Dressing Up Your Version 6 Objectsto be Version 7 Components
Glen R. Walker, SAS® Institute Inc, Cary, NC
Tammy L. Gagliano, SAS Institute Inc, Chicago, IL

ABSTRACT

Version 7 SAS/AB software exploits the SAS Component Object
Model (SCOM) Architecture to provide application developers with a
rapid application development tool for object-oriented applications. All
existing applications will continue to run under Version 7 with no
changes; however, with minimal work, your legacy classes can be
enhanced to fully exploit the new features. In this paper we will discuss
the few simple steps you can take to make your existing classes work as
SCOM components and what advantages this will bring.

INTRODUCTION

While the BUILD environment is new and improved, much effort was
put into Version 7 to ensure that your existing classes (referred to as
legacy classes) operate as expected with no additional work on your
part. You can till view the same object and region attribute windows
when you create an instance of your class at design time. Any custom
attribute windows you created will also work. And while the Class
Editor has been significantly enhanced, both from a user-interface
perspective as well asits feature set, you can still modify and maintain
your legacy classes using it.

There are some major differencesin theinternals of the class entry itself,
however. Most of the changes will be transparent. But in order to move
your application forward and take advantage of the new features, there
are some basic concepts that you will need to learn such as

e What isdot syntax?
* How are attributes different from instance variables?

* What isattribute linking and how can you exploait it in your
application design?

e Why should you add method signatures to your methods?
* How does method scoping affect your component design?

All of these issues are described in more detail throughout the remainder

of the paper. But to give you a sneak preview as to why you'd want to
incorporate any of these changes, let's take a quick look at what a
difference Version 7 will make.

In Version 6, if you wanted to change some of the characteristics of a
graph output object, at run-time you’d find yourself writing the
following SCL program:

call notify('obj1','_set_border_title_' 'title’);
call notify('obj1','_set_border_style_','embossed’);
call notify('obj1','_set_border_color_','red");
call notify(‘'obj1','_set_graph_','sasuser.sugi.af.grseg’);
put obj1=;
/* obj1 = 'sasuser.sugi.af.grseg’; */

Note the PUT statement which references the object by its name. The
value printed would be the name of the graph displayed which is the
value of the object itself.

In Version 7, the code would look like:

GraphOutputl.borderTitle = 'title";
GraphOutputl.borderStyle = 'embossed’;
GraphOutputl.borderColor = 'red’;
GraphOutputl.graph = 'sasuser.sugi.af.grseg’;

About the same number of SCL statements are used but notice the
consistency in the Version 7 coding style. This is referred to as dot
syntax. The syntax is exactly the same across all objects. No need to
have to memorize the many different method invocations, just to set or
get values on an object.

Also note that the object name ‘GraphOutputl’ is longer than 8
characters and is used as the first level qualifier in the dot notation.
Using dot syntax in Version 7, the object name is used to reference the
object’s ID, not its value.

Expanding our example to include querying an object for specific
values. Sample Version 6 code:

list = makelist();

call notify('obj1','_get_region_",list);
title = getnitemc(list,'border _title);
style = getnitemc(list,'border_style');
color = getnitemc(list,'border_color");
put title= color= style= obj1=;

rc = dellist(list);

Retrieving attributes, Version 7 style:

put GraphOutputl.borderTitle=
GraphOutputl.BorderStyle=
GraphOutputl.borderColor=
GraphOutputl.graph=;

The number of lines has been reduced. And again, there is a significant
difference in the coding style. This example clearly illustrates the user-
friendliness of dot syntax over having to create and manage lists using
SCL list functions to perform the same functionality.

Before we discuss more Version 7 (V7) enhancements, it would
probably be useful to briefly review how things worked in Version 6
(V6) with respect to class structures — specifically what functionality
instance variables provided.

