
1

Overview of Java™ Com ponents and Applets in SAS/IntrNet™ Software
Barbara Walters, SAS Institute Inc., Cary, NC

Don Chapman, SAS Institute Inc., Cary, NC

Abstract
This paper describes the Java components and the sample
applets that are part of SAS/IntrNet software. This paper
describes how to use the SAS/SHARE*NET driver for JDBC,
JConnect, and JTunnel to access information and services
available from SAS servers, and also provides code examples
to demonstrate these capabilities. Note that the code
examples referenced in the text are presented in a separate
section at the end of the paper.

Introduction
Java is the premier language for providing active content in
Web applications. It is ideally suited to the Web because of
its:

• portability across platforms,

• ability to maintain the integrity of the client machine,

• its ability to be dynamically downloaded on demand.

With the release of SAS/IntrNet software, version 1.1, SAS
Institute provides production quality Java classes that access
the power of SAS software through a Web browser or a Java
application.

Web Technology and Thin Clients
Web browsers have revolutionized information technology by
providing a simple point and click user interface to information
sources located around the world. A wide variety of data
formats, including HTML, image formats, audio and video
formats are all presented through this single application.
Users want to use a single application, i.e. the browser, to
access all information sources; they are becoming more
reluctant to install individual programs that access only a
particular type of server or render a particular data format.
Software vendors are challenged to provide access to both
software services and data through the Web browser.

Because users are accustomed to accessing resources
through a single application, there is increased acceptance of
the idea of a thin client solution. A thin client solution consists
of client/server software running on either thin client hardware,
e.g. a network computer that has little more than a Web
browser, or traditional hardware. Thin client hardware can be.
a PC. In both cases programs are not permanently installed
on the user’s machine, but are downloaded on demand.

Thin client software is attractive because the user is not
concerned with installing the particular software component;
browser technology automates the process. The software
often distributes work between the client machine and a
remote server. Quite often the client provides support for the
user interface, while most or all of the computation, data
access, and other services are provided by the server running
on a remote machine.

Java and ActiveX™
Both ActiveX components and Java applets provide thin client
alternatives to traditional applications. The thin client user
accesses a page that contains the information necessary to
download the client program. The program is downloaded and
starts running on the user’s machine, giving the user access
to the resources available on the server machine. The thin
client machine requires no software other than a browser in
order to access resources and services available on the
network.

There are several notable differences between ActiveX
components and Java applets. ActiveX components are
usually written in C++ and are compiled for a specific platform.
Once they are downloaded, the ActiveX component behaves
as any C or C++ program and can access all resources
available on the user’s machine, including the local file
system, other programs, and other machines on the network.
The user can make the decision to not accept a particular
ActiveX component and not install it on their machine, but
once it is installed it has the full capabilities of any other
software program.

In contrast, applets are written in Java, which is an interpreted
language. This means that the applet code is portable and not
restricted to running on a specific platform. In order to run a
Java program, the Java Virtual Machine (JVM) must be
available on the user’s machine. Currently, browsers provided
by

• Netscape (Navigator and Communicator),

• Microsoft (Internet Explorer) and

• Sun (HotJava)

all contain a JVM as part of their standard installation. If a
user has one of those browsers installed, there is no
additional software installation required to run Java applets. If
the user needs to run stand-alone Java applications, a
separate installation of the JVM may be required.

Java provides support for both dynamic class loading and a
security manager. When a user accesses a web page that
contains an applet tag, the Java classes that comprise the
applet are dynamically downloaded to the user’s machine and
start executing. Because Java is interpreted, the JVM has the
opportunity to enforce the rules specified by the security
manager. It is the responsibility of the security manager to
ensure that the integrity of the user’s machine is maintained
and that the applet does not have access to resources other
than those the user has specifically granted.

What’s New in Java Vers ion 1.1
Sun Microsystems first released Java in mid-1995. Since that
time, Java has undergone significant enhancements in
functionality. The 1.1 version of Java was released by Sun
Microsystems in the first quarter of 1997. At the time this
paper was written, full production support of Java 1.1 was not
available in either Netscape browsers or Internet Explorer.

