
1

ODS: The DATA Step Knows
William F. Heffner, SAS Institute Inc., Cary, NC

INTRODUCTION

The Output Delivery System (ODS) in Version 7 implements and con-
trols the formatting of all SAS® procedure output. Although primarily
created for procedure output, this new functionality is also available for
DATA step programs. This paper will first briefly describe the Output
Delivery System, and then discuss in more detail the DATA step inter-
face to this new SAS System component.

ODS: OUTPUT DELIVERY SYSTEM

The Output Delivery System in Version 7 is a new sub-system which all
SAS procedures use to produce output. In previous versions of the SAS
System all procedures wrote exclusively to the SAS listing file and to
output data sets. In Version 7, all procedures produce ODS output ob-
jects – binary objects that are rendered to various output destinations by
the ODS sub-system.

Conceptual Model

In Version 6 of the SAS System, procedures produced output by filling a
“line buffer” and then flushing it to the SAS listing file. This approach
does not allow proportional font support, nor does it allow access to
data values in the listing without rereading the listing. More impor-
tantly, there was also no way to upgrade the system to support new
output forms as they became available. Each procedure was wed to its
own formatting code. ODS was conceived as a better way for proce-
dures to produce output. In Version 7, procedures produce a binary
representation of output called an output object.

An output object consists of two component parts: a data object con-
taining the raw data values for the piece of output, and a template de-
scribing how the piece of output should look. The output object is added
to the system and ODS decides, based on the output destinations set by
the user, how to render the output.

The most important benefit of this approach is that it removes the for-
matting responsibility from the procedure. This enables the SAS System
to support many flavors of output without modifying the procedures to
support them directly.

Formatting of Output

Each output object that is produced by a run of the SAS System is ren-
dered to whatever output destinations the user has selected. For the
initial release of ODS, the SAS listing file, output data sets, and HTML
will be supported as destinations. For subsequent releases, support for
PS (PostScript) and PCL (Printer Control Language) destinations, an
RTF (rich text format) destination, and a persistent output document
destination are being investigated. Each output destination can be con-
trolled by the ODS global statement. Multiple output destinations can
be active at the same time, i.e., one step can create one output object
which is rendered to multiple destinations.

ODS Data Object

The ODS data object is the vehicle that a procedure uses to move the
data for a piece of output to the ODS system. The data object is primar-
ily an internal object over which the SAS user has no control. However,

the SAS user has the flexibility to convert all ODS data objects into SAS
data sets.

Templates

A template is a description of how you would like a piece of output to
look when it is rendered. Templates contain formatting information like
data column order, text for data column headings, format specifications
for columns, and stylistic references. Every template in the SAS System
is fully editable via the TEMPLATE procedure in batch, and from the
SAS Explorer in DMS mode.

ODS Global Statement

The ODS global statement is a new statement in Version 7 that gives
users some control over ODS. The ODS statement contains sub-
statements which control each of the various output destinations, select
or exclude individual pieces of output, and manipulate the SAS template
concatenation path.

DATA STEP ODS INTERFACE

The DATA step can be used to generate output through ODS, taking
advantage of all the output destinations available, including the stan-
dard listing file and HTML-based output. This requires creating an ODS
template and data object, ‘binding’ them together, and specifying the
target destination. Templates are defined, created and stored with the
TEMPLATE procedure. The target output destination is specified by the
ODS global statement.

A data object can be created and bound to a template using the DATA
step. The DATA step interfaces with the ODS system component
through its external file output interface. Specifically, the FILE state-
ment is used to define a data object and bind a template to it, creating an
output object. The PUT statement is used to write data to the object (in
the form of data rows).

This output object, created by the DATA step, is then processed by the
ODS component of the SAS System. ODS appropriately formats the
data, and sends it to the currently specified target destination(s).

DATA STEP: CREATING ODS DATA OBJECTS

The DATA step FILE statement now supports an ODS= option to enable
the creation of an ODS data object. This option allows you to create a
data object by specifying data columns and associated attributes, and
‘mapping’ them to specific DATA step variables. The mapped data step
variables will supply values for the associated data columns.

2

Generally, the FILE statement ODS= option will have the following
form:

FILE PRINT ODS < = (< TEMPLATE = ’template.name’ >
< COLUMNS = (column_spec) >
< VARIABLES = (variable_spec) >
< OBJECT = name >
< OBJECTLABEL = ‘object label’ >
< GENERIC = ON | OFF >
< LABEL = ‘default column label’ >
< DYNAMIC = (dynamic_spec) >

) > ;

…where column_spec can be one or more of the following:

column_name < = variable_name > < (column_attrs) >

…where variable_spec can be one or more of the following:

variable_name < = column_name > < (column_attrs) >

…where column_attrs can be one or more of the following:

FORMAT = formatw.d
GENERIC = ON | OFF
LABEL = ‘column label’
DYNAMIC = (dynamic_spec)

…where dynamic_spec can be one or more of the following:

dynamic_name < = variable_name >
dynamic_name < = constant_value >

Only one COLUMNS= or one VARIABLES= sub-option may be given
per ODS= specification. See Mapping DATA Step Variables to Data
Object Columns below. Note that the ODS= option may only be used
when the FILE statement references the fileref PRINT (i.e., FILE PRINT
ODS= …;). Note also that the ODS keyword may be used alone, without
any sub-options (i.e., FILE PRINT ODS;). This default behavior is
described in Default ODS Option Behavior below.