How ThingsWorked in Version 6

In V6, information about a class was stored in instance variables (IVs).
IVs had a name, type, initial value and whether they were automatically
initialized when an SCL method executed (automatic IVs). All objects
created from the same class had the same set of IVs.

In class method code, Vs were directly accessed via SCL list functions.
For example, if you have a legacy class with an IV caltdr, you
would access it using

rc = setnitemc(_self_, ‘red’, ‘color’);
value = getnitemc(_self_, ‘color’, 1,1,”);

Since IVs are considered private class information and should only be
modified directly from within class code, methods (such as getColor and
setColor) would need to be implemented for the class to surface this
same information for users. Often the ability to set IV values were
surfaced through the object attribute window as well. The combination
of object attribute windows and methods provided users of the class a
way to set these values both at build-time and programmatically at run-
time.

How ThingsWork in Version 7

In V7, the focus has shifted from the use methods to control an object’s
behavior to using attributes.

Keeping with the same example used above, in V7 you can implement
color as an attribute. You, as well as users of your class, can then use
the same dot syntax to query and set its value. For example,

objectName.color = ‘red’;
value = objectName.color;

The component does not need the traditional setColor or getColor
methods which were required in V6 to give the users access to the
underlying IVs. As a result, application development and maintenance
costs will be dramatically reduced using this approach since the class
can be leaner with fewer methods to implement. The dot syntax is clean
and consistent — whether you're accessing it as the component developer
or a user of the component in a frame.

Another advantage of using attributes is that they eliminate the need to
design and maintain individual object attribute windows for each class.
Attributes are displayed automatically in the new Properties window
providing a consistent and easy-to-use interface across all components
in a frame.

New features such as the support for multiple selections also makes it
easy for you to change the value for the same attribute on several
components at one time. For example, if | have three container box
controls in my frame and | want all three to use the same font for their
border TitleFont attribute, | can select all three controls and in the
Attributes table, change the font once. The change gets applied to all
currently selected components.

Overall, attributes are smarter than IVs. They contain much more
information about themselves than name, type and initial value. The
information stored for an attribute is commonly referred to as its
metadata.

Item Description

name the name of the attribute

description a short description for the attribute which appears
as help information on the Class Editor and
Properties windows

type specifies the type of data stored which can be
character, numeric, list, object or array

state specifies whether the attribute is new (N),
inherited (l), overridden (O) or a system (S)
attribute

category specifies a logical grouping for the attribute used
by the Class Editor and Properties window to
group related attributes

initialValue specifies the initial value of the attribute

validValues specifies a set of valid values for the attribute

editor specifies a FRAME, PROGRAM or SCL entry

that allows a user to enter a value for the attribute.

If supplied, the editor is automatically launched
by the Properties window when a user clicks the
ellipses button in the value cell

autoCreate specifies if the attribute is automatically created
(valid for list and object types only)
scope controls permission level for accessing the
attribute
editable indicates whether the attribute can be modified or
just queried
linkable specifies whether the attribute is linkable
sendEvent specifies whether the attribute automatically
sends an event when modified (i.e.,
“attributeName changed”)
textCompletion specifies whether user-supplied values for the
attribute are matched against items in the
validValues metadata for text completion
honorCase specifies whether user-supplied values must
match the case of items in the validValues list
setCAM specifies the name of the custom access method to
be invoked when the attribute value changes
getCAM specifies the name of the custom access method to

be invoked when the attribute value is queried
Table 1: Attribute Metadata

Through the use of attributes in your component design, you can take
advantage of

. dot syntax to set or query data items that were previously
available to you via the V6 style object attribute or region
attribute windows.

. attribute linking which enables rapid application
development by allowing you to define and then connect
attributes of different components

. additional ways of establishing communication between
objects in your frame applications such as model/view and
drag and drop which can also be easily accomplished
through the use of attributes

. use of the new Properties window which eliminates the need
for you to have to develop and maintain individual object
attribute windows.

