
1

DATA Step in Version 7: What’s New?
William F. Heffner, SAS Institute Inc., Cary, NC

INTRODUCTION

This paper describes some enhancements in the DATA step and its
associated environment in Version 7. These enhancements include new
rules for names, longer character variables, new functionality for the
FILE and INFILE statements, new SAS® file I/O features, new exten-
sions to the DATA step language (including new functions), and some
performance improvements.

NAME SPACE AND VARIABLE ATTRIBUTE
ENHANCEMENTS

Names

The most visible (and most requested) change in Version 7 involves
SAS names. By default, the maximum length for many SAS names has
been increased to 32 (from 8 in previous versions). Specific to the
DATA step, variable names (including array names), window names,
and statement labels may now consist of up to 32 characters. The ‘rules’
for forming these names (except for the length) have not changed from
Version 6. The first character must be a letter (A, B, C, …, Z) or an
underscore (_), and subsequent characters can be letters, digits (0, 1, …,
9), or underscores.

Version 7 supports mixed (upper and lower) case names by default. The
SAS System will store these names exactly as first given, without upper-
casing. This differs from previous versions where names were always
normalized (uppercased). Note, however, that even though Version 7
will store these names in mixed case, they will be processed in a case
insensitive manner (i.e., as if they were normalized, or uppercased).
Names whose spellings differ only in the case of the characters are con-
sidered to be the same name. The following names would all reference
the same variable.

A_DOG_CHASES_A_CAT
A_Dog_Chases_A_Cat
a_dog_chases_a_cat

The SAS System will validate these SAS names based upon the value of
the new option VALIDVARNAME=. There are four valid values (V7,
UPCASE, V6, ANY) for this option to specify applicable name valida-
tion rules. The default setting is VALIDVARNAME=V7, and gives the
behavior described above.

Setting the VALIDVARNAME option to UPCASE indicates that longer
V7 names are allowed, but the names will be uppercased (as in Version
6) by the SAS System upon entry. To restrict these names even further,
VALIDVARNAME=V6 may be used. This causes the Version 6 rules to
be used (maximum of 8 characters and names are uppercased).

The last accepted value, ANY, is an experimental feature of
VALIDVARNAME=, and will only work with the DATA step and the
SQL procedure. This setting allows V7 names (32 characters, mixed
case), but will additionally allow any character in any position in a
name. This includes blanks, punctuation, arithmetic operators, and any
other special characters. Use of these special characters in a name, how-
ever, requires a special delimiter, so that the SAS System can parse it
correctly. That special delimiter consists of quotes (single or double)
and the letter ‘N’ (or ‘n’). The following example is valid when
VALIDVARNAME=ANY and produces a data set with 3 variables (‘A
dog chases a cat’, ‘3+3’, and ‘normvar_6’).

data strange;
‘A dog chases a cat’n = 5.5;

“3+3”n = ‘Six’;
normvar_6 = ‘3+3’n;

run;

Other, more global, names in the SAS System also have new attributes.
Member names of SAS data libraries (e.g., SAS data files, SAS data
views, catalogs, and indexes) all have the new maximum limit of 32
characters. Whether these names can support mixed case is dependent
upon the host platform or the underlying engine. Also dependent upon
the host platform, catalog entry names may also be up to 32 characters
and support mixed case. The SAS macro language also supports the new
maximum limit. This includes macro names, macro variable and win-
dow names, and macro statement labels.

The maximum length for SAS file librefs, external I/O filerefs, pass-
words, formats, and informats all remain unchanged (8, except for in-
formats, which is 7). Function and CALL routine name lengths remain
at 16.

The maximum length for descriptive labels has also been increased in
Version 7. The limit is now 256 characters, raised from the previous
maximum of 40. DATA step variable labels (assigned with the LABEL
or ATTRIB statement), as well as SAS data set labels (assigned via the
LABEL= data set option), are affected.

Character Variables

In previous versions of the SAS System, no more than 200 characters
could be contained in character variables. This limit has been increased
in Version 7 to 32,767 (32K - 1) characters. All language constructs
which explicitly specify lengths for character variables will allow this
length. This includes statements (LENGTH, ATTRIB, and ARRAY),
format and informat specifications, and any statements which bind
character variables to formats or informats (FORMAT, INFORMAT,
PUT, and INPUT).

