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Introduction

Part II of this paper describes new SAS procedures for non-
parametric density estimation and nonparametric regres-
sion, two of the new directions in which statistical software
is being developed for Version 7. These procedures are
preliminary steps toward comprehensive support for mod-
ern nonparametric data analysis methods within the SAS
System. It is anticipated that the coverage described here
will expand to include a variety of other important methods.
Some of the techniques provided by the new procedures are
also being implemented as functions in SAS/IML software
and with interactive graphics in SAS/INSIGHT software.
The SUGI23 Proceedings paper by Cohen et al. (1998)
describes parallel development in SAS/INSIGHT software.

The sections that follow discuss the scope of the new pro-
cedures and illustrate their use with basic examples. The
procedures will be available as experimental software with
the initial release of Version 7, and updated information will
be provided on the Institute’s Research and Development
Web site at http://www.sas.com/rnd/. Complete documen-
tation of syntax and computational details will be provided
in a technical report.

Nonparametric Density Estimation: The KDE
Procedure

The KDE procedure computes nonparametric estimates of
univariate and bivariate probability density functions using
the method of kernel density estimation. The procedure
saves the density estimate in a SAS data set for subsequent
plotting or analysis. In the bivariate case, the procedure also
computes contours of the estimated density function.

For a univariate sample, Xi; i = 1;2; : : : ; n with probability
density function f(x), the general form of the kernel density
estimate of f(x) is

f̂(x) =
1
nh

nX

i=1

K(
x�Xi

h
)

where h is the so-called bandwidth, and K(x) is referred
to as the kernel function. The kernel function continuously
“smears out” the mass 1=n at each of the observations,
and the estimate is formed by summing these masses. The

default kernel function used by the KDE procedure is

K(x) = '(x) =
1p
2�

exp(�x2
=2)

which is the standard normal density function. For an
introduction to kernel density estimation, refer to Silverman
(1986).

For a bivariate sample (Xi; Yi); i = 1;2; : : : ; n with joint
probability density function f(x; y), the kernel density esti-
mate used for f(x;y) is

f̂(x; y) =
1
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where hX > 0 and hY > 0 are a pair of bandwidths, and
where '(x; y) is the bivariate normal density function

'(x; y) =
1

2�
exp(�x2 + y2

2
)

The approach used by the KDE procedure in the bivariate
case follows the development of Wand and Jones (1993)
but is expected to evolve with ongoing research.

The following example illustrates the basic features of
PROC KDE. An automotive industry study was carried
out to assess the octane requirements of a group of
customer-owned cars as determined by trained raters and
the customers themselves; refer to Rodriguez and Taniguchi
(1980). Based on previous studies, it was surmised that
a significant fraction of customers should be experienc-
ing knock on gasoline with an average octane number of
92.6. However, the low level of customer complaints about
knock suggested that this level satisfied most customers.
Consequently, a preliminary stage of the analysis was to
explore the joint distribution of customer and rater octane
requirements.

The following SAS statements create a data set named
OCTANE which contains the requirements.

data octane;
input Rater Customer;

datalines;
94.5 92.0
94.0 88.0
94.0 90.0
... ...
run;
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The following statements compute a bivariate kernel density
estimate from these data.

proc kde data=octane out=octden;
var Customer Rater;

run;

The output from this analysis is as follows. The Inputs table
lists basic information concerning the fit.

The KDE Procedure

Inputs

Data Set WORK.OCTANE
Number of Observations Used 229
Variable 1 Customer
Variable 2 Rater
Estimation Method Bivariate Kernel

The Controls table lists the parameters controlling the fit,
which is computed for a 60� 60 grid over the entire range
of the data with a default bandwidth. You can use the
NGRID = numlist option to specify the number of grid points
associated with the variable(s) in the VAR statement. The
default values are 401 when there is a single variable
and 60 when there are two variables. You can use the
GRIDL = numlist option to specify the lower bound for
the grid, expressed as a percentage of the range of the
corresponding VAR variable (the default is 0, indicating the
minimum value of the variable). Likewise, you can use
the GRIDU = numlist option to specify the upper bound for
the grid, expressed as a percentage of the range of the
corresponding VAR variable (the default is 100, indicating
the maximum value of the variable).

