
1

Version 7 SAS/AF® Software - The New Component Technology
Glen R. Walker, SAS® Institute Inc, Cary, NC

Tammy L. Gagliano, SAS Institute Inc, Chicago, IL

ABSTRACT
The Version 7 class library has expanded to include many new
components that are already enabled to perform complex tasks such as

• attribute linking
• drag and drop
• model/view

 all with no programming effort on the part of the user. They are
virtually plug-and-play! This is possible because they were designed to
fully exploit the SAS Component Object Model (SCOM) Architecture.
SCOM offers a flexible application framework that improves
component development and communication. In this paper we will
define what a component is and how you can build applications which
utilize the new techniques for establishing communication between
components.

 INTRODUCTION
 In Version 6 SAS/AF® software, we made significant advances in our
support for object-oriented development through support for
subclassing, methods, inheritance, delegation and more. We also
expanded the class library to include many new and exciting classes like
the Data Table, Data Form, and Process Flow Diagram just to name a
few.

 In Version 7, we’ve expanded this list to include a new breed of classes.
These classes are referred to as components and are even smarter than
what we’ve offered before! In this paper, we’ll briefly summarize these
components and what they bring to your desktop.

 We’ll also define and discuss implementation details with respect to

• What makes a class a component?

• Is there an easy way to establish communication between objects
without having to resort to programming?

• Do I still have to write code in order to develop a drag and drop
application?

• As a component developer, how can I write reusable code that
hides complex communication issues between components?

 You will find in Version 7 that you now have more choices for handling
communication issues between your components – from simple
problems to more complicated scenarios. All of the solutions offered
eliminate much of the complex programming that might have previously
been required to accomplish the same task. That’s the beauty of the
SCOM Architecture, it provides much of the groundwork for you. All
you need to do is learn how to make it work for you!

 What is a Component?
 Before we begin discussing topics like attribute linking and model/view,
it is important to first define some new terms that Version 7 is
introducing.

 Component
 A component is a self-contained, reusable object with specific
properties, which include
• attributes
• methods
• events

• event handlers
• a set of supported or required interfaces

 Attributes
 Properties that specify the data associated with a component are referred
to as attributes such as its description, color, size, or any other data that
is stored with the component. Attributes are similar to Version 6
instance variables with that respect. They differ in that attributes have
more data associated with them than just name, value and type. The
information stored for an attribute is commonly referred to as its
metadata and contains

• name, type, initial value and description
• state indicating whether it is new, overridden, inherited or a

system attribute
• a list of valid values and validation options such as text

completion or honor case which are used by SAS/AF to
automatically perform validation when the attribute’s value is
changed

• editor used at build-time to assist the user in setting the attribute
value

• setCAM and getCAM methods that automatically get invoked to
perform additional processing when the attribute value is accessed

• as well as autocreate, scope, linkable, sendevent, and editable

 A more detailed explanation on each of these metadata items and how
they’re used can be found in a related paper titled, Dressing Up Your
Version 6 Objects to be Version 7 Components by the same authors.

 Methods
 Operations that can be executed by any component you create from that
class are defined as methods. Methods now contain metadata
themselves which define information such as

• name and description
• entry and label where the implementation code resides
• method signature information which can bring major compile-

time and run-time savings if utilized
• scope which controls accessibility

 In Version 6, the primary means for communicating between objects
was through the use of an object’s methods. Although much of the
focus in Version 7 has shifted from methods to the use of attributes for
establishing communication between components, methods still play a
critical role especially through interfaces in establishing the ground
rules for model/view relationships.

 Events
 These properties alert applications when a resource or state changes.
Events are key properties with respect to the mechanics of attribute
linking.

 Event Handlers
 These properties provide the corresponding response when a resource or
state changes. In other words, an event handler executes when a
specific event occurs.

 Interfaces
 These properties indicate whether the component is enabled for
model/view communication. While models and viewers are typically
used together, they are still independent components. There must be a
published set of ground rules where one component (typically the
model) agrees to support and the other component (typically the viewer)

2

requires the same interface. An interface match has to occur between
these two components before a model/view relationship can be
established.