Creating Attributes from Instance Variables

The Class Editor provides you with an easy way to change your
component so that you can begin using attributes instead of IVs. By
default, an attribute list is created and stored on the legacy class for you.
For every IV on your class, an attribute is created with the same name
and type and is displayed in the attributes table.

For all practical purposes, IVs have been replaced by attributes. They
remain a part of the class structure for compatibility purposes only.
They still exist; however, if you choose to continue using IVs in your
component design, you need to be aware that the following limitations
exist:

. You cannot use SCL dot syntax to access IVs. To create, set or
retrieve values stored as an IV, you must use the appropriate SCL
list function.

. the BUILD environment, specifically the Class Editor, does not
provide a mechanism for you to add an IV to a class. Adding an IV
can only be done programmatically using SCL.

Stepsfor Enhancing a Version 6 Classto Becomea Version 7
Component

Follow these simple steps:

1st. Decide whether you're going to modify an existing class in place

or make a copy of the class to create a completely new component.

We refer to it as a ‘component’ to indicate that its design takes
advantage of the SCOM architecture.

In our example, we're making a copy of the SAS/IGRAPH® Output
class and naming it the Graph Output Control. We will not have to
rewrite any of the underlying class implementation. Rather we will add
our enhancements on top of what is there, taking advantage of what's
already in place.

2nd. Review the list of IVs used by the class that you want to surface as
attributes and define the appropriate metadata for each attribute.
This process is where the bulk of the changes are made and is
described in more detail below.

3rd. All legacy classes when edited in the Class Editor will have
objectNameUsage as an attribute. For V6 compatibility purposes,
the value for this attribute imlue. As mentioned earlier, this is
because in V6 when you reference the object by its name in your
SCL, you are actually setting or querying the value of the object.
For example, if you have a text entry control (OBJ1) in a frame,
and you want to set the text to display, you can use

OBJ1 = ‘This is my string’;

In V7, in order for you to use dot syntax, you must change the value for
the objectNameUsage attribute to béD. This indicates that when the
object name is referenced, it represents the object ID for the object, not
its value. So you can do things like

OBJl.text = ‘This is my string’;
wheretext is the attribute on OBJ1 that you are changing.

Or, if you leave the value for this attribute as the default, SCL
programmers can still program using dot syntax in their SCL by using
the new DCL statement to locally declare the variable as an object.

For example:

DCL sashelp.fsp.efield.class textobj;
INIT:
frame._getWidget(‘obj1’, textobj);
textobj.text = ‘This is my string’;
return;

4th. From the Class Editor’'s Class Settings window, specify that you
want to use the new Properties window to display the properties of
your component. You will no longer need to support individual
object attribute windows for your components.

Example: Graph Output Control

The V6, SAS/GRAPH Output Class functions primarily as a graph
viewer. It enables you to build frames to display SAS/GRAPH output
images (or GRSEG entries). Our Graph Output Control will offer this
same functionality but through the use of attributes instead of methods.

Step two involves examining the list of IVs the legacy class uses. From
this list along with what features were surfaced previously via the
object’s attribute window, we need to decide which ones should be
surfaced as attributes in our new component.

When editing the class from the Class Editor, SAS/AF software makes
this process of examining the IVs simpler by automatically creating an
attribute list on the class for you. In the Attributes table, you will see
that an attribute has been created with the same name as each IV on
your legacy class. Since the IV list and attribute list are stored
separately on the class, behind-the-scenes a link is established between
the attribute and the IV. This allows existing code to function as is
since it's written to access IVs. But more importantly, the link enables
you to move forward and begin using the new dot syntax in your SCL.

It ensures that when you use dot syntax to change or query an attribute,
the value is actually stored and retrieved from the IV.