2

In response to the delay of production-quality support for 1.1
by browser vendors, Sun has released a version of the JVM
that acts as an HTML embedded object. This new product is
called Java Activator. Java Activator provides support for the
most recent production version of Java and ensures
consistent behavior in the different browsers. This new
product was released in December 1997 as part of Sun
Microsystem’s early access program and was not yet
available in 1997 as production-quality.

The 1.1 version of Java includes support for:

• a component model, called JavaBeans™

• a standard archive format

• internationalization

• security enhancements, including “signed” classes

• object serialization

• printing support

• AWT (Abstract Window Toolkit) enhancements

• database access.

Detailed information about the contents of the 1.1 release can
be found at the Java Web site:

http://java.sun.com

JavaBeans
JavaBeans is a specification that allows vendors to create
Java components that can interact with components
developed by other vendors. Many vendors are developing
components that provide support for sophisticated user
interfaces as well as components that access databases or
compute servers.

Archive Files and Security
The standard Java archive (JAR) support addresses both
download time issues and security issues. JAR support allows
Java programmers to bundle Java classes together, which
greatly reduces download time. In addition, it allows vendors
to digitally sign the archive file. JAR files can contain digital
signatures identifying the vendor that created the JAR file.

This digital signature, when used with the new security API,
allows the user to decide whether they "trust" the software
provided by this vendor. “Trusting” the vendor conditionally
grants the vendor’s programs access to the resources that
belong to the user. The 1.1 version of Java enables signed
applets. Future releases of Java will include more
enhancements to the security API.

AWT Enhancements
In previous Java releases, AWT components would frequently
not render or not behave in a consistent manner on different
hardware/software architectures. The AWT enhancements
allow creation of sophisticated components that render
themselves consistently, regardless of platform. Other
enhancements also include a new event model, improved
cursor support and an API for print support of AWT
components.

Future releases of Java will include a robust set of visual
components as part of the Java Foundation Classes (JFC)
JFC. Since these components will be included in a standard
release of Java, this will greatly reduce download time.

JDBC ™
The Java Database Connectivity API (JDBC) is included in the
1.1 version. Similar to ODBC, it provides a standard interface
for accessing databases through SQL (Standard Query
Language) statements. The JDBC driver manager classes are
included with the standard Java 1.1 release.

These new enhancements to Java enable vendors to provide
full-feature applets and applications that take advantage of
client/server computing. SAS/IntrNet software fully supports
the JDBC API.

SAS/IntrNet Java Components
SAS/IntrNet software includes two Java packages:

• the SAS/SHARE*NET driver for JDBC

• JConnect.

All of the classes in these packages are written entirely in
Java and can be dynamically downloaded from a Web server.

In addition, there is a Common Gateway Interface (CGI)
program, JTunnel, which helps alleviate some of the
configuration limitations of Java applets.

The JDBC driver allows Java clients, either applets or
applications, to access data in SAS data sets or SAS views
that are served from a SAS/SHARE server or a
SAS/CONNECT server. A Java client that uses JDBC allows
users to filter data, perform simple transformations of the
data, and update data.

JConnect is a set of Java classes that allow a Java client to
submit SAS statements or procedures and retrieve the results
that were generated from those statements. The results can
be textual output, graphics or new data sets.

These two packages allow Java clients to access much of the
functionality of SAS. The Java client can be either an
application or an applet. Before describing the components in
detail, it is important that the reader understand the different
types of SAS servers.

Overview of SAS Servers
The Java components interact with two different types of SAS
servers:

• SAS/SHARE servers

• SAS/CONNECT servers.

All communication from a Java client to the SAS server is
done through a socket connection. This means that the server
machine must have a TCP/IP protocol stack installed. The
JTunnel feature allows the Java client to use HTTP
(HyperText Transfer Protocol) but, ultimately, those requests
are sent on a socket to the SAS server.

Important differences between these two servers are
described in the following sections.

SAS/SHARE Server
A SAS/SHARE server allows multiple clients to access data
simultaneously. Clients can be

• SAS clients

• Java clients

• htmSQL

• or other clients implemented using the SAS SQL Library
for C.

3

The SAS/SHARE*NET driver for JDBC uses the SQL services
provided by the SAS/SHARE server.