Controls

Customer Rater

Grid Points 60 60
Lower Grid Percentage 0 0
Upper Grid Percentage 100 100
Bandwidth Multiplier 1 1

The Statistics table provides standard univariate statistics
for each variable.

Statistics

Customer Rater

Mean 86.35 92.20
Variance 15.29 11.16
Standard Deviation 3.91 3.34
Range 21.60 17.50
Interquartile Range 5.00 5.00
Lower Grid Value 76.60 82.00
Upper Grid Value 98.20 99.50
Bandwidth 1.58 1.35

The Bivariate Statistics table provides the covariance and
correlation. Note that the correlation is mild (0.56).

Bivariate Statistics

Covariance 7.29
Correlation 0.56

The Percentiles table lists percentiles for each variable. You
can specify the percentiles with the PERCENTILES= option
in the PROC statement.

Percentiles

Customer Rater

0.5 76.60 83.00
1.0 77.00 84.00
2.5 77.00 85.00
... ... ...

99.5 95.00 99.00

The Levels table lists density values corresponding to con-
tours that enclose given percents of the data. For example,
90 percent of the observations have a density value less
than 0.01091. Note that the contours need to be interpreted
with caution because quantiles based on smoothed density
estimates are biased estimates of population quantiles. You
can specify the percents for the table with the LEVELS=
option in the PROC statement.

Levels

Percent Density Lower1 Lower2 Upper1 Upper2

1 0.000703 76.23 82.00 96.74 99.80
5 0.001315 76.23 84.67 95.64 99.50

10 0.001756 77.33 84.97 95.27 99.20
50 0.007350 82.82 87.93 91.98 96.83
90 0.01091 84.65 90.01 89.78 95.05
95 0.01111 85.02 90.31 87.22 92.97
99 0.01157 85.39 90.90 86.48 92.08

100 0.01166 86.12 91.79 86.12 91.79

The output data set OCTDEN contains the 3600 points at
which the kernel density estimate was evaluated. You can
display surface and contour plots of the estimate as follows:

title ’Distribution of Octane Requirements’;
proc g3d data=octden;

plot Rater*Customer=density;

proc gcontour data=octden;
plot y*x=density;

run;

These plots are displayed in Figure 1 and Figure 2. Figure 1
reveals that the data were slightly censored for low octane
requirements; in fact, there were 17 cars for which the
customer requirement was less than 76.6 RON (the lowest
octane gasoline used in the study). Both plots suggest
that the density is slightly bimodal. They also reveal that
the conditional distributions of customer requirements given
rater requirements are heteroscedastic.

2



Figure 1. Surface of Density Estimate

Figure 2. Contours of Density Estimate

An important issue in the application of kernel density esti-
mates is the choice of the bandwidth. In the univariate case,
this has been the topic of considerable research; refer to
Marron (1989) for a survey. For this case the KDE procedure
provides several methods for automatic bandwidth selec-
tion, including the method provided by Silverman (1986)
and the more recent SJPI method recommended by Jones
et al. (1996). You can use the BWM= option in the PROC
statement to specify a multiplier for the default bandwidth.

Wand and Jones (1993) note that automatic bandwidth
selection in the bivariate case is both difficult and compu-
tationally expensive. However, their study also shows that
using two bandwidths, one in each coordinate direction, is
often adequate. The KDE procedure allows you to adjust
the two bandwidths by using the BWM= option to spec-
ify multipliers for the default bandwidths recommended by
Bowman and Foster (1992):

hX = �̂Xn
�1=6

hY = �̂Y n
�1=6

Here, �̂X and �̂Y are the sample standard deviations,
respectively. These are the optimal bandwidths for two
independent normal variables that have the same variances
as X and Y , respectively. They are conservative in the
sense that they tend to over-smooth the surface. It is
good practice to work with a range of bandwidths since, as
recommended by Marron (1998), important information is
available at a number of different smoothing levels.

Suppose after viewing the preceding figures, you decide
that you would like a slightly smoother estimate. You could
rerun the analysis with a larger bandwidth pair:

ods output Levels=OutLevels;
proc kde data=octane out=octden2

bwm=2,2
levels=25 50 75 95;
var Customer Rater;

run;

The BWM=2,2 option requests bandwidth multipliers of 2
for both Customer and Rater. The results of this fit are
displayed in Figure 3. This estimate is unimodal, although
heteroscedasticity is still evident.