Length defaulting for implicitly defined character variables remains as
in Version 6. If no length information is available upon the first variable
reference, the length is 8. Target variables of assignment statements will
default their length based on the length of the source expression. In the
following example, the variables one, two, three, and four have lengths
of 3, 8, 753, and 32,000, respectively.

data _null_;
length a $ 3 d $ 32000;
format c $char750.;
set work.indata (keep a c d);
one = a;
input two $;
three = c || a;
four = compress(d);

datalines;
…
;

The variable one is defaulted to length 3 because it is the target of an
assignment where the source expression (the variable a) is length 3. The
variable two takes the default of 8, because there is no length informa-
tion when the variable is first seen. The variable three is given length
753, which matches the source expression (length of c, 750, plus length
of a, 3). And, because the function COMPRESS is defined to return a
result variable the same length as the first argument, the variable four
takes the same length as d, 32,000.

Certain functions (REPEAT and RESOLVE, for example) are defined to
return result values whose length is the largest allowed. Their results are,

2

basically, unbounded. In Version 7, these functions could return values
with lengths of 32,767. To avoid defaulting character variables in older
programs to this maximum length, the DATA step will not default target
user variables of these type of functions larger than 200. Even though
REPEAT could create a very large string, the result target variable will
be implicitly defined with a length of 200. You can override this default
by defining the variable with a LENGTH statement earlier in the DATA
step program. In the following example, the variable default200 will
default to a length of 200. This will truncate the result of the REPEAT
function, assuming the result is greater than 200 characters. The length
of length500 will be 500, of course.

data _null_;
length length500 $500;
input n 6. string $80.;
default200 = repeat(string, n);
length500 = repeat(string, n);

datalines;
…
;

If OPTION MSGLEVEL = I has been set (N is the default), the DATA
step will output an informational message regarding this character vari-
able default.

INFO: Character variables have defaulted to a length of 200 at
places given by: (Line) : (Column). Truncation may
result.
4:3 default200

EXTERNAL I/O EXTENSIONS

Footnotes

The DATA step FILE statement has been extended to handle text lines
specified by the FOOTNOTE global statement. The FOOTNOTE state-
ment specifies lines of text to be added to the bottom of each page of
printed output. Historically, the FILE statement has processed TITLE
lines, but not FOOTNOTE lines.

When enabled via the FILE statement, any active TITLE and
FOOTNOTE text lines will be processed by the DATA step. These lines
will be written to any file with the ‘print’ attribute. This includes FILE
PRINT, any FILE statement with the PRINT option, or any file with
print attributes (as defined by the host operating system). The writing of
these lines are controlled by the TITLES and FOOTNOTES options on
the FILE statement:

FILE fileref PRINT < TITLES > < FOOTNOTES > … ;
 < NOTITLES > < NOFOOTNOTES >

The default for TITLE lines in previous versions is TITLES. It will
remain so for Version 7. The default for FOOTNOTE lines will be
NOFOOTNOTES.

Just as with TITLE lines, FOOTNOTE lines will reduce the number of
text lines available for use within the body of each page of output. The
number of lines available when the FILE option FOOTNOTES is speci-
fied should be exactly the number of lines available when
NOFOOTNOTES is specified less the number of active FOOTNOTES.

DELIMITER= and DSD

In Version 6, the INFILE statement was enhanced with the
DELIMITER= option. This option allows the specification of a charac-
ter string containing alternate delimiters. A delimiter is a character
which separates data values when data lines are scanned. When using
list input, this character (or characters) is used in place of a blank for the
scan.

This option has now been added to the FILE statement. Data lines that
are output when this option is in effect will contain the specified char-
acter delimiter (instead of a blank) following the data item when list
output is used. Even though a character string or variable with a length
greater than one is accepted, only the first character of the string or
variable is used as the output delimiter. This differs from INFILE
DELIMITER= processing.

Note that the delimiter will appear in the column immediately following
the data item, before any pointer controls (‘+’ or ‘@’) are executed. No
delimiter is output following the last data item on a line, though, since
the end of the line is an implicit delimiter. To output data which con-
tains the delimiter character, the DSD option (see below) should proba-
bly be used.

The DELIMITER= character is honored only if list output is being used.
Formatted, column, and named output will ignore this option (since the
output data is not ‘delimited’). Modified list output (which combines
formatted and list output) may be used, however.

If a data item contains the delimiter, it will be treated as any other data
item. However, an analogous INPUT statement will not read the same
data values because of the embedded delimiter. The DSD option over-
comes this limitation.