Defining the Template

An ODS template is specified via the TEMPLATE= sub-option of the
ODS= option. A template contains column and column-heading infor-
mation for the output object, as well as physical formatting specifica-
tions. The template name is a 1, 2, or 3 level name (e.g., ‘aaa’,
‘aaa.bbb’, or ‘aaa.bbb.ccc’), and must be a quoted string constant value.
This name is passed to ODS, which will search for the template in the
locations specified in the ODS global statement.

If no template name is given in the ODS= option, a default template
(‘base.datastep.table’) is used.

Defining the Data Object

An ODS data object consists of rows and columns of raw data, much
like a SAS data set. The data object is created by the DATA step, using
the column names specified by the COLUMNS= sub-option of the
ODS= option. The data object column name should match the name of a
defined column in the template. See Mapping DATA Step Variables to
Data Object Columns below for more information. The order of the
column specifications in the COLUMNS= sub-option defines the order
of the columns in the data object.

Column names must conform to the same rules as Version 7 variable
names. The first character must be a letter (A, B, C, …, Z) or an under-
score (_), and subsequent characters can be letters, digits (0, 1, …, 9), or
underscores. Variable list notation, of the form ‘col1-col5’, may be used
in the COLUMNS= sub-option to indicate a range of columns.

A name can be specified for a data object with the OBJECT= sub-
option. The name must conform to the rules for SAS variable names. A
descriptive label can also be added to a data object by specifying a
quoted string constant value with the OBJECTLABEL= sub-option.
These identifiers (name and label) are visible using the SAS Explorer. If
not specified, the data object name defaults to ‘FilePrintn’, where ‘n’
increments for each DATA step run during the current SAS session. The
object label will default to the currently defined title, unless it is the
default SAS System title. In that event, the object name will also be used
for the object label.

Defining Attributes for the Data Object

Other attributes (aside from the name and label) may be specified for
ODS data objects. These attributes are either default settings for all
columns, or global settings for the data object. A default column label
may be specified with the LABEL= sub-option. This label would be
applied to any column which had no specific label specified.

By default, only one data object column may be mapped to each tem-
plate column. This one-to-one mapping is accomplished by matching
names. However, this one-to-one mapping can be by-passed using the
generic attribute. If a template column is marked as generic, then more
than one data object column can be mapped into it. These data object
columns must also be marked as generic, which is done via the
GENERIC= sub-option.

The GENERIC= sub-option specifies whether or not one or more col-
umns in the data object are considered to be generic. By default, col-
umns are considered to be not generic (i.e., GENERIC=OFF). Specify-
ing GENERIC=ON as an ODS= sub-option causes all columns in the
data object to be generic. This default setting can be overridden on a
per-column basis, using GENERIC= as a column attribute in the
COLUMNS= sub-option. See Defining Attributes for Data Object Col-
umns below for more discussion.

A powerful feature of ODS templates is the use of dynamic scalar and
value pairs. Templates can specify substitution names, called dynamic
scalars. These substitution names are used in the template, instead of
specific values for various attributes. At runtime, values can be speci-
fied for these dynamic scalars. This allows the dynamic specification of
various user defined information, instead of ‘hard-coding’ the informa-
tion in the template.

One or more of these dynamic scalar / value pairs can be specified using
the DYNAMIC= sub-option. The ‘scalar’ names should match the tem-
plate-defined dynamic substitution name. The ‘value’ should be a con-
stant value or a DATA step variable name. (See Using Custom Tem-
plates in the EXAMPLES section below for complete examples.)

If a variable name is specified for a dynamic scalar value, then the value
of the DATA step variable is passed to the data object at runtime. ODS
will substitute this value in place of the scalar (or substitution) name in
the template definition when formatting the output. The data type re-
quired for the value is governed by the dynamic template attribute being
set. Attributes expect either numeric, character, or Boolean data types.
ODS makes an attempt to convert any scalar value whose type does not
match the required type. Boolean values in the template have values of
ON and OFF. DATA step values of 1 and 0, respectively, correspond to
these settings.