An administrator is responsible for configuring, starting, and
stopping the SAS/SHARE server. The administrator
configures the port number where the server will receive client
requests, sets the data access permissions for the server and
sets the run mode of the server. The data access permissions
determine what data on the server is accessible to clients that
connect to the server. The run mode for a server can be set
to either "secured" or "unsecured".

The default run mode for the server is "unsecured" mode. This
mode allows any client to request services from the server.
The client can request any data that is accessible to the
server. Usually the administrator defines a set of libraries that
are available from the server. However, a client can request
that a particular library be defined for their use. This is
described later in the section "Data Access through JDBC."

The server can also be run in "secured" mode which requires
the clients to provide a user ID and password before the client
can make requests of the server. The user ID must be a valid
identity for the host where the SAS/SHARE server is running.
With this configuration, the client can only access the data to
which both the server and the client have permission. In
Version 6 of SAS software, the user ID and password can be
encrypted before being sent to the server. Encryption support
is only provided for user ID and password; the data is
returned to the client unencrypted. SAS software, Version 7
will provide encryption support for data.

After it is started, the server continues to run whether or not
any clients are actively using it. Because the server is already
running, a client can connect quickly to the server and send
requests. When the client is finished it disconnects from the
server. Disconnecting from a server does not stop the server.
It continues to run until the administrator shuts it down. When
the SAS/SHARE server is no longer needed, the administrator
can shut it down.

SAS/CONNECT Server
A SAS/CONNECT server allows a client to send requests for
remote execution of SAS statements and procedures, as well
as requests for data. Data requests are made using JDBC
method calls; only SQL access is provided. Unlike the
SAS/SHARE server, a SAS/CONNECT server is started on
behalf of an individual client and is shut down when that client
is finished requesting services. Before a client can request
services, it must first request that a SAS/CONNECT server be
started.

For Java clients, the machine where SAS/CONNECT software
is installed must have either a telnet daemon running or a
copy of the SAS/CONNECT spawner running. For this paper,
we refer to the telnet daemon or the spawner as the bootstrap
program.

The Java client must configure the JConnect classes to
identify the location of the bootstrap program. JConnect uses
a "host" parameter to identify the machine where the
SAS/CONNECT server is run; host is either the IP name or
address of the server machine. It uses a "port" parameter to
identify the port on which the bootstrap program receives
requests. The default port value for either a telnet daemon or
the SAS spawner is 23. If no port property is specified, the
JConnect classes defaults to port 23.

The Java client sends a request to the bootstrap program to
start a SAS/CONNECT server for its use. Because the server
is started for an individual user, most hosts require the client
to provide a user ID and password. This ID determines the
identity used to start the SAS/CONNECT. Because this initial
request must start the SAS/CONNECT server, it takes longer
to complete than a request to the SAS/SHARE server. After
the bootstrap program has successfully started the
SAS/CONNECT server, the Java client can connect to the
server and start sending requests.

SAS/CONNECT software provides scripts that are used by a
SAS client to start the remote SAS/CONNECT server.
JConnect does not use these scripts. Instead, the JConnect
classes accept a property object that describes the prompts
sent from the bootstrap program and the appropriate
responses that should be returned. For example, the first
prompt sent from the bootstrap program might be the string
"login:". The first response should be the user ID used for the
SAS/CONNECT server. A description of these properties is
covered in depth in the JConnect documentation.

Data Access thr ough JDBC™
The SAS/SHARE*NET driver for JDBC provides SQL access
to data available in SAS data sets, SAS views or data that
resides in a foreign database such as Oracle.

Through JDBC, Java clients can:

• define SAS libraries

• create or delete tables

• insert or delete columns

• read or update data

• perform simple transformations on data.

JDBC defines methods that provide information about the
database itself. For example, there are methods to determine
the libraries available to the server or the types of data
supported by the server.