The FILE statement DSD option will cause data items to be quoted with
double quotes, if necessary. The necessity is determined by scanning the
value for the delimiter. If the delimiter is found, the value is quoted. Any
double quotes embedded in the data value will be expanded to two
double quotes. For example, assume the DSD option is specified, the
delimiter is a comma (‘,’), and the data value to be output is the charac-
ter string:

Jim said, “Hello” to the startled employee.

The value actually written to the file is quoted, with the embedded
quotes being expanded:

”Jim said, “”Hello”” to the startled employee.”

If no delimiter is found in the data item, no quotes are added. This
quoting of data items can be forced, however, by specifying the ~ (tilde)
format modifier for a specific data item. This causes the data item to
always be quoted.

If the DSD option is specified for the FILE statement, a default delimiter
of comma (‘,’) is assumed. This can be overridden using the
DELIMITER= option.

INFILE Pseudo-Variable

The ability to directly access input data buffers has been enhanced. In
previous releases, the _INFILE_ construct gave the ability to write out
the contents of the current input buffer to a different output file. The
only access, though, to this _INFILE_ buffer was via the PUT statement.
You could modify the contents of the buffer with the PUT statement
before it was output, but nothing else.

In Version 7, this _INFILE_ construct is allowed almost anywhere a
variable reference may occur. Most notably, it may be used as source or
target in an assignment statement, or as a function call argument. When
specified, it references the entire contents of the current input buffer.
‘Current input buffer’ is defined as the last buffer read by the most
recently executed INPUT statement. This INPUT statement will refer to
the file denoted by the most recently executed INFILE statement.

The following example uses the _INFILE_ variable as an argument to
the SCAN function, counting and outputting ‘words’ from the data
lines. In previous releases, assumptions would have to be made about
either the maximum number of words on a line, or the maximum length
of any data record.

3

data _null_;
input;
wordn = 1;
word = scan(_infile_, 1);
do while(word ne ‘ ‘);

put ‘Word’ wordn ‘= ‘ word;
wordn = wordn + 1;
word = scan(_infile_, wordn);

end;
datalines;
This is Version Seven.
Not in Version Six.
;

Word1 = This
Word2 = is
Word3 = Version
Word4 = Seven
Word1 = Not
Word2 = in
Word3 = Version
Word4 = Six

Although it can now be referenced like a variable, note that _INFILE_ is
not an actual variable. There is no additional memory associated with
INFILE. It is not a copy of the input data –it is a reference directly
into the current input buffer. As such, some care should be taken when
modifying the contents of this variable (i.e., as the target of an assign-
ment statement). After modifying this variable, the next PUT _INFILE_
will reflect those modifications.

The _INFILE_ character pseudo-variable is automatically RETAIN’d
(initialized to blanks), and is not written to any output SAS data set. Its
length cannot be overridden in LENGTH or ATTRIB statements, al-
though informats can be specified for it. The length varies at execution
– it depends on the last record read into the current buffer. The maxi-
mum length during execution is the LRECL (logical record length) of
the file to which it refers. Since this length is not known during the
compile phase, this variable’s length is considered to be the maximum
allowed, 32,767. Some care must be taken when using _INFILE_ since
this maximum length is used for length defaulting purposes. The fol-
lowing code would default the length of variable infile_copy to 32,767.

data one;
 infile filein;
 input x y z;
 infile_copy = _infile_;
run;

The DATA step will only update the contents of the _INFILE_ variable
when it would normally read a new buffer of data from the INFILE. A
new buffer is read only when an INPUT statement executes and was
preceded by an INPUT statement which released its record (or block of
records for N=). If N=1, a record is released at the end of an INPUT
statement if there is no trailing @ (single or double). If N>1, a block of
records is released at the end of an INPUT statement if the line pointer
is on the last record of the block (and there is no trailing @).

You can also create an _INFILE_ pseudo-variable which is specific to a
particular INFILE with the _INFILE_= option. A variable created via
this INFILE option will always refer to the buffer of the INFILE for
which it was specified, no matter what INFILE is considered current.
The ‘global’ _INFILE_ variable will always refer to the current buffer
from the current INFILE.

data _null_;
infile this _infile_=thisbuf; /* Current INFILE is THIS */
input;
x = _infile_; /* References THIS */
y = thisbuf; /* References THIS */
infile another; /* Current INFILE is ANOTHER */
input;

x = _infile_; /* References ANOTHER */
y = thisbuf; /* References THIS */

run;

The same characteristics and restrictions apply to the _INFILE_=
pseudo-variable as to _INFILE_ (see above). Additionally, the
INFILE= reference must be the defining (i.e., first) reference in the
DATA step program for the named variable.