Mapping DATA Step Variables to Data Object Columns

As previously discussed, a data object and its columns are defined by
the COLUMNS= sub-option. In order to populate this data object, val-
ues of DATA step variables (from the program data vector) will need to

3

be moved into the data object columns. These DATA step variables
need to be mapped to specific data object columns. This specification is
done via the COLUMNS= sub-option, as well.

The COLUMNS= sub-option takes a list of column specifications.
These column specifications can be as simple as a list of column names,
with no other information (e.g., COLUMNS=(c1 c2 c3)). In this case,
the specified column names will be mapped to DATA step variables of
the same name. If those variable names do not exist in your DATA step
program, then an error will be generated.

Variable names can be explicitly mapped to data object columns with
the COLUMNS= sub-option. Follow each column name in the
COLUMNS= list with an equal sign (‘=’) and the DATA step variable
name which should be mapped to that data object column. In the exam-
ple below, the columns col1, col2, and col3 are mapped to the variables
first_name, last_name, and home_address, respectively.

data _null_;
file print ods = (template=’user.mine.a’

columns = (col1 = first_name
col2 = last_name
col3 = home_address));

infile myinfo;
input first_name $10. last_name $15. home_address $30.;
…

run;

Alternatively, the VARIABLES= sub-option of the ODS= option may
be used to define the data object columns and their DATA step variable
mappings. With VARIABLES=, the specified list contains DATA step
variable names (with optional equal sign and column name for an ex-
plicit mapping), as opposed to the column names in the COLUMNS=
sub-option. This is the only difference between these two sub-options.
Use of one or the other is according to preference. The following exam-
ple is functionally equivalent to the previous example.

data _null_;
file print ods = (template=’user.mine.a’

variables = (first_name = col1
 last_name = col2
 home_address = col3));

infile myinfo;
input first_name $10. last_name $15. home_address $30.;
…

run;

If no explicit column-to-variable mappings are needed, the two sub-
options are identical. The specification VARIABLES=(c1 c2 c3) is
equivalent to COLUMNS=(c1 c2 c3). Both would map the DATA step
variables c1, c2, and c3 into data object columns c1, c2, and c3.

Note that variable list notation (var1-var5) is supported for both column
names and DATA step variable names, in both the COLUMNS= and
VARIABLES= sub-options. The example below maps the variables
var1, var2, var3, var4, and var5 to the columns col1, col2, col3, col4,
and col5.

data _null_;
file print ods = (template=’user.mine.b’

columns = (col1-col5 = var1-var5));
infile myinfo;
input var1 - var5.;
…

run;

Either the COLUMNS= or the VARIABLES= sub-option may be used
in an ODS= specification, but not both. Using both will generate an
error. If no COLUMNS= or VARIABLES= sub-option is specified, then
all DATA step variables are defined as data object columns, and those
names that match template column names will be included in the output.

Defining Attributes for Data Object Columns

Attributes can be defined for individual data object columns. These
column attributes are specified inside of the COLUMNS= (or
VARIABLES=) sub-option. (See ODS= syntax above.) These specifica-
tions will override any defaults for a particular column. Any attributes
which may be specified for the data object (LABEL=, GENERIC=, and
DYNAMIC=) may also be specified for individual columns. Addition-
ally, a format may be attached to individual columns with the
FORMAT= sub-option.

The LABEL= sub-option assigns a descriptive label to the specified
column. The primary use of a column label would be as a default head-
ing when formatting the column, if no heading is specified in the tem-
plate column definition itself. If no label is specified for a column, the
mapped variable’s label value would be used. If no label is specified,
and no label for the mapped variable exists, then the variable name is
used as for the column heading.

Specify GENERIC= to change a particular column’s generic attribute
from the data object default. The data object default is determined by
any GENERIC= setting for the data object. (See Defining Attributes for
the Data Object above.) If it has not been set explicitly, the data object
default is GENERIC=OFF (i.e., columns are not generic). Use
GENERIC= inside the COLUMNS= (or VARIABLES=) sub-option to
set this attribute for specific columns.

Use DYNAMIC= inside a COLUMNS= (or VARIABLES=) sub-option
to specify dynamic scalar / value pairs for particular columns. A dy-
namic scalar value set for a specific column will override a dynamic
value for the same scalar set for the entire data object. As with data
object attributes, the scalar value for column attributes can be a constant
value or a DATA step variable name. In addition, a special indicator of
LABEL can be used as a column attribute scalar value. This specifies
that the label defined for the column-mapped DATA step variable be
used as the scalar value.

The FORMAT= sub-option can be used to attach a format to the data
object column. The format would be used by ODS when formatting the
column output. Note that this column attribute format does not override
a format specification for the column in the template. This format will
only be used if there is none specified in the template definition.