The features we want to surface as attributes in our component are:

. the name of the graph to display
. how the graph is resized and scaled
. whether horizontal or vertical scrollbars display

These are the ones you want to make PUBLIC attributes. If an attribute
is PUBLIC, it displays in the Properties window and can be set (if
EDITABLE ='Yes’) or queried from any SCL code. [f an attribute is
PRIVATE, only the class instance can access it via its method code. For
PROTECTED attributes, only the class and any subclasses can access it
from method code. By default, all new attributes are added as PUBLIC
attributes, including the ones added based on the IV list.

It is possible that the initial attribute list may need to be cleaned up
since it was created from the IV list and many of the Vs were added for
internal use only. You can do this one of two ways:

. change the scope to PRIVATE which will leave them as attributes
but limit their accessibility to the class instance only

. delete them from the Attributes table. Remember, this will not
automatically delete the IV that it is linked to since IVs are stored
separately on the class. You have to specifically tell the Class
Editor to delete the associated IV. It will prompt you when
deleting the attribute.

So for our component, we're left with the following attributes. The first
thing we'll do is rename them to something more meaningful and assign
their metadata as follows:

Attribute = graph (IV=GRSEG)

editor sashelp.classes.grsegEntryEditor.scl
setCAM setcamGraph
description Returns or sets the name of the GRSEG entry to

be displayed

Attribute = magnify (IV=MAGNIFY)

initialValue 100

setCAM setcamMagnify

description Returns or sets the percentage to scale the greph

based on the graph’s natural size. Only valid
when the graph is not resized to fit the containing
region

Attribute = resizeT oFit (IV=CONTORT)

initialValue No

validValues YesNo
setCAM setcamResizeToFit
description Returns or sets the state that determines whether to

resize the graph output both horizontally and
vertically to fit the shape of the containing region

Attribute = scrollbars

initialValue No

validValues YesNo

setCAM setcamScrollbars

description Returns or sets the state that determines whether

vertical and horizontal scrollbars are displayed

Explanations for some of the metadata settings are described below:

initialValue
indicates what value to use by default if the user does not specify a
different value when creating an instance of the component.

validValues

are useful when the attribute has a discrete list of valuesthat are valid.
The Properties window uses this information to display a combo box
control in the table cell when the user clicksin the value cell to change
the attribute’s value. In the Class Editor, you can specify

» alist of values separated by blanks or by a ‘/’ (forward slash) for
items with embedded blanks

* the name of an SCL or SLIST entry preceded with ‘\' (back slash).
In this case, the list is obtained from the SLIST entry or by
executing the SCL entry at run-time allowing you to create a
dynamic list of values

This information is also used for validation purposes when dot syntax is
used to change the attribute’s value.

textCompletion
only valid when validValues are present. Used in our class because we

want _setAttributeValue (which is discussed later in more detail) to
perform text completion to find a match on the value.

For example, if the user specifies
graphoutputl.scrollbars = ‘Y’
we want the value to actually complete and store as ‘Yes'.

honorCase
again only valid when validValues are present. Used in our class
because we don't care what case the user types the value in, we want the
textCompletion to perform ignoring the case. For example, if the user
specifies

graphoutputl.scrollbars =y’
we want the value to actually complete and store as ‘Yes’

editor

assigned for thgraph attribute to display a catalog entry selector which
only lets the user choose GRSEG entry types. In this example, the editor
is an SCL entry that has the following code

entry optional= objectlD:object classID:object
environment:string(2)
framelD:object attributeName:string(32)
attributeType:string(83) value:string(83);
INIT:
value = catlist('**", ‘GRSEG’, 1, 'Y");

return;

Another example of an editor would be a FRAME entry that's designed
to assist the user in selecting a color.

Specific rules must be adhered to when designing your editors. They
must use the above ENTRY statement as those are the variables that
SAS/AF software guarantees will be passed in and can be used by the
editor code.