FILE Pseudo-Variable

Analogous to the _INFILE_ variable, which refers to the current input
buffer, the _FILE_ pseudo-variable refers to the current output buffer.
‘Current output buffer’ is defined as the last buffer formatted by the
most recent PUT statement. This PUT statement will refer to the file
denoted by the most recently executed FILE statement. The FILE state-
ment also supports a _FILE_= option, which creates a pseudo-variable
that always references the buffer of a specific FILE.

These pseudo-variables have the same characteristics and restrictions as
INFILE pseudo-variables: automatically RETAIN’d character vari-
able that is not written to any output SAS data set. The length (which
cannot be overridden) varies at runtime, depending on the contents of
the buffer. The maximum length is governed by the LRECL of the file
to which it refers, with an absolute maximum of 32,767 (which would
be used for length defaulting purposes). See previous _INFILE_ discus-
sion and example.

The DATA step will update the contents of this variable only after it
releases the current data buffer(s) for output to the FILE. A buffer is
released only when the PUT statement column and line pointers move
past the end of the data buffer (or block of buffers for N=). At this point,
the data buffer is cleared (initialized to blanks). If N=1, a buffer is
cleared at the end of a PUT statement if there is no trailing @ (single or
double). If N>1, a block of buffers is cleared at the end of a PUT state-
ment if the line pointer is on the last record of the block (and there is no
trailing @).

You may access a _FILE_ variable before or after the PUT statement
executes. Before the PUT statement executes, the output buffer is
empty. In this instance, you would probably want to initialize the buffer
with some data. This data would be reflected in the next PUT statement.
Note that modifying the _FILE_ variable via programming statements
only affects the length of the current output buffer; the column pointer
associated with the output buffer is unchanged. In the first example, the
line output to FILE PRINT is ‘This is PUT!’. In the second example, the
line is ‘Where it be!’.

data _null_;
file print;
file = ‘Where is it?’;
put ‘This is PUT!’;

run;

data _null_;
file print;
file = ‘Where is it?’;
put @ 7 ‘it be!’;

run;

You may also access the _FILE_ variable after a PUT statement exe-
cutes, provided that the buffers are held in memory, either by using a
trailing @ or N= and # line pointer controls. This may be useful if you
need to save the output line, and process it further. This also allows you
to use the formatting capabilities of the PUT statement to build complex
strings for other uses.

data projects;
infile projfile;
input project phase $ targetdate;
put project userfmt. ‘(‘ phase +(-1) ‘) ‘ targetdate monyy7. @;
proj_info = _file_;

4

put ; /* Release line to FILE LOG */
/* Further use of proj_info */

run;

SCANOVER

In Version 6, the @ column pointer control was enhanced to allow a
character specification. This would cause the DATA step to scan the
input data for that character string in order to position the column
pointer. If the end of a data line was reached while scanning, then the
behavior is governed by any specified end-of-record option. If
FLOWOVER (the default) is specified, the DATA step will go to the
next data line and continue searching for the character string. For
MISSOVER, STOPOVER, and TRUNCOVER, however, the DATA
step will stop the scan, and take the appropriate end-of-record action.

The new SCANOVER option allows you to separate the @’char’ scan-
ning end-of-record action from the variable processing end-of-record
action. It only affects the end-of-record action during the @’char’ scan.
If you desire the @’char’ operator to scan over multiple lines to find its
target, but for some other behavior (MISSOVER, STOPOVER, or
TRUNCOVER) to take place while processing variables on the data
line, then use SCANOVER in conjunction with the other end-of-record
option. Specification of SCANOVER with FLOWOVER is allowed, but
has no effect.

The following example will scan as many lines as required to find the
string ‘HERE’. But, once the string is found, we will set any remaining
variables to missing when we encounter the end of the record. Note the
output from the step.

data one;
infile cards missover scanover;
input @’HERE’ var1 var2 var3;
put var1= var2= var3=;

cards;
111 122 133 NOPE 144 155
211 222 233 HERE 244 255
HERE 311 322 333 344 355
;

var1=244 var2=255 var3=.
var1=311 var2=322 var3=333

Note: SAS went to a new line when INPUT
@’CHARACTER_STRING’ scanned past the end of a line.