In order to use JDBC, the Java client must first create an
instance of the JDBC driver. The JDBC driver manager uses
the JDBC URL to determine what driver to use. By calling the
connect method of the driver, the client can establish a
connection to the server. The connect method uses the JDBC
URL to determine where the server is running and which port
it is using to receive requests. The URL takes the form:

jdbc:driver://host:port

The driver keyword is replaced with the driver name. To use
the SAS/SHARE*NET driver replace "jdbc:driver" with
"jdbc:sharenet". The host keyword is replaced with the IP
name or address of the machine where the server is running.
The port keyword is replaced with the port number that is
used by the server. For example, SAS Institute has a
SAS/SHARE server running on a machine available on the
Internet. Its URL is:

jdbc:sharenet://192.35.86.10:5010

The connect method can also accept the user ID and
password used to access the server (if one is required). If a
user ID and password are required and have not been passed
as either parameters to the connect method or included in the
property object, the connect method throws an SQL exception
that contains the message

"Userid/Password not accepted by server."

If the Java program catches the SQL exception and detects
the above text in the exception message, it can prompt for the
user to input a user ID and password and retry the
connection. Other SQL exceptions may be thrown if the
server is not available or if the host or port number were not
specified correctly.

Other properties can be used by the driver to configure the
connection. The dbms property can be set to tell the driver to
access a foreign database (such as Oracle) utilizing the
SAS/ACCESS software. The libref property is used to
configure additional libraries.

A Connection object is returned from successful execution of
the connect method. From the Connection object, the
program can obtain DatabaseMetaData objects or Statement
objects. The DatabaseMetaData objects have methods that
return information about the database. For example, a

4

program can obtain a list of SAS libraries (SQL schemas)
available at the server by calling the getSchemas() method of
the DatabaseMetaData object. It can also obtain a list of data
sets by calling the getTables() method of the
DatabaseMetaData object. The code segment in Figure 1
shows how to create a connection to a SAS/SHARE server.

/*
 Establish a connection to the SAS/SHARE server
 running on the machine named server
 listening on port 5010
*/

java.sql.Driver driver = null;
try {
 driver = (java.sql.Driver)Class.forName
 ("com.sas.net.sharenet.ShareNetDriver").
 newInstance();
} catch (Exception e) {
 System.out.println(“Class not found”);
}

try {
 java.sql.Connection connection =
 driver.connect("jdbc:sharenet://server:5010”,
 null);

 System.out.println("Connection complete");
} catch (SQLException sqlException) {

 String eMessage = sqlException.getMessage();
 if (eMessage.indexOf("Userid/Password not accepted
 by server.") != -1) {

/* Pop-up a logon dialog box to prompt user for a
 user ID and password and retry the connection
 using that information
*/
} else {
 /* Some other error occurred */
 System.out.println("Exception thrown: " +
 eMessage);
 }
}

Figure 1: Establish a connection to the server

A Statement object is returned from calling the getStatement()
method of the Connection object. The Statement object
provides methods to execute SQL statements or queries. For
example, a program uses the execute() method to define a
new library for its own use. The code segment in Figure 2
shows how to define the library "temp" that is located in the
directory /usr/temp.

/*
 Assign a new library.
*/

try {
 java.sql.Statement statement =
 connection.createStatement();
 boolean result = statement.execute("libname
 temp ‘/usr/temp’;");
} catch (SQLException e) {
 System.out.println("Exception thrown: "
 + e.getMessage();;
}

Figure 2: Assign a library

The executeQuery() method of the Statement object accepts
an SQL select statement as a parameter. It returns a
ResultSet object that contains the rows and columns that
meet the criteria of the select statement.

The ResultSet object provides methods to access its contents.
The next() method moves the pointer of the ResultSet object
to the next record. When a ResultSet object is first created,
the pointer is positioned to an invalid record. The next()
method must be called to position the pointer to a valid
record. After obtaining a valid record, the program can obtain
the data from any column either by referring to the column by
its index number or by its name.

The contents of the column are obtained through "get"
methods. All data returned from the SAS/SHARE server can
be obtained as a character string, regardless of the original
type of the data. For example, the getString(1) method will
return the data available in column 1 as a Java String. If the
column contains numeric data, the methods getFloat() or
getInt() can be used.

The data is sent from the server as the client program
requests it. For example, if the program opened a dataset that
contains 10 megabytes of information, only a small fraction of
the data is actually downloaded to the client. As the client
requests more data, additional requests are sent to the server
to obtain additional data.

The code segment in Figure 3 shows how to create a
ResultSet object and extract the data for column 1.

