format/informat function, an
INPUT/PUT related function, a SUBMIT, or simply a SAS data set. Thisinformation can be used as
astarting point to identify any possible date format problems.

Conclusions

The SAS Component Language in version 7 contains many new features that result in more power
and flexibility for the user. The old object-oriented programming style and its programming
difficulties have been re-evaluated. The new object-oriented programming styles and language
constructs have been illustrated. We encourage SCL usersto fully apply the new object-oriented
programming style to alow the SCL compiler to catch errors at compile-time rather than having them

http://dpdweb.pc.sas.com/News/Sugi 23/sugi 23-scl.htm 12/3/98

SCL Reborn -- The New SAS Component Language(SCL) in Version 7 Page 18 of 18

deferred until run-time. With these new changes and enhancements, a user-friendly object-oriented
application system will be much easier to build and maintain.

1. SAS Component Language: Reference Version 7(will be published this year)

Produced Tue Nov 3 13:11:53 EST 1998 by pub2htm

http://dpdweb.pc.sas.com/News/Sugi 23/sugi 23-scl.htm 12/3/98