4

The following FILE statement demonstrates several uses of column
attributes. (See Using Custom Templates in the EXAMPLES section
below for complete examples, including template definition and gener-
ated output.) The following is assumed about the template ‘user.mine.c’

• It has been defined, stored, and is accessible through use of the
TEMPLATE procedure and ODS global statement.

• At least three columns are defined named c1, cg, and c4, of which
cg has the generic attribute.

• Two dynamic attributes are defined: chdr, which specifies the
heading to use for column c3, and mywid, which specifies the col-
umn width.

label sales = ‘Total Sales’;
file print ods =

(template = ‘user.mine.c’
 dynamic = (mywid = 12)
 columns = (c1 = name

(label = ‘SalesPerson’)
 cg = loc

(generic = on
 dynamic = (chdr = ‘Location’))

 cg = sold_contracts
(generic = on
 format = 3.
 dynamic = (chdr=’Contracts’

 mywid=4))
 c4 = sales

(format = dollar11.2)
)) ;

The output will have four columns, consisting of values from the DATA
step variables name, loc, sold_contracts, and sales. The variables name
and sales are mapped to columns c1 and c4, respectively, in the tem-
plate. The heading for the column c1 will be ‘SalesPerson’ (the label
given as a column attribute), and the heading for the column c4 will be
‘Total Sales’ (the label associated with the variable sales). Both the
variables loc and sold_contracts are mapped to the generic column cg in
the template. Both specify a dynamic value for the attribute chdr. This
value will be the heading for these columns. A dynamic value is also
specified for wdth (4) for sold_contracts, which overrides the data ob-
ject dynamic specification for wdth (12). The sold_contracts column
width will be 4, while all the other columns will be width 12. Formats
are specified for the sold_contracts column (3.) and the sales column
(dollar11.2).

Default ODS Option Behavior

If no sub-options are specified for the ODS= option, the DATA step will
take a set of defaults. A default template for the DATA step
(‘base.datastep.table’) has been created and stored in the SASHELP
SAS data library. This template defines two generic columns – one
column specification maps to numeric variables, and the other to char-
acter variables. The template causes all data object columns to be out-
put, in the same order as they are defined on the data object.

This order, as previously discussed, is controlled by the order of the
column specifications in the COLUMNS= (or VARIABLES=) sub-
option. If no columns are specified, then all DATA step program vari-
ables will be added to the data object, in the same order as the DATA
step ‘sees’ the variables.

The following two FILE statements are equivalent. Note that use of the
default template forces a default of GENERIC=ON for all columns, so
the GENERIC specification is superfluous in the second FILE state-
ment.

file print ods;

file print ods = (template = ‘base.datastep.table’
generic = on);

You can use the default template in conjunction with other ODS= sub-
options. Since by default, all variables are added to the data object, a
very common usage of the default template would include a
VARIABLES= specification to subset the output columns. The follow-
ing FILE statement defines a data object with 5 columns, and will use
the default DATA step template.

file print ods = (variables = (x1 - x5));

Interactions with Other FILE Statement Options

The DATA step ODS interface uses the FILE and PUT statements. Even
though this interface mimics the standard external file output interface,
many FILE statement options are not always applicable. Some have no
use because ODS is not list oriented – it has defined data columns. The
DSD and DELIMITER= options are list oriented, and therefore have no
effect. Others don’t make sense because the physical file being written
is controlled by ODS, not the DATA step. This type of option includes
FILEVAR=, EXPANDTABS, and PAD.

The HEADER= option is not supported because it assumes a level of
control over the physical output page that is not available when using
the ODS interface. The _FILE_= option (new for Version 7) allows
access to the output data buffer directly. But for ODS, this buffer con-
tains raw unformatted data whose order is determined by alignment and
space requirements, and is not known to the user. Therefore, the option
is not supported.

There are a few options whose effects are contingent upon the ultimate
target destination, which is controlled by the ODS global statement.
Some are page oriented, and therefore only apply when the final format-
ting includes page information. The PAGESIZE= and LINESIZE= op-
tions all fall into this category. For example, the LISTING target of the
ODS statement is the listing file, and it supports the concept of pages.
However, the HTML target is a destination which does not have pages,
and is unaffected by these options.

DATA STEP: WRITING ODS DATA OBJECTS

An ODS data object consists of data columns and data rows. The FILE
statement, with an ODS= option, defines the data columns (and the
mapped DATA step variables). The PUT statement creates data rows to
be written to the data object. In the simplest form, the PUT statement
directs the previously mapped variables be moved into an output buffer
and written to the data object, thus creating a data row. More complex
forms of the PUT statement may be used, however, to exercise more
control over this processing. Particular data object columns can be ac-
cessed for a data row, temporarily overriding the defined column-
variable mappings. Multiple data rows can also be accessed.