» objectlD, is the name of the object that is currently being edited

» classID, is the ID of the object or class currently being edited

* environment, indicates whether the editor is being invoked from the
Class Editor (‘CE’) initialValue cell or from the Properties window
(‘PW’) value cell

» attributeName, is the name of the attribute being edited

» attributeType, is the type of the attribute

» value, is the current value of the attribute and when the editor is
closed, is the value that gets passed back and set in the table cell

All of the new attributes in our graph output component should also
have the following metadata defined:

scope=public

which offers the least restrictive access and will automatically display in
the Properties window when an instance of the object is created in a
frame

editable=yes
because we want users to be able to change the value on the instance

linkable=yes

because we want to be able to let users set attribute links for this
attribute to obtain its value from another attribute. For example, the
application may have a text entry control (textentryl) on the frame along
with the graph output control. You want the value forgtaph

attribute to be set to whatever the user types itettteattribute for the

text entry control.

You can set up an attribute link via the Properties window such that the
graph attribute has a link dbxtentryl.text. At run-time, as the user

types the 4-level name of a GRSEG entry into the text entry control, the
graph control will automatically display the graph due to this attribute
link having been set.

For more detail on attribute linking and how it works, refer to a separate
paper titled Version 7 SASAF Software - The New Component
Technology by the same authors.

sendEvent=yes
to automatically send an ‘attributeName changed’ event when the

attribute value changes.

This event is the key behind attribute linking. All linked attributes have
handlers automatically set up to be listening for these ‘changed’ events
and update themselves appropriately. In the above example, by setting
an attribute link for thgraph attribute to beextentryl.text, an event
handler was automatically set for the graph output control to be listening
for the text changedévent. The graph’s event handler then gets the
current value ofext and sets it on thgraph attribute. No SCL
programming is required to establish this kind of communication
between objects. It's part of the SCOM architecture that all components
inherit for free.

category="Data’

which is the category used by all SAS supplied components to indicate
they are key attributes on the object (versus other categories like
Appearance, Drag and Drop, Size and Location which are typically
inherited attributes from Widget or Object class) and can easily be

accessed under this category in the Properties window or Class Editor
navigation tree.

setCAMs and getCAMs

If somekind of additional processing needs to take place when the
attribute valueis either set or queried, you can assign a method to an
attribute asits sstCAM or getCAM. Whileit might be tempting to
access the attribute by invoking these methods directly, which was the
V6 way of doing things, thisis discouraged. Instead, you should

. use dot syntax as described earlier
. use _setAttributeValue or _getAttributeValue method calls

To get aclearer picture on when and how the CAMs are utilized, it
might help to explain the flow of control when an attribute’s value is
queried or changed.

Basically, when you use dot syntax, it gets translated internally to
_setAttributeValue or _getAttributeValue method calls. These methods
are inherited from the Object class and contain a lot of functionality.
They are the backbone to much of the behavior attributes provide.

For example, some of what the _setAttributeValue method does is that it

. verifies the attribute exists
. verifies the type of the attribute matches the type of the value
being set or queried
. on a set call, validates the value against the validValues list if one
exists
. invokes the setCAM or getCAM appropriately if they exist
. on set calls, if none of the above conditions have produced an error
condition, the method then
O stores the value either on the attribute list or on the IV list
if it is linked to an IV
O sends the ‘attributeName changed’ event if the attribute
has sendEvent="yes’

If you were to invoke the setCAM or getCAM method directly, all of the
above functionality would be lost. Your application might not perform
as expected since functionality like attribute linking and keeping the IV
and attribute value in sync would be lost.