Figure 3. Surface of Density Estimate for BWM=2,2

You can also use the results from the Levels table to plot
specific contours corresponding to percents of the data. The
Levels table from the output using BWM=2,2 is as follows:

Levels

Percent Density Lower1 Lower2 Upper1 Upper2

25 0.003680 80.26 86.75 93.07 98.02
50 0.005471 82.46 88.53 91.24 96.53
75 0.006612 83.92 89.71 89.78 95.35
95 0.007451 85.39 91.19 88.32 93.86

You can plot the contour levels shown in Figure 4 as follows.
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data OutLevels;
set OutLevels;
if Percent = 25 then

call symput(’den25’, left(density) );
else if Percent = 50 then

call symput(’den50’, left(density) );
else if Percent = 75 then

call symput(’den75’, left(density) );
else if Percent = 95 then

call symput(’den95’, left(density) );
run;

proc gcontour data=octden;
plot Rater*Customer=density /

levels = &den25 &den50 &den75 &den95
vminor = 0
hminor = 0
vaxis = axis1
legend = legend1;

axis1 label = ( r=0 a=90 );
legend1 label = ( ’Levels’ )

value = ( ’95’ ’75’ ’50’ ’25’ );
run;

Figure 4. Level Contours for BWM=2,2

For large data sets, the number of kernel evaluations can
be prohibitive in the bivariate case. To avoid this problem,
the KDE procedure uses a binning method based on the
Fast Fourier Transform which is practically as accurate as
direct evaluation; for details, refer to Fan and Marron (1993)

Note that facilities for kernel density estimation in the univari-
ate case are currently available in SAS/INSIGHT software
and in the CAPABILITY procedure in SAS/QC software;
refer to SAS Institute Inc. (1995a, 1995b). Support for the
bivariate case, along with interactive 3D graphics, is being
added in SAS/INSIGHT software; see Cohen et al. (1998).

Nonparametric Regression: The LOESS Pro-
cedure

The LOESS procedure implements a nonparametric method
for estimating local regression surfaces pioneered by Cleve-
land (1979); also refer to Cleveland et al. (1988) and Cleve-
land and Grosse (1991). This method is commonly referred
to as loess, which is short for local regression.

Assume that for i = 1 to n, the ith measurement yi of the
response y and the corresponding measurement xi of the
vector x of p predictors are related by

yi = g(xi) + �i

where g is the regression function and �i is a random error.
The idea of local regression is that at a predictor x, the
regression function g(x) can be locally approximated by the
value of a function in some specified parametric class.

More specifically, the method of weighted least squares is
used to fit linear or quadratic functions of the predictors at
the centers of neighborhoods whose radii are chosen so
that each neighborhood contains a specified percentage
of the data points. The fraction of the data in each local
neighborhood, called the smoothing parameter, controls
the smoothness of the estimated surface. Data points in a
given local neighborhood are weighted by a function of their
distance from the center of the neighborhood that decreases
smoothly from one at the center to zero on the boundary of
the neighborhood.

In a direct implementation, such fitting is done at each point
at which the regression surface is to be estimated. A much
faster computational procedure is to perform local fitting
at a selected sample of points in the predictor space and
then blend these local polynomials to obtain a regression
surface. The points at which the least squares fitting is
done are chosen as the vertices of cells of a k-d tree
decomposition of the regressor data.

The first step in the decomposition is to select the regressor
with widest range and to divide the data into two cells about
the median of this regressor. This step is then applied
recursively to each of two resulting cells. The process
terminates when all the cells contain fewer than a specified
number of points.

Statistical inference can be done when the �i are iid normal
random variables with zero mean. Furthermore, robustness
to outliers in the data can be achieved and inference can be
done when the �i have a symmetric, long-tailed distribution
by performing iterative reweighting. In all but the first
iteration the ith data point, xi, is weighted by an appropriate
function of the residual at that point at the previous iteration.

The following example illustrates the use of the LOESS
procedure for a single regressor. During an earthquake,
both its magnitude and duration are recorded. The following
SAS statements create a data set named QUAKES which
contains the magnitudes (measured on the Richter scale)
and the logs (base 10) of the durations in seconds for 225
earthquakes which occurred on the Island of Hawaii in 1975
and 1976; refer to Bevens and Wright (1992).

data Quake;
input Magnitude logDuration;

datalines;
3.35 3.5
3.35 3.4
3.35 3.3
... ...