Moving Data into the Data Object

For standard external file output, the PUT statement moves data values
into an output data buffer. At some point (usually at the end of PUT
statement execution), this formatted buffer is written to the external file.
Processing for ODS data objects is similar. The PUT statement moves
data values into an output buffer, which eventually will be written to the
data object. Each output buffer written to the data object is considered
to be a data row.

One difference between the two forms of processing involves the data in
the output buffer. For standard output, the data values are formatted into
the output buffer (i.e., any associated format is applied to the data be-
fore arriving in the buffer). However, in data object processing, raw
unformatted data is written to the data buffer. Formatting information is
‘remembered’ by the data object, but is not applied to the data until
ODS renders output to the final destination.

5

A new DATA step language element has been added to the PUT state-
ment to facilitate writing to an ODS data object. Instead of requiring
specification of the column-mapped variables in the PUT statement, a
new keyword, _ODS_, can be used. This instructs the PUT statement to
move data values for all columns (as defined in the ODS= option) from
their program data vector locations into the output buffer. For the fol-
lowing FILE statement, the two PUT statements are equivalent.

file print ods = (variables = (first_name
last_name
home_address));

put first_name last_name home_address;
put _ods_;

A null PUT statement (i.e., a PUT statement with no variables or op-
erators) causes the current output buffer to be written. Since there is no
movement of values to the buffer, this would write a data row contain-
ing all missing values to the data object.

Accessing Data Object Columns

Generally, a FILE statement with an ODS= specification and a PUT
statement with _ODS_ will suffice. This allows the mapping of DATA
step variables to a template specification, and the writing of those vari-
ables’ values into the data object for processing by ODS. But there are
situations where more flexibility is needed; more control over the data
object is required from the PUT statement. Conceptually, this flexibility
and control is supplied by the column pointer.

For standard external file output, the column pointer indicates the cur-
rent column location (in terms of characters) in an output buffer. The
next item to be formatted into the buffer will begin at this column loca-
tion. This concept has been carried over into ODS processing, except
that the column location is in terms of data object columns instead of
characters. The column ordering is defined by the column order of the
data object, which is defined by the column order specified in the
COLUMNS= or VARIABLES= sub-option. The relative position of any
variables specified on the PUT statement will be matched with the col-
umns in the same relative position in the data object.

This matching by relative position allows you to override the specified
definition for a column in a PUT statement by writing the value of some
arbitrary variable to a particular column. This override is temporary, and
lasts only for the duration of that PUT statement. The following ‘busi-
ness phone’ example demonstrates this functionality. If no value for
business_phone is available, then home_phone is used for the column in
position three.

file print ods = (variables = (first_name
last_name
business_phone));

if (missing(business_phone)) then
put first_name last_name home_phone;

else
put _ods_;

The column pointer controls can be used to position to specific data
object columns. Relative positioning (‘+’ operator) supports a numeric
expression, which is added to the current column pointer to obtain a
new column location. Absolute positioning (‘@’ operator) supports both
numeric and character expressions. A numeric expression changes the
current column pointer to the specified numeric value. A character
expression result is used to match a defined column name, and the col-
umn pointer is set accordingly. For the following FILE statement, all of
the PUT statements are equivalent.

file print ods = (variables = (one two three));
put _ods_;
put one two three;
put @1 one @2 two @3 three;
put @2 two @1 one +1 three;
put +2 three @2 two +(-2) one;
put @’two’ two @1 one +1 three;

The _ODS_ specification can be used in a PUT statement in conjunc-
tion with variable specifications and column pointer controls. In this
way, one column may be overridden, without needing to specify all
columns on the PUT statement. The location of the column pointer after
an _ODS_ specification is one greater than the maximum column num-
ber defined. So, if variable specifications follow _ODS_ in the PUT
statement, a column pointer control will be needed to reposition to the
desired column. The PUT statement from the previous ‘business phone’
example can be changed from

put first_name last_name home_phone;

to the shorter

put _ods_ @3 home_phone;

The _ODS_ specification can appear anywhere in a PUT statement.
However, note that _ODS_ causes data to be moved into the output
buffer for specific columns only if a PUT statement has not already
moved data into that column. In other words, if a PUT statement spe-
cifically moves a value into the buffer for a column via a variable speci-
fication, an _ODS_ appearing later in the PUT statement will not over-
write that buffer location. For example, the following two PUT state-
ments (from the ‘business phone’ example) create equivalent data rows.

put _ods_ @3 home_phone;
put @3 home_phone _ods_;

In the first PUT statement, the _ODS_ specification moves values for
first_name, last_name, and business_phone into the buffer. It then
positions to column 3, and explicitly overwrites the value of busi-
ness_phone with the value for home_phone. In the second PUT state-
ment, we first position to column 3 and move the value for
home_phone into the buffer. Then, the _ODS_ specification will cause
the values for first_name and last_name to be written to the buffer. But
the home_phone value in the buffer will not be overwritten, because the
PUT statement has already explicitly moved a data value into that col-
umn position. The second PUT statement would actually execute
slightly faster, because some unneeded data movement is avoided.