Interface to Output Delivery System (ODS)

The Output Delivery System (ODS) in Version 7 implements and con-
trols the formatting of all SAS procedure output. In previous versions of
the SAS System, all procedures wrote exclusively to the SAS listing file
and to output data sets. In Version 7, all procedures produce ODS out-
put objects – binary objects that are rendered to various output destina-
tions by the ODS sub-system.

An output object consists of two component parts: a data object con-
taining the raw data values for the piece of output, and a template de-
scribing how the piece of output should look. The output object is added
to the system and ODS decides, based on the output destinations set by
the user, how to render the output.

The data object is the vehicle that a procedure uses to move the data for
a piece of output to the ODS system. The data object is primarily an
internal object over which the SAS user has no control. However, the
SAS user has the flexibility to convert all ODS data objects into SAS
data sets.

A template is a description of how you would like a piece of output to
look when it is rendered. Templates contain formatting information like
data column order, text for data column headings, format specifications
for columns, and stylistic references. Every template in the SAS System

is fully editable via the TEMPLATE procedure in batch, and from the
SAS Explorer in DMS mode.

Each output object that is produced by a run of the SAS System is ren-
dered to whatever output destinations the user has selected. For the
initial release of ODS, the SAS listing file, output data sets, and HTML
will be supported. For subsequent releases, support for PS (PostScript)
and PCL (Printer Control Language) destinations, an RTF (rich text
format) destination, and a persistent output document destination are
being investigated. Each output destination can be controlled by the
ODS global statement. Multiple output destinations can be active at the
same time, i.e., one step can create one output object which is rendered
to multiple destinations.

The ODS global statement is a new statement in Version 7 that gives
users some control over ODS. The ODS statement contains sub-
statements which control each of the various output destinations, select
or exclude individual pieces of output, and manipulate the SAS template
concatenation path.

Although primarily created for procedure output, this new functionality
is also available for DATA step programs, through the FILE and PUT
statements. The FILE statement is used to define an ODS output object
via the new ODS= option. With this new FILE statement option, the
template is specified, and an ODS data object is defined and created.
Data columns for the data object are specified, and mapped to variables
in the DATA step program data vector. The PUT statement can then be
used to move data from these DATA step variables into the ODS output
object.

A detailed discussion of ODS is beyond the scope of this paper. For a
complete discussion of the DATA step interface to ODS, see the SUGI
23 paper entitled ODS: The DATA Step Knows.

SAS FILE I/O EXTENSIONS

SET Statement option OPEN=DEFER

In DATA step SAS data set input processing, all data sets specified in
any SET, MERGE, UPDATE, or MODIFY statement are opened during
the compile phase. This is required to build the list of variables for the
DATA step’s program data vector. Also, the runtime behavior for most
forms of these statements requires processing multiple data sets simul-
taneously.

For example, a SET statement with multiple data sets and an associated
BY statement requires reading an observation from each data set before
proceeding. The same is true for MERGE (with or without a BY),
UPDATE (BY required), and MODIFY (with BY). A SET statement
with a POINT= or KEY= would require random positioning over multi-
ple data sets. Thus, all the data sets must be open simultaneously.

If all data sets do not need to be opened simultaneously, though, more
memory is used than is needed. More importantly, for streaming input
devices (e.g., tape drives), one device is required for each open data set,
when one input device may be sufficient to handle all data sets.

This is true for a common scenario: a SET statement with no associated
BY statement. Neither simultaneous processing nor random access is
required. All data sets specified are processed sequentially, one after
another. As long as each data set in the SET statement has the same
structure (same variable names and types), they need not all be opened
during the compile phase. If the data set opens could be deferred until
required, the amount of memory necessary for the step would be re-
duced. If the specified data sets are tape data sets, the hardware re-
quirements for the step would be reduced, because only one tape drive is
needed.

The new OPEN= option for the SET statement will enable this. The
default setting is OPEN=IMMEDIATE, which mirrors the current be-

5

havior. All data sets specified are opened during the compile phase, and
kept open until the end of the step. Specifying OPEN=DEFER will
cause only the first data set specified on the SET statement to be opened
during the compile phase. During the execution phase, each data set is
processed, then closed, and the next data set in the SET statement speci-
fication is opened. This continues until all data sets have been proc-
essed. The last data set opened remains open until the end of the step.

Since subsequent data sets are not opened during the compile phase for
OPEN=DEFER, all variables that need to be processed by the DATA
step program should be present on the first data set listed in the SET
statement. Any variables found in subsequent data sets which were not
found in the first data set will be ignored, and a NOTE is written to the
SAS LOG. Processing will continue. The order of variables in subse-
quent data sets is not significant.