A plot of the data shown in Figure 5 shows that there is a
strong relationship between Magnitude and logDuration.
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The following statements compute a loess fit for the data.

ods output OutputStatistics=OutQuake;
proc loess data=Quake;

model logDuration = Magnitude /
cli
smooth = 0.1;

run;

The MODEL statement specifies the dependentvariable and
the regressor variables, which are separated by an equal
sign. A linear function (the default) is to be fit locally, and the
SMOOTH= option specifies the smoothing parameter. The
CLI option requests pointwise 95% confidence limits. The
following statements create the plot displayed in Figure 5.

symbol1 v=none i=join w=2;
symbol2 v=none i=join w=2 l=2;
symbol3 v=none i=join w=2 l=2;
symbol4 v=plus h=2.5 pct;

proc gplot data=OutQuake;
plot ( Pred LowerCL UpperCL DepVar ) * Magnitude /

overlay
hminor = 0
vminor = 0
vaxis = axis1
frame;

axis1 label = ( r = 0 a = 90 );
format Pred Magnitude 3.1 ;

run;

Figure 5. Loess Fit for Earthquake Data

For clarity, Figure 6 shows the fit without the data. Figure 6
reveals a slight bend in the relationship between logDuration
and Magnitude, which is otherwise nearly linear.

The next example illustrates the use of the LOESS proce-
dure in fitting a highly nonlinear surface in the presence of
significant noise and outliers. The statements below create
and display a data set named HATIRREGULAR in which
the variables X, Y, and Z are constructed by irregularly sam-
pling a "cowboy hat" surface with an off-centered elliptical
spike, white noise, and random spikes.

Figure 6. Loess Fit for Earthquake Data

data HatIrregular(drop=i);
do i=1 to 1000;

x = -5+10*ranuni(12345);
y = -5+10*ranuni(12345);
z = sin(sqrt(x*x+y*y)) +

5*exp(-4*(x-2)*(x-2)-y*y) +
rannor(123);

if ( ranuni(123) < 0.2 )
then z = z+10*(ranuni(123)-0.5);

output;
x = 1 + 3*ranuni(12345);
y = -1.5 + 3*ranuni(1234567);
z = sin(sqrt(x*x+y*y)) +

5*exp(-4*(x-2)*(x-2)-y*y) +
rannor(123);

output;
end;

title "Scatter Plot of Hat Surface Data";
proc g3d data=HatIrregular;

scatter y*x = z /
zticknum = 5
zmin = -8
zmax = 8;

run;

Figure 7. Scatter Plot of Cowboy Hat Surface Data
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An additional data set named SCOREHAT provides a reg-
ular grid of values at which the fitted model will be scored.

data ScoreHat;
do x = -4 to 4 by 0.2;

do y = -4 to 4 by 0.2;
zTrue = sin(sqrt(x*x+y*y)) +

5*exp(-4*(x-2)*(x-2)-y*y);
output;

end;
end;

title "Plot of True Surface";
proc g3d data=ScoreHat;

plot y*x=zTrue / tilt = 75
rotate = 45
zticknum = 5
zmin = -2
zmax = 6;

run;

Figure 8. Plot of True Surface

The following statements fit a loess model to the data
in HATIRREGULAR and score the model at the points
in SCOREHAT. The ODS OUTPUT statement creates an
output data set containing the scored data. Here, the option
DEGREE=2 in the MODEL statement requests a quadratic
fit, the BUCKET= option specifies the number of points in
k-d tree buckets, and the ITERATIONS= option specifies
the number of reweighting iterations.

ods output ScoreResults=OutScore;
proc loess data=HatIrregular;

model z=x y / degree=2
smooth=0.2
bucket=15
iterations=3;

score data=ScoreHat;
run;
proc g3d data=OutScore;

title "Plot of Scored LOESS Surface";
plot y*x=p_z / tilt=75

rotate=45
zticknum=5
zmin=-2
zmax=6;

run;

Figure 9. Plot of Scored LOESS Surface

Note that an interactive facility for loess fitting with a single
regressor is available in SAS/INSIGHT software; refer to
SAS Institute Inc. (1995a).