/*
 Create a ResultSet.
*/

String column;
try {
 java.sql.ResultSet resultset =
 statement.executeQuery("select * from
 temp.table");

while (resultset.next() == true) {
 column = resultset.getString(1);
 System.out.println("Column 1 = " + column);
 }
 resultset.close();
} catch (SQLException sqlException) {
 System.out.println("Exception thrown: " +
 sqlException.getMessage());
}

Figure 3: Create a ResultSet

Some JDBC drivers support cursors, which allow a program to
“mark” a position in the ResultSet and return to that position.
A ResultSet object obtained from the SAS/SHARE*NET driver
for JDBC does not support cursors. The result set must be
read starting from the first record, proceeding through each of
the records. If the first 5 records have been read, there is no
way to reread the first record without creating a new
ResultSet object.

The data at the server can be modified using the
executeUpdate() method of the Statement object. This
method accepts an SQL UPDATE statement and updates ALL
rows that match the update criteria. The executeUpdate()
method returns the number of rows that were actually
updated. There is no way to lock a single record and then
update it using the SAS/SHARE*NET driver for JDBC.

If the program requires a guarantee that only a single record
be updated and guarantee that data is not overwritten, the
UPDATE statement must include a where clause that contains
a unique index as well as the data as it was originally read.
When the where clause includes the previously described
information, the executeUpdate() method will return a count of
zero if the data has been changed from the time it was
originally read or if some other client has the record currently
locked. The unique index guarantees that only a single record
is updated.

5

The code segment in Figure 4 shows how to update all the
rows in the salary data set that have values greater than
40000 in the salary column.

/*
 Update salary in all the rows where the value in
 the salary column is greater than 40000
*/

int numRowsUpdated = 0;

try {
 numRowsUpdated = statement.executeUpdate("update
 EMPDB.SALARY set salary = salary * 1.05 where
 salary > 40000");
} catch (SQLException sqlException) {

System.out.println("Exception thrown: " +
 sqlException.getMessage());
}

Figure 4: Update a dataset

Access to SAS Procedures and Output through
JConnect
JConnect classes are responsible for both starting and
shutting down a remote SAS/CONNECT server. As described
in “Overview of SAS Servers,” the JConnect classes
communicate with a bootstrap program to start the
SAS/CONNECT server. The JConnect client classes (either
TelnetConnectClient or TunneledConnectClient) require the IP
name or address of the remote server machine and the port
number the bootstrap program is listening on. These classes
receive a series of prompts from the bootstrap program and
send responses to these prompts in order to start the
SAS/CONNECT server. These prompts and responses are
passed to the JConnect classes in a java.util.Properties
object.

After the SAS/CONNECT server has been started, the client
program can send SAS statements to the server for
execution. The results of the procedure can be output (text),
datasets or a file. All of these can be retrieved and displayed
by the Java client.

After a set of SAS statements have been submitted to the
SAS/CONNECT server, the SAS log and output lines are
returned to the client. The methods getListLines() and
getLogLines() return the information sent from the server.
Because the log and output are returned as ASCII text, they
are be easily displayed in a text window. The code segment in
Figure 5 is taken from the sample JConnect applet included
with SAS/IntrNet software.

/* Get the output from PROC CONTENTS. The
 connection object has already been created
 as a com.sas.net.connect.TelnetConnectClient
 object
*/

try {
 connection.rsubmit("proc contents data=tmp.data;
 run;");
 String lines = connection.getListLines();
 TextArea textWindow.setText(lines);

} catch (JConnectException exception) {
 System.out.println("JConnect Exception thrown: " +
 exception.getMessage());
}

Figure 5: Create and retrieve output

A new data set can be created as a result of the statements
executed on the SAS/CONNECT server. This data set can be
accessed using the JDBC Connection object. The JDBC
Connection object is retrieved using methods available in the
JConnect client classes.

Graphics produced by the SAS/CONNECT server can be
presented in a Java program: either as a GIF image or as a
VRML (Virtual Reality Markup Language) file. Either of these
formats can be presented in a Java client program.

SAS/IntrNet software includes the GIF image driver as one of
the Web Publishing tools. This driver can be used with
graphics procedures to create GIF files. Output generated by
graphics procedures can use the GIF image driver to produce
a GIF file. PROC GREPLAY converts existing GRSEG’s to a
GIF file.