However, if a variable in a subsequent data set differs in its type from
the same-named variable in the first data set, that is a runtime error for
OPEN=DEFER. (It is a compile-time error when OPEN=IMMEDIATE
is specified.) An error message is output, and processing stops.

data ytd;
set qtr1 qtr2 qtr3 qtr4 open=defer;

run;

ERROR: Variable stock has been defined as both character (in
WORK.QTR3) and numeric (in WORK.QTR1).

NOTE: The SAS System stopped processing this step because
of errors.

DATASTMTCHK= Option

The DATASTMTCHK= option slightly restricts the one-level output
SAS data set names which may be specified on the DATA statement. It
attempts to protect you from inadvertently destroying production data
sets because of a specific typographical error: a missing semicolon at
the end of a DATA statement.

Consider the following DATA step program.

Data temp
set prod.big_important_data_set;
/* DATA step statements */
…

run;

Because the semicolon is left off the DATA statement, this program
would create three output data sets (temp, set, and
prod.big_important_data_set), which probably contain very little. The
production data set (prod.big_important_data_set) has been wiped out,
and there is no recourse for data recovery.

The DATASTMTCHK= option will catch these dangerous errors by
disallowing certain DATA step statement names as one-level output
data set names. There are three possible values for this new option:
NONE, COREKEYWORDS, and ALLKEYWORDS. NONE gives the
previous behavior – no checking is done. COREKEYWORDS (the
default) disallows the names SET, MERGE, UPDATE, and RETAIN as
one-level output names. Two-level names (e.g., WORK.SET,
PROD.MERGE, etc.) are allowed. The ALLKEYWORDS value will
disallow any DATA step keyword that can begin a statement (e.g.,
ABORT, ARRAY, INFILE, etc.). Note that this list of words does not
include global statements (e.g., TITLE, OPTION, etc.).

IORCMSG() Built-In Function

A new built-in DATA step function has been added to aid in decipher-
ing codes contained in the _IORC_ variable. This variable contains
return codes set by all forms of the MODIFY statement and the SET
statement with the KEY= option. The IORCMSG function will return
the formatted error message associated with the most recently posted
IORC code.

This function will be most useful in handling unexpected or unknown
errors encountered with MODIFY and SET with KEY=, especially
when using SAS/ACCESS® data sets. IORCMSG() will help by pro-
viding a verbose message that may indicate the cause of the error. The
following example uses _IORC_ to handle error conditions and uses
IORCMSG() to help diagnose the problem when an unknown condition
occurs..

data acclib.master_ds;
set otherlib.transaction; /* Obtain id value */
modify acclib.master_ds key=id;
if (_iorc_ eq %sysrc(_SOK)) then
do; /* Data okay; typical case */

… /* DATA step statements */
replace;

end;
 else

if (_iorc_ eq %sysrc(_DSENOM)) then
do; /* Handle ‘no match found’ error */

… /* DATA step statements */
output;
error = 0; /* Avoid variable dump */

end;
else
do; /* Handle unknown error */

acclib_error_msg = iorcmsg();
put ‘Unknown error occurred…’ / acclib_error_msg;
error = 0; /* Avoid variable dump */

end;
run;

Other SAS FILE I/O Extensions

There are other SAS data set I/O enhancements which are global in
nature to the SAS System. These enhancements are beyond the scope of
this paper, but are referenced here for completeness.

• SAS Library concatenation
• SAS Catalog concatenation
• SAS Data Set Versioning (Generations)
• Integrity constraints
• Cross-environment data access (CEDA)
• Access by observation number of compressed data sets

 DATA STEP LANGUAGE EXTENSIONS

 RENAME

 Variable lists are now supported in the RENAME statement and the
RENAME= data set option. A variable list is a short-hand notation for a
longer list of variables with similar characteristics. The most common
form of the variable list is Xn-Xm, where X denotes a common variable
name root, and n and m denote ascending (n < m) or descending (n > m)
numeric suffixes for the root variable name. This is the only form of
variable list supported by RENAME.