Nonparametric Regression: The TPSPLINE
Procedure

The TPSPLINE procedure uses a penalized least squares
method to estimate multivariate regression surfaces with
thin-plate smoothing splines. The TPSPLINE procedure
allows great flexibility in the form of the regression surface
and requires no assumptions of a parametric form for the
model. The generalized cross validation (GCV) function is
used to select the smoothing parameter.

The TPSPLINE procedure complements the methods pro-
vided by standard SAS regression procedures such as the
GLM, REG, and NLIN procedures. These procedures can
handle most situations in which the user can specify the
regression model and the model is known up to a finite
number of parameters. However, when the user has no
prior knowledge about the model or knows that the data
cannot be represented by a model with a finite number
of parameters, the TPSPLINE procedure can be used to
explore the data.

Smoothing splines are local in nature, as is the case with
other non-parametric regression methods. In kernel smooth-
ing, the smoother uses an explicitly defined set of local
weights, defined by the kernel, to produce the estimate at
each target value. Usually a kernel smoother uses weights
that decrease in a smooth fashion as one moves away from
the target points. The regression spline represents the fit as
a piecewise polynomial. The regions that define the pieces
are separated by a sequence of knots, and it is custom-
ary to force the piecewise polynomials to join smoothly at
these knots. By allowing more knots, the family of curves
becomes more flexible.

Mathematically, smoothing splines emerge as the solution
to an optimization problem. They were generally regarded
as numerical analysis tools until extensive research, pi-
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oneered by Grace Wahba, demonstrated that they have
useful statistical properties and deserve consideration as a
method for performing non-parametric regression analysis.
It is now well-recognized that smoothing splines and their
variants provide extremely flexible data analysis tools. For
more details, refer to Wahba (1990), Duchon (1976), Bates
et. al (1987), Hastie and Tibshirani (1990), Eubank (1989),
Wand and Jones (1995), Hardle and Mammen (1993) and
papers referenced there.

You can use the TPSPLINE procedure to fit either a non-
parametric model or a semi-parametric model. For the ith
observation, define yi as the response value associated
with (xi;zi), where xi is a d-dimensional covariate vector
and zi is a p-dimensional covariate vector. Assuming that
the relation between zi and yi is linear but the relation
between xi and yi is not known, you can fit the data using
the semi-parametric model

yi = f(xi) + zi� + �i;

where f is an unknown function which is assumed to be
reasonably smooth and �i; i = 1; � � � ; n are independent,
zero-mean random errors and � is a p-dimensional vector
of unknown parameters. Here, zi� is the parametric portion
of the model, and zi represents the regression variables.
The function f(xi) is the non-parametric part of the model,
and xi represents the smoothing variables.

In order to obtain an estimate which fits the data well and,
at the same time, has some degree of smoothness, the
penalized least squares method is used. This method
minimizes the quantity

S�(f) =
1
n

nX

i=1

(yi � f(xi)� zi�)2
+ �J2(f);

where J2(f) is the penalty on the roughness of f , which is
typically defined as the integral of the square of the second
derivative of f . The first term measures the goodness-of-fit
to the data, and the second term measures the smoothness
of f . The multiplier � is called the smoothing parameter
because it governs the tradeoff between smoothness and
goodness of fit. A large value of � penalizes estimates with
large second derivatives, and conversely, a small value of
� rewards goodness of fit.

The estimate f� is selected from a reproducing kernel Hilbert
space, and it can be represented as a linear combination of
a sequence of basis functions. Hence, the final estimate of
f can be written as

f�(xi) = �0 +

dX

j=1

�ixij +

nX

j=1

�jBj(xi);

where Bj is a basis function which depends on xj, and �j
and �j are coefficients to be estimated.

The smoothing parameter can be chosen by minimizing the
generalized cross validation (GCV) function.

If one expresses the fit as a linear operation

ŷ =A(�)y;

then A(�) is referred to as the ‘‘hat’’ matrix, and the GCV
function V (�) is defined as

V (�) =
(1=n)jj(I�A(�)yjj2

[(1=n)tr(I�A(�))]2
:

For a fixed �, the coefficients (�; �; �) are estimated by
solving an n� n system.