Accessing Data Object Rows

The flexibility and control to access multiple data object rows is also
available. This is done via the FILE statement N= option and line
pointer controls. The trailing @ can also be used to hold the buffer for
the next PUT statement.

6

The relative positioning operator (‘/’) will move the line pointer to the
next data row. If N=1, then the contents of the output buffer is written to
the data object. If N>1, then the next buffer in the N= group of buffers
is considered ‘current’. No buffers are written to the data object until the
line pointer exceeds the N= setting. When this happens, all buffers in
the N= group are written to the data object. As with standard external
file output, once a buffer is released to be written, it is no longer acces-
sible from the DATA step program. Therefore, data rows cannot be
modified once written to the data object.

The trailing @ is used to hold an output data buffer, so that the next
PUT statement can act on that buffer. This could be useful when a
small subset of columns need to be overridden in a few data rows. The
‘business phone’ example could be re-written again.

file print ods = (variables = (first_name
last_name
business_phone));

if (missing(business_phone)) then
put @3 home_phone @;

put _ods_;

As with standard external file output, it is possible in ODS processing to
specify too many items in a PUT statement. More variables could be
specified on the PUT statement than columns were defined in the ODS=
option. When this happens, the behavior depends on the current end-of-
record setting (FLOWOVER, STOPOVER, or DROPOVER). The de-
fault is FLOWOVER – the current output buffer is written to the data
object, and the ‘extra’ variable specifications are written to a new
buffer. STOPOVER causes the DATA step to stop processing with an
error. DROPOVER allows processing to continue, just ignoring the
‘extra’ variables.

EXAMPLES

The following set of examples begins with a simple DATA step using
default settings, and progresses through more complicated scenarios
with user-written, customized templates. These examples assume that
the output destination is the SAS listing file (which is the default). But,
the examples would also work for HTML destinations. The data used
for all examples is identical, and is not repeated after the first example.

Using the Default Template

The first example uses all defaults for the ODS= option. Recall that this
will use the default template (base.datastep.table), and write all variables
in the program data vector to the output destination. The associated
listing output is Output 1. Note that all columns use variable names for
headings, except for the column associated with the variable sales.
Since a label has been specified for that variable, the label is used as the
column heading.

title 'XYZ Corporate Sales Information';
data _null_;

input name $10. dept $4. loc $10. sold_contracts sales;
label sales = 'Total Sales';
file print ods;
put _ods_;

datalines;
ZRay CDD Atlanta 15 45000
Crabb CDS Charlotte 25 101500
AJonesboro SGA St Louis 12 42700
CHauser SBC Nashville 22 130150
EJohnson SBC Nashville 10 35500
;
run;

Output 1

XYZ Corporate Sales Information

sold_
name dept loc contracts Total Sales

ZRay CDD Atlanta 15 45000
CRabb CDS Charlotte 25 101500
AJonesboro SGA St Louis 12 42700
CHauser SBC Nashville 22 130150
EJohnson SBC Nashville 10 35500

If not all variables are needed in the output, you can specify exactly
what variables are needed. The next example subsets the variables writ-
ten to the data object, using the VARIABLES= sub-option. Output 2
does not contain the column associated with the variable loc.

title 'XYZ Corporate Sales Information';
data _null_;

input name $10. dept $4. loc $10. sold_contracts sales;
label sales = 'Total Sales';
file print ods = (variables = (name

dept
sold_contracts
sales));

put _ods_;
datalines;
…
;
run;

Output 2

XYZ Corporate Sales Information
sold_

name dept contracts Total Sales

ZRay CDD 15 45000
CRabb CDS 25 101500
AJonesboro SGA 12 42700
CHauser SBC 22 130150
EJohnson SBC 10 35500

Since these output listings are roughly equivalent to that available from
the PRINT procedure, there is really not much utility in using the default
template (except to avoid the procedure step). The power and flexibility
of the DATA step’s interface to ODS is in the use of custom templates.

7

Using Custom Templates

User defined customized templates can be built with the TEMPLATE
procedure. These templates are stored in SAS data libraries, and can be
easily accessed by many users. Template definitions may contain exten-
sive formatting and output information, or they may contain very little.
The amount of information contained in a template depends on its in-
tended usage and audience. If a template is to be used for a specific
application only, it may be desirable to include very specific formatting
information. If a template is to be used more as a general form for many
reports for many different users, then it should be less specific, and use
some of the generic and dynamic facilities of templates.