Included in SAS/IntrNet is a new graphics procedure, PROC
GGRAF, which produces three dimensional, clickable graphs.
These graphs are stored as VRML files. SAS/IntrNet includes
a VRML browser written entirely in Java that can be used to
render the VRML graphs. Unlike GIF images, the VRML graph
can save information about the contents of the graph and
produce clickable graphs. For example, a bar chart created in
VRML can include information about the variables selected to
produce a bar. The variables and their values can be retrieved
by the Java client and used to generate another graph
displaying more information about the variables.

The previous discussion described how to generate GIF files
and VRML files on the server. In order to render them in a
Java client program, the files must be downloaded from the
server to the client. This download is accomplished using
PROC DOWNLOAD. When the client submits PROC
DOWNLOAD to the SAS/CONNECT server, the server
responds by sending the file as a stream of bytes. This byte
stream is stored in memory by the Java Connect client. The
Java client requests this byte stream from the JConnect client
classes by calling the method getDownloadData(fileName).

The code segment in Figure 6 shows how to create a GIF file
from PROC GREPLAY and display it in the Java client.

/*
 GIF output wanted, so use the GIF graphics
 driver. Library and catalog are the location
 of the existing GRSEG and entry is the catalog
 entry name.
*/

code = new String(“filename _GRAFOUT
 '/temp/tempfile';
 goptions dev=gif
 gsfname=_GRAFOUT
 gsfmode=replace;
 title;
 proc greplay nofs
 igout=library.catalog;
 replay entry;
 quit;
 proc download

infile=_GRAFOUT
 outfile=”_GRAFOUT”;
 run;");
try {
 connection.rsubmit(code);
} catch (JConnectException exception) {
 System.out.println("Exception thrown: " +
 exception.getMessage());
}
byte[] downloadBytes = getDownloadData(connection,
 "_GRAFOUT");

Figure 6: Convert a GRSEG to GIF

6

The code segment in Figure 7 shows how to create a VRML
file from PROC GGRAF and display it in the Java VRML
browser.

/*
 Build 3d Pie Chart code for PROC GGRAF
*/

String code =
 new String("filename _GRAFOUT
 ’/temp/tempfile’;
 goptions gsfname= _GRAFOUT
 gsfmode=replace;
 proc ggraf INFO NOFORMAT
 data = library.temp;
 pie3d salary /;
 proc download
 infile=_GRAFOUT
 outfile=”_GRAFOUT”;
 run;");

try {
 connection.rsubmit(code);
} catch (JConnectException exception) {
 System.out.println("Exception thrown: "
 + exception.getMessage());
}

/*
 Get the downloaded file (VRML) and give
 it to our VRML Browser
*/

byte[] downloadBytes =
 getDownloadData(connection, "_GRAFOUT");
ByteArrayInputStream vrmlStream =
 new ByteArrayInputStream(downloadBytes);
com.sas.vrml.browser.VRMLBrowserbrowser =
 new VRMLBrowser();
browser.setSourceStream(vrmlStream);

Figure 7: Create a VRML file with PROC GGRAF

JTunnel
The JTunnel program was created to help solve two
problems. The first problem is that many users on the Internet
access the Internet from behind a firewall. Many commercial
firewalls allow HTTP traffic through the firewall, but not other
types of traffic. Because access to SAS is through a socket
connection, users behind firewalls are precluded from
accessing the SAS/SHARE or SAS/CONNECT servers.

The second problem is the Java security manager restriction
that unsigned applets can only establish socket connections to
the machine from which they were downloaded. This
restriction requires the SAS servers to run on the same
machine as the Web server.

The JTunnel program is a CGI program that is installed on the
Web server. It accepts HTTP requests, converts the request
to something a SAS server understands then forwards the
converted request to the appropriate SAS server.

Rather than establish a socket connection directly to the SAS
server, the Java client sends an HTTP request to the Web
server. The Web server invokes the JTunnel CGI program,
which forwards the request to the SAS server. The CGI
program captures the server’s response and sends the
response back to the client. The communication is performed
using only HTTP protocol so the communication between the
Java client and the SAS server is allowed through the firewall.
Because the communication is between the Java client and
the Web server machine, the Java security manager allows
the communication.