 The syntax of the RENAME statement and the RENAME= data set
option:

 RENAME old1< - oldn > = new1 < - newn >

6

 RENAME = (old1 < - oldn > = new1 < - newn >)

 In the example below, the first RENAME statement will rename the
variables var1, var2, var3, var4, and var5 to myxyz1, myxyz2, myxyz3,
myxyz4, and myxyz5. The second statement will rename var10 and
var11 to bar522 and bar523.

 rename var1 - var5 = myxyz1 - myxyz5;
 rename var10 - var11 = bar522 - bar523;

 Note that regardless of the case of the original variables, the renamed
variables will match the case of the first variable in the ‘new name’ list
(new1). For example, the resulting variable names from the following
RENAME statement will all contain the root STATUS.

 input x1 - x5;
 rename x1 - x5 = STATUS1 - status5;

 Initialization List Iteration Factor

 The ARRAY and RETAIN statements support an initialization list. This
list contains a series of constants which will initialize the given vari-
ables in the ARRAY or RETAIN statement before execution begins.
This initialization list now supports iteration factors and nested sub-
lists.

 ARRAY / RETAIN … (constant_sublist) ;

 …where constant_sublist can be one or more of the following…

 < iteration_factor * > < (> constant | constant_sublist <) >

 … where iteration_factor is an integral constant number

 The iteration factor indicates how many times the given sub-list should
be used in building the initialization list. The sub-list can itself contain
other iteration factors and associated constant sub-lists. The following
examples all denote the same initialization list (10 constant values of
5.2).

 (5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2)
 (10 * 5.2)
 (5 * (5.2, 5.2))
 (5.2, 5.2, 3 * (5.2, 5.2), 5.2, 5.2)
 (2 * (5.2, 2 * (5.2, 5.2)))

 Note that either a comma (‘,’) or a blank (‘ ‘) may be used to separate
the constant items in the list. The iteration factor and sub-lists are ex-
panded during the compile phase. Therefore, the iteration factor must be
a constant. The runtime processing of the initialized variables is not
affected.

 DATA Step Functions

 New functions have been added. Most of these deal with variable attrib-
ute retrieval, and have names beginning with the letter ‘V’. These V*
functions differ from the SAS/AF® SCL-like VAR* functions added to
the DATA step late in Version 6 development. The earlier VAR* func-
tions return variable attributes associated with variables in SAS data
sets. The new V* functions are DATA step built-in functions, and return
attributes associated with the variables in the DATA step program data
vector. The VNAME and VLABEL functions are equivalent to the
existing VNAME and LABEL CALL routines, and were added for
consistency.

• VNAME(var) - returns the name of the given variable.

• VLABEL(var) - returns the label associated with the given vari-

able. If there is no label, the variable name is returned.

• VTYPE(var) - returns the type of the given variable. ‘N’ is re-
turned for numeric variables, and ‘C’ is returned for character
variables.

• VLENGTH(var) - returns the defined compile-time size of the

given variable. This is different from LENGTH(), in that
LENGTH() examines the variable at runtime, trimming trailing
blanks to determine the length. VLENGTH() returns a compile-
time constant value, which reflects the maximum length. For ex-
ample, LENGTH() returns 3 and VLENGTH() returns 8 in the
following:

 length x $8; x = ‘abc’; y = length(x); z = vlength(x);

• VFORMAT(var) - returns the format associated with the given

variable. This is the complete format FMTw.d name, including
lengths and the dot (‘.’), i.e., ‘$CHAR20.’.

• VFORMATN(var) - returns the format name, excluding any

lengths, associated with the given variable, i.e., ‘$CHAR’.

• VFORMATW(var) - returns the format width value (w) associated

with the given variable.

• VFORMATD(var) - returns the format decimal value (d) associ-

ated with the given variable.

• VINFORMAT(var) - returns the informat associated with the

given variable. This is the complete informat INFMTw.d name,
including lengths and the dot (‘.’), i.e., ‘$CHAR20.’.

• VINFORMATN(var) - returns the informat name, excluding any

lengths, associated with the given variable, i.e., ‘$CHAR’.

• VINFORMATW(var) - returns the informat width value (w) asso-

ciated with the given variable.

• VINFORMATD(var) - returns the informat decimal value (d)

associated with the given variable.

• VARRAY(var) - returns 1.0 if the given variable denotes an array

name, and 0.0 if it does not.

• VINARRAY(var) - returns 1.0 if the given variable is an element

of any array, and 0.0 if it is not.

 None of these functions accept expressions as arguments. Only scalar or
array references are allowed. The actual name is the argument, not the
contents of the variable. Therefore, most of these ‘functions’ are actually
references to constant values at runtime (unless array references are
involved).