The syntax for the TPSPLINE procedure is similar to that of
other regression procedures in the SAS System. For simple
applications, only the PROC TPSPLINE and MODEL state-
ments are required, as illustrated in the following example
which uses data provided by Bates et. al (1987).

The following example illustrates the use of the TPSPLINE
procedure with a data set named MEASURE which contains
the variables X1, X2, and Y.

data measure;
input x1 x2 y @@;
datalines;

-1.0 -1.0 15.54483570 -1.0 -1.0 15.76312613
-.5 -1.0 18.67397826 -.5 -1.0 18.49722167

0 -1.0 19.66086310 0 -1.0 19.80231311
... ... ... ... ... ...

run;

The goal is to fit a surface by using X1 and X2 to model
Y. The values of X1 and X2 are distributed regularly on
a [�1 � 1] � [�1 � 1] square, and the values of Y were
generated by adding a random error to a function f(x1; x2).
The data are plotted in Figure 10.

Figure 10. Plot of Data Set MEASURE

The following statements fit a thin plate spline to the data:

proc tpspline data=measure;
model y=(x1 x2) / lambda = -4 to -2 by 0.2;
output out=estimate pred l95 u95;

run;

In the MODEL statement, the variables X1 and X2 are
enclosed by parentheses to indicate that they are smooth-
ing variables as opposed to regression variables. The
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LAMBDA= option requests a list of of GCV values with
log10(n�) ranging from -4 to -2. The OUTPUT statement
specifies that the predicted values and 95% confidence lim-
its are to be saved in an output data set named ESTIMATE.
Output from the procedure is displayed in Figure 11, and a
partial listing of ESTIMATE is shown in Figure 12.

The TPSPLINE Procedure

Summary of Input Values

Number of observations 50
Number of unique observations 25
Number of independent variables 1
Number of regression variables in the model 0
Number of smoothing variables in the model 2
Dimension of polynomial space 3

GCV Function
log10 of
(nLambda) y

-4 0.019215
-3.8 0.019148
-3.6 0.019082
-3.4 0.019074
-3.2 0.019286

-3 0.020117
-2.8 0.022462
-2.6 0.028132
-2.4 0.040411
-2.2 0.064699

-2 0.109387

Summary Statistics
of Final Estimation

Parameters y

Lambda 0.000006681
Smoothing Penalty 2558.143225
RSS 0.246110
Tr(I-A) 25.406797
DF 24.593203
Standard Deviation 0.098421

Figure 11. Output from the TPSPLINE Procedure

The data set MEASURE contains 50 observations with 25
unique design points. The value of � that minimizes the GCV
function is around 10�3:5=50. The final fit is based on � =

0:000006681. The residual sum of squares (RSS) for this fit
is 0.246110, and the degrees of freedom is 24.593203. The
standard deviation, defined as RSS/(Tr(I-A)), is 0.098421.
These values differ slightly from those obtained by Bates et
al. (1987) who used somewhat different stopping criteria in
the search for �; however, the final fits themselves agree
closely. A plot of the fitted surface in ESTIMATE is shown
in Figure 13; the surface is coarse because the data points
are sparse. The following statements produce a smoother
surface. First, the DATA step is used to generate a finer
grid. Then the SCORE statement is used to evaluate the
fitted surface at these design points. The fitted values saved
in PRED Y are displayed in Figure 14, which suggests that
a quadratic parametric model would also provide a good fit.

Obs x x2 y y_p y_u95

1 -1.0 -1.0 15.5448 15.6474 15.5115
2 -1.0 -1.0 15.7631 15.6474 15.5115
3 -0.5 -1.0 18.6740 18.5783 18.4430
...

50 1.0 1.0 15.9014 15.8761 15.7402

Figure 12. Data Set ESTIMATE

Figure 13. Fitted Surface Using Values in ESTIMATE

data pred;
do x1=-1 to 1 by 0.1;

do x2=-1 to 1 by 0.1; output;
end;

end;

proc tpspline data=measure;
model y = (x1 x2) / lambda = -4 to -2 by 0.1;
score data=pred out=pred_y;

run;

Figure 14. Fitted Surface Using Values in PRED Y
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Note that the computational facilities of PROC TPSPLINE
are being made available in SAS/INSIGHT software and as
functions in SAS/IML software.
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