The complete syntax for PROC TEMPLATE has not been included in
this paper – it is extensive. But some examples of its usage must be
included to demonstrate the DATA step interface. The constructs used
in these examples should be fairly self-explanatory. The template name
is specified by the DEFINE TABLE statement. Template columns are
specified by the COLUMN statement. Column attributes are specified
by the DEFINE statement. The WIDTH=, HEADER=, JUST=, and
FORMAT= options (in the DEFINE statement) specify the width,
heading, justification, and format, respectively, for a column. Scalar
names used for dynamic substitutions at runtime are defined by the
DYNAMIC statement.

The following example defines and stores a template which contains
very specific formatting information. Column names and headings are
defined which are specific to this particular usage. The ensuing DATA
step creates the data object and associated listing output, detailed in
Output 3.

/* Define the template ‘user.mine.a’ */
proc template;
define table user.mine.a;
 column name dept sold_contracts sales;
 define name;
 width=12
 header='SalesPerson';
 end;
 define dept;
 width=12
 just=c
 header='Department';
 end;
 define sold_contracts;
 width=4
 format=3.
 just=c
 header='Contracts';
 end;
 define sales;
 width=12
 format=dollar11.2 ;
 end;
end;
run;
title 'XYZ Corporate Sales Information';
/* Create output object and listing with DATA step */
data _null_;
 input name $10. dept $4. loc $10. sold_contracts sales;
 label sales = 'Total Sales';
 file print ods = (template='user.mine.a');
 put _ods_;
datalines;
…
;
run;

Output 3

XYZ Corporate Sales Information

SalesPerson Department Contracts Total Sales

ZRay CDD 15 $45,000.00
CRabb CDS 25 $101,500.00
AJonesboro SGA 12 $42,700.00
CHauser SBC 22 $130,150.00
EJohnson SBC 10 $35,500.00

The template ‘user.mine.a’ is very specific to this ‘sales’ DATA step. It
may be difficult to reuse it for other applications. You can make the
template more flexible by using dynamic substitutions for some of the
information, and removing any ‘hard-coded’ information. Dynamic
values for these substitutions can be supplied by the DATA step through
its ODS interface.

The template in the next example (‘user.mine.b’) uses dynamic substi-
tutions for the column width (mywid) and the column heading (chdr).
Values for these dynamic substitutions are specified in the DATA step
FILE statement ODS= option. This template could now more easily be
used in other applications, because it no longer contains information
specific to the ‘sales’ DATA step.

In the ensuing DATA step, a default value for mywid (12) is specified.
This value is used as the width for all columns, except for column c3,
where the value of mywid is overridden (4). A value for chdr is also
specified as a column attribute of columns c2 and c3. The format speci-
fications for columns c3 and c4 have also been moved from the template
definition into the DATA step.

The output from this example is identical to Output 3.

/* Define the template ‘user.mine.b’ */
proc template;
define table user.mine.b;
 column c1 c2 c3 c4;
 dynamic mywid chdr;
 define c1;
 width=mywid;
 end;
 define c2;
 width=mywid
 just=c
 header=chdr;
 end;
 define c3;
 width=mywid
 just=c
 header=chdr;
 end;
 define c4;
 width=mywid;
 end;
end;
run;
title 'XYZ Corporate Sales Information';

/* Continued … */

8

/* Create output object and listing with DATA step */
data _null_;

input name $10. dept $4. loc $10. sold_contracts sales;
label sales=’Total Sales’;
file print ods = (template=’user.mine.b’

dynamic = (mywid = 12)
columns = (c1 = name

(label = ’SalesPerson’)
c2 = dept

(dynamic =
(chdr = ’Department’))

c3 = sold_contracts
(format = 3.
 dynamic = (chdr = ’Contracts’

mywid = 4))
c4 = sales

(format = dollar11.2)
));

put _ods_;
datalines;
…
;
run;

At this point, it would be easy to generate slightly different output using
the same ‘user.mine.b’ template by mapping a different DATA step
variable to one of the columns. In the following example, the variable
loc is mapped into column c2, instead of dept. The new output is Output
4.

title 'XYZ Corporate Sales Information';
/* Create output object and listing with DATA step */
data _null_;

input name $10. dept $4. loc $10. sold_contracts sales;
label sales='Total Sales';
file print ods = (template='user.mine.b'

dynamic = (mywid = 12)
columns = (c1 = name

(label = 'SalesPerson')
c2 = loc

(dynamic = (chdr = 'Location'))
c3 = sold_contracts

(format = 3.
 dynamic = (chdr = 'Contracts'

mywid = 4))
c4 = sales

(format = dollar11.2)
));

put _ods_;
datalines;
…
;
run;

Output 4

XYZ Corporate Sales Information

SalesPerson Location Contracts Total Sales

ZRay Atlanta 15 $45,000.00
CRabb Charlotte 25 $101,500.00
AJonesboro St Louis 12 $42,700.00
CHauser Nashville 22 $130,150.00
EJohnson Nashville 10 $35,500.00

Note that the definitions of the columns c2 and c3 in the template
‘user.mine.b’ are identical. The only reason to define these columns
separately is to allow for four columns in the generated output. But
since these column definitions are identical, one generic column defini-
tion could replace them. This generic column could map to more than

one data object column, thus allowing any number of columns in the
generated output. This would, once again, make the template more
flexible while reducing the amount of information in the template defi-
nition.