 However, there are versions of these functions which do resolve the
argument at runtime, and therefore, allow expressions as arguments.
Attributes are returned for the variable indicated by the contents of the
argument. These functions’ names end with ‘X’: VLABELX,
VTYPEX, VFORMATX, etc. For example, the result of the VTYPE
function below is ‘C’ (the variable cvar is character), but the result of
the VTYPEX function is ‘N’. VTYPEX() inspects the runtime value of
the variable cvar (‘nvar’), and returns attributes for the variable speci-
fied by that runtime value. The variable nvar is numeric, so ‘N’ is re-
turned.

 data _null_;
 length cvar $8 nvar 8;
 cvar = ‘nvar’;
 x = vtype(cvar);
 y = vtypex(cvar);
 run;

 Other new functions include the following:

7

• IORCMSG() - returns the formatted message associated with the

most recently returned _IORC_ return code. See discussion above
under SAS FILE I/O EXTENSIONS.

• MISSING(expr) - returns 1.0 if the expression is a missing value,

and 0.0 if it is not. ‘expr’ can be of type character or numeric.
‘Missing’ is defined for a character type as all blanks. For a nu-
meric type, the standard missing (‘.’) and all special missing val-
ues (‘._’, ‘.A’ - ‘.Z’) will return a result of 1.0.

Stored Program Facility and Views

The DATA step Stored Program Facility has been enhanced to support
data set options which are specific to a particular host platform or SAS
I/O engine. Previously, they could not be saved with the stored program
and would be flagged with an error when the program was compiled.
These option settings can now be restored when the stored program or
DATA step view (which uses the Stored Program Facility) is executed.

PERFORMANCE ENHANCEMENTS

Code Generation

The DATA step is a ‘compile and run’ language implementation. The
source is parsed and compiled into an intermediate representation,
called quad codes. These quad codes are translated into host specific
object code, using an internal code generation subsystem. This object
code (called a code stream) is then executed (or ‘run’), and later deleted.

The code generation subsystem now contains an optimization phase.
This phase may modify the code stream in several ways, attempting to
reduce the size or increase the speed of the code stream. It will attempt
to place highly referenced items in registers, remove dead code, replace
certain operation sequences with better or smaller ones, and remove
redundant code (especially useful for array referencing). These modifi-
cations should result in smaller, faster code streams generated for DATA
step programs.

PUT and INPUT Functions

A major performance improvement has been implemented for the PUT
and INPUT functions. A portion of the processing for these functions is
now done with inline code generation. This can significantly reduce the
low-level call overhead for each PUT or INPUT function invocation.

DATA Step Views

DATA step views have always supported both sequential access and
random access. For Version 7, this random access processing has been
improved in the area of ‘spill file’ generation. A ‘spill file’ is a tempo-
rary data file used by random access view processing to hold data ob-
servations as they are created. Once an observation has been created, it
can be retrieved from the spill file instead of the executing view.

In previous releases, when the first observation is requested from a
DATA step view opened for random access, the view would execute to
completion, creating the entire spill file. For views which generate large
numbers of observations, this meant a noticeable delay before the first
observation is returned. Of course, after the first observation, retrieval
performance is optimal. But, if the intent is to inspect only a few obser-
vations, then the resources used for the spill file creation (disk space and
CPU time) have been wasted.

In Version 7, a DATA step view opened for random access will create
an observation only if it is needed to satisfy a request. (Actually, the
view will create enough 32K-byte buffers of observations to satisfy the
request. No partial buffers are created.) This will allow the first obser-
vation to be returned very quickly. If an observation previously created
is requested, it is retrieved from the spill file. If an observation not pre-

viously created (i.e., beyond EOF in the spill file) is requested, then the
view is asked to create more observations until the request can be satis-
fied.

For applications that process the view entirely, this change merely dis-
tributes the resource usage more evenly along the life of the application.
But, when only a small subset of observations are accessed, this change
should result in disk space and CPU time savings.

8

ACKNOWLEDGMENTS

The author greatly appreciates the contributions by Nancy Agnew,
Deanna Tawiah, Mandy Womble, and Pauline Leveille for new feature
testing, and Susan O’Connor and Jason Secosky for assistance in re-
viewing this paper.

SAS, SAS/ACCESS, and SAS/AF are registered trademarks or trade-
marks of SAS Institute Inc. in the USA and other countries.
® indicates USA registration.

Other brand and product names are registered trademarks or trademarks
of their respective companies.

The author can be contacted at

William Heffner
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
Phone (919) 677-8000
FAX (919) 677-4444
Email saswfh@sas.com