Here is an example of what the setCAM code would look like for our
Graph Output Control:

useclass sashelp.classes.graphoutput_c.class;

[* _setcamGraph: setcam for graph attribute*/
setcamGraph: method attrvalue:update:char(83)
return=num;

_setGraph(attrvalue);

return (0);
endmethod;

/* _setcamM agnification: secam for magnification
attribute*/
setcamMagnification: method attrnvalue:update:num
return=num;

_setMagnification(attrnvalue);

return (0);
endmethod;

/* setCAM for resizeT oFit attribute */
setcamResizetofit: method attrvalue:update:char return=npm;
if errorMessage ne " then return (4);
_setContort(attrvalue);
return (0);

endmethod;

/* setCAM for scrollbarsattribute */
setcamscrollbars: method attrvalue:update:char(3)
return=num;
if errorMessage ne " then return (4);
if upcase(attrvalue) = 'YES' then _scrollbarsOn();
else _scrollbarsOff();
return (0);
endmethod;

enduseclass;

As you can see, the method code is simple and basically turns around
and invokes the appropriate V6 method so as to alter the object’s
behavior as expected.

The other thing to point out about the setCAM for dtrel|bar s and
resizeT oFit attributes is the first line

if errorMessage ne “ then return (4);

This line is used because the attributes have validValues defined as part
of their metadata. Part of what you get for free when you assign a
validValues list is that when the user changes the value of the attribute
and _setAttributeValue gets called, it performs validation against the
validValues list and will set the value @fror M essage to indicate that

the value being entered does not exist on the validValues list. This may
or may not be acceptable as there might be situations where you want to
support other options that aren’t on the validValues list.

By checking the value @ ror M essage, you can choose to return from
your setCAM immediately or continue. In both of our CAMS, if the
value is not on the validValues list (i.e. “Yes’ or ‘No’), we do not want
the CAM to successful complete so we set the return code and it exits
immediately.

When writing setCAMs or getCAMs, there are method signature
requirements that your CAMs must adhere to since these methods get
invoked internally by SAS/AF when the attribute value is queried or
changed. For example, the return argument on your setCAM gets
propagated down as the return argument for the _setAttributeValue call.
This is then used by the Properties window to know whether or not to
display an error condition for the attribute being changed. The
following rules apply:

rc = 0, that indicates the _setAttributeValue call was successful

rc > 0, that indicates the _setAttributeValue call was not successful and
displays an error dialog containing the message stored in the object’s
error Message attribute

rc < 0, indicates the _setAttributeValue callwas successful but there
is a NOTE or WARNING message display. The Properties window
again displays the message storeer itor M essage.

As the component developer, if you do not like the default error message
that is provided, you can also change the valieerafr M essage
attribute in your CAM code and it will be displayed instead.

Are Methods Needed Anymor e?

With the exception of possibly implementing setCAM or getCAM
methods, there has been little discussion about methods. Methods were
the primary means for controlling the behavior of an object in Version

6. How do methods play a part in this new component architecture?

Methods have not disappeared in Version 7, by any means. But as
discussed above, if a component is designed correctly, most of the basic
manipulations of the component can be controlled by getting and setting

attribute values. Methods are still needed to request actions from a
component, for example

rc = obj1.printY ourself();

Methods are also used to trap events as event handlers. (As an aside,
events and event handlers can now be defined on your class using the
Class Editor. Per-instance methods, events and handlers can also be set
viathe Properties window at build-time.)

When writing new methods or even maintaining existing class methods,
there are some significant enhancements you should consider taking
advantage such as

. follow the new method name conventions when creating new
methods

. use dot syntax when invoking methods

. utilize the method metadata that is now available for each
method such as specifying a method’s signature, its scope as
well as a description for documentation purposes

New Naming Conventions

In V6, SAS/AF used underscores to separate words in method names
(e.g., _set_text_color_). In V7, the embedded and trailing underscores
have been removed from all SAS/AF methods, making them easier to
type. For example, _setTextColor is valid and equivalent to
_set_text_color._.

In the Class Editor and Properties window, all inherited method names
are displayed using the new naming convention; however, existing code
which uses the old style will still function with no modification.