Figure 8 depicts components involved in sending a request
from a Java client and obtaining the response from the SAS
server.

Figure 8: JTunnel Data Flow

Two programs run on the Web server machine. The first is the
program that runs each time a CGI request is sent; that
program is shrcgi. The first time a Java client sends a request
to shrcgi, it starts another program that continues to run as
long as the Java client requires its services. This second
program is shrproc, and it establishes a socket connection
with the SAS server.

Each time the Java client sends a request, a new copy of
shrcgi is started. shrcgi forwards the request to shrproc.
shrproc sends the request to the SAS server and collects the
server’s response. shrcgi sends the response back to the
Java client and shrcgi stops running.

The JTunnel programs require a configuration file. This file
contains a list of machines that the Java client is allowed to
communicate with. This configuration file can be used to
restrict access to the SAS servers. Not only does the
configuration file limit the server machines that can be
accessed, it also limits which ports are available for
communication.

The configuration file also provides aliases for the command
used to start the SAS/CONNECT server. It is quite possible
that the administrator of the server does not want the
command used to start SAS to be public knowledge. For this
reason, an alias is used by the Java client. When the JTunnel
program encounters the alias, it provides the proper
substitution using the value of the alias found in the
configuration file.

SAS server

Client Machine

Web Browser

Java applet

JConnect or
JDBC client

Web server Machine

JTunnel shrproc

Web server

JTtunnel shrcgi

Remote Machine

7

It should be noted that a request from the client sent through
JTunnel to the server takes longer to complete than a request
sent directly from the client to the server via a socket. For
each JTunnel requests, a copy of the CGI program is started;
starting this separate process on the Web server is not
without a cost in performance. However, without JTunnel,
many users behind firewalls are not be able to access the
SAS server at all.

Issues Concerning Java
Some performance concerns with Java clients that should be
mentioned. The first is download time. An applet may have
JAR files that contain some or all of the classes used by the
applet. The entire JAR file is downloaded before the applet
starts to execute. If the JAR file is very large the download
time is noticeable. JAR files provide a significant performance
improvement compared to downloading classes one at a time,
but it still takes time to download the JAR file. If a corporate
intranet uses the SAS Java components in multiple applets,
users could choose to install the Java classes on their local
machine. In this case, the JAR file could be much smaller and
only include the applet specific classes.

A high amount of variability exists between Java
implementations. We have encountered many differences in
behavior of the Java classes between the different JVM’s
distributed by JavaSoft, Microsoft and Netscape. Hopefully,
JavaSoft’s Activator and the release of a standard test suite
for the JVM will help stabilize the Java environment.

Despite these issues, Java is important technology for the
Web. We expect Java to mature significantly over the next
two years and key to deploying Internet and intranet
applications.

Summary
This paper provided an overview of Java, especially the
enhancements included in Version 1.1 This paper described
the Java classes provided by SAS Institute. We provide a
package for data access, the SAS/SHARE*NET driver for
JDBC, JConnect, which provides access to remote SAS
computing services, and the VRML browser which can render
3D graphics. We provide Java classes and programs to
support HTTP tunneling to alleviate some configuration
restrictions and provide access to users behind a firewall. In
addition, the paper contains code examples demonstrating
how to create different types of output within SAS and retrieve
that output for the Java client.

References
http://java.sun.com/products/jdbc/ - Use this URL to review
JDBC information.

http://www.sas.com/rnd/web – This is the home page for
SAS/IntrNet Product.

Data Visualization Using Java and VRML (Lingxiao Li, Art
Barnes)

SAS, SAS/SHARE*NET, SAS/CONNECT, and SAS/IntrNet
are registered trademarks of SAS Institute Inc. in the USA and
other countries. Java and JDBC are registered trademarks or
trademarks of Sun Microsystems, Inc. ® indicates USA
registration.

Authors
Barbara Walters
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
(919) 677-8000 x6668
sasbbw@sas.com

Don Chapman
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
(919) 677-8000 x6707
 sasdnc@sas.com

Acknowledgements
The authors would like to thank the following reviewers:

� Biff Beers

� Phil Herold

� Murali Srinivasan

� Renee Harper

� Tim Mattson

	Main TOC