The following example creates the template ‘user.mine.c’, replacing the
c2 and c3 column definitions with the generic column cg. The ensuing
DATA step maps the variables loc and sold_contracts to this generic
column.

The output from this example is identical to Output 4.

proc template;
define table user.mine.c;
 column c1 cg c4;
 dynamic mywid chdr;
 define c1;
 width=mywid;
 end;
 define cg;
 generic=on
 width=mywid
 just=c
 header=chdr;
 end;
 define c4;
 width=mywid;
 end;
end;
run;
title 'XYZ Corporate Sales Information';
/* Create output object and listing with DATA step */
data _null_;

input name $10. dept $4. loc $10. sold_contracts sales;
label sales='Total Sales';
file print ods = (template='user.mine.c'

dynamic = (mywid = 12)
columns = (c1 = name

(label = 'SalesPerson')
cg = loc

(generic = on
 dynamic = (chdr = 'Location'))

cg = sold_contracts
(generic = on
 format = 3.
 dynamic =

(chdr = 'Contracts'
 mywid = 4))

c4 = sales
(format = dollar11.2)

));
put _ods_;

datalines;
…
;
run;

With the generic column now in place, more columns can be added to
the output without modifying the template ‘user.mine.c’. Additional
columns are mapped to the generic column, cg. They appear in the
output between columns c1 and c4, in the order they are specified in the
COLUMNS= sub-option. The following DATA step uses the
‘user.mine.c’ template, and adds the ‘Department’ column back into the
output. The resulting output is Output 5.

title 'XYZ Corporate Sales Information';
/* Create output object and listing with DATA step */
data _null_;

input name $10. dept $4. loc $10. sold_contracts sales;
label sales='Total Sales';
file print ods = (template='user.mine.c'

dynamic = (mywid = 12)

9

columns = (c1 = name
 (label = ’SalesPerson’)

cg = dept
 (generic = on
 dynamic =

(chdr = ’Department’))
cg = loc

 (generic = on
 dynamic = (chdr = ’Location’))
 cg = sold_contracts
 (generic = on
 format = 3.
 dynamic = (chdr = ’Contracts’
 mywid = 4))
 c4 = sales
 (format = dollar11.2)
));
 put _ods_;
datalines;
…
;
run;

Output 5

XYZ Corporate Sales Information

SalesPerson Department Location Contracts Total Sales

ZRay CDD Atlanta 15 $45,000.00
CRabb CDS Charlotte 25 $101,500.00
AJonesboro SGA St Louis 12 $42,700.00
CHauser SBC Nashville 22 $130,150.00
EJohnson SBC Nashville 10 $35,500.00

Note also that not all column definitions in a template need to be used.
ODS will attempt to match all columns in the template definition with
data columns defined for the data object. Any non-matched column
definition in either the template or the data object will be ignored.

In the following example, only the template column definitions for c1
and cg are matched up with columns in the data object. The column cd
is created in the data object, but since no match is found in the template
‘user.mine.c’, no data is output for that data column. Likewise, no data
object column is defined for c4, so that column in the template
‘user.mine.c’ is ignored. The resulting output is Output 6.

title 'XYZ Corporate Sales Information';
/* Create output object and listing with DATA step */
data _null_;

input name $10. dept $4. loc $10. sold_contracts sales;
label sales='Total Sales';
file print ods = (template='user.mine.c'

 dynamic = (mywid = 12)
columns = (c1 = name

(label = 'SalesPerson')
 cd = dept
 cg = loc
 (generic = on
 dynamic = (chdr = 'Location'))
));

put _ods_;
datalines;
…
;
run;

Output 6

XYZ Corporate Sales Information

SalesPerson Location

ZRay Atlanta
CRabb Charlotte
AJonesboro St Louis
CHauser Nashville
EJohnson Nashville

ACKNOWLEDGMENTS

The author greatly appreciates the contributions by Chris Olinger for
providing the general ODS discussion, by Nancy Agnew and Pauline
Leveille for new feature testing, and by Jason Secosky and Nancy Ag-
new for assistance in reviewing this paper.

SAS is a registered trademark or trademark of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks
of their respective companies.

The author can be contacted at

William Heffner
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
Phone (919) 677-8000
FAX (919) 677-4444
Email saswfh@sas.com