Dot Syntax For Methods

Along with the new style of method names which improves the
readability of your SCL program, the use of dot notation to invoke your
methods will also reduce your programming effort. For example,
previously, you would invoke a method as follows:

call send(object, ‘_set_text_color_’, ‘red’);
In V7, you can invoke the method using dot syntax as follows:
object._setTextColor(‘red’);

The above is easier to type with fewer quotes and underscores. This will
hopefully lead to fewer typos. This new syntax also allows for methods
to have return arguments which were not previously supported in V6.
For example, the method used to retrieve the color could defined as
follows:

dcl char(15) color;
color = object._getTextColor();

The DCL statement is also new in Version 7. It is similar to the
LENGTH statement in that in the above example, it lets you define a
local SCL variable type as character with a length of 15. The DCL
statement has many other features which you will want to explore.

Method Signatures

Using dot syntax to invoke your methods brings you much more benefit
than just improved program readability. Combined with registering
method signatures for your methods, it also brings you compile time
syntax checking as well as run-time performance gains. Method
signatures are part of the metadata that can be defined along with a
method description and its scope.

In the Class Editor, method signatures can easily be added to even
existing methods using the Method Signature Window. When defining

a method signature, you specify information about the arguments passed
in on the method invocation as well as whether the method supports a
return argument.

SAS/AF uses this information at compile time and will show compile
errors in situations where the method you are trying to invoke does not
exist on the object or if the arguments you're passing in are too many or
too few or of the incorrect type. As you can see, this could greatly
reduce the amount of time you spend at run-time catching these errors.

The following chart describes the metadata defined for each argument
which can be entered in the Method Signature window.

name name of the argument primarily used for
documentation purposes and for sample method code
generation that the Class Editor provides for cut and
paste into your SCL entry

type argument type which can be character, numeric, list,
object or array

inout whether the argument is to be used as an INPUT,
OUTPUT or UPDATE value

description argument description for usage and documentation

purposes only

Table 2: Method Signature Argument M etadata Descriptions

Method Scope
Method scope information is also verified at compile time. If a method

is marked PRIVATE, for example, but a user of your class tries to

invoke it from their FRAME SCL, the error will be caught at compile

time. PRIVATE indicates that only an instance of the class can invoke
the method within its class method code. PROTECTED means the class
or its subclasses can invoke the method. PUBLIC means the method
can be invoked from anywhere. In V6, basically all methods were
‘public’ methods.

How Else Can You Enhance Your Component?

There are other attributes that your component inherits from the Object
and Widget classes that you should explore:

e draglnfo anddroplnfo
* mode
» defaultAttribute

These are discussed in more detail in a separate pape¥étkon 7
SASAF Software - The New Component Technology, by the same
authors. This paper focuses on component technology with respect to
the different ways you can establish communication between objects in
your application. The internals of attribute linking, drag and drop and
model/view through the use of interfaces all are discussed in more
detail. Check it out!

CONCLUSION

The primary goal behind our development efforts for Version 7 SAS/AF
software was to add value and increase the return on the investment you
have already made in your application development software. Along
with that goal, we also wanted to ensure the integrity of your existing
applications such that they would run as is in Version 7 with no
additional effort on your part.

Keeping those goals in mind, it was clear that we needed to provide a
migration path that would enable you to easily bring your components
and applications forward. Hopefully, this paper illustrates how that can
be done. And as you begin using these new features, you will discover
that the majority of the product enhancements point to designing
smarter components which will result in less programming and
maintenance efforts in the future.

AUTHORS

Tammy L. Gagliano

SAS Ingtitute Inc.

Two Prudential Plaza, 52nd Floor
Chicago, IL 60601

phone: (312) 819-6824

email: sastlg@unx.sas.com

Glen R Walker

SAS Institute Inc.

SAS Campus Drive

Cary, NC 27513

phone: (919) 677-8000
email: sasgrw@unx.sas.com

SAS, SAS/GRAPH, and SAS/AF are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ®

indicates USA registration.

Other brand and product names are registered trademarks or trademarks

of their respective companies.