 Visual component
 In SCOM, visual components are called controls. Controls define
objects that can be placed on the display such as icons, push buttons or
radio boxes.

 In Version 7, the following visual components have been added to the
class library and are true native controls. This means they offer a native
platform look-and-feel. For example, a combo box control under
Windows will look and act like the native Window’s platform combo
box because that’s what it is! These controls are pixel-based and have
system font support which also will improve the look and feel of the
applications you build using them. The new native visual controls that
you will find are:

• Check Box Control • Scrollbar Control
• Combo Box Control • Spin Box Control
• Desktop Icon Control • Text Entry Control
• List Box Control • Text Label Control
• List View Control • Text Pad Control
 (experimental) • Tree View Control
• Push Button Control (experimental)
• Radio Box Control

 Non-visual component
 In SCOM, non-visual components are called models. Models provide
attributes and methods for querying and modifying underlying data
abstractions, such as objects that read or manipulate SAS data sets or
catalogs. New models that have been added are:

• Catalog Entry List Model • LIST Entry List Model
• Catalog List Model • Range Model
• Color List Model • SAS File List Model
• Data Set List Model • SLIST Entry List Model
• External File List Model • Variable List Model
• Library List Model

 New to Version 7 is the Component Window, which allows you to
quickly create any of the above components in a frame. From the
Component window, you can

• double-click on the component which creates the object on the

frame in a default location
• drag a component from the Component window and drop it on the

frame where you want the object created.

Previously, the only way to create non-visual components in a frame
was programmatically so this is yet another new feature you have to
look forward to!

Attribute Linking
What exactly is attribute linking? Attribute linking enables one
component to change the value of its attribute when the value of another
component’s attribute is changed.

For example, a frame contains two controls: text entry control and a
graph output control. When the user types the name of a 4-level
GRSEG entry name in the text entry control, you want the graph output
control to display the graph in its containing region.

Previously, in Version 6, you would write FRAME SCL to establish this
communication between these objects. The code would look something
like:

TEXTOBJ: /* text entry label */
 call notify(‘graphobj’, ‘_set_graph_’, textobj);
return;

While the above code might not seem that bad, typical frame
applications involve many more objects so this code can quickly add up.
Wouldn’t it be nice if there were some way to just ‘tell’ the graph object
that you want it to watch out for the text entry’s value to change, grab
that value and use it? Why not eliminate the above code altogether?

That’s what attribute linking basically does for you. As part of the
metadata for an attribute, you can specify whether or not you want it to
automatically send an event when its value changes. By specifying
sendEvent=’Yes’, an ‘attributeName changed’ event automatically gets
sent by the object when the attribute value changes. In our example, the
text entry control has an attribute called text. We want this attribute to
send the event when its value changes.

On the other side, the graph output control has an attribute called graph
and we want to set a link for this attribute. You can control whether an
attribute can obtain its value via a link or not using attribute metadata as
well. By default, all attributes have linkable=’Yes’. Setting this
metadata item enables the object to obtain a value for the attribute
dynamically at run-time from the value of another attribute as it
changes. So, as the application user types into the text entry control, we
want the graph control to display what is typed in the field. We can
accomplish that by specifying an attribute link on the graph attribute.

This can easily be done through the new Properties window. The
Properties window enables you to view, edit, or add component
properties on the instance. You can assign a specific value for an
attribute or you can set up an attribute link.

To specify a link you can either type directly into the Link To cell in the
table or you can select the ellipses button which appears in the cell and
will open the Link To window which will assist you in making your
selections. As a matter of fact, this window utilizes another nice feature
of the SCOM design. When you select the name of the object that you
want to establish a link to, the attribute name of the object’s
defaultAttribute will automatically be selected for you.

DefaultAttribute is discussed in more detail below but nine times out of
ten, this is the attribute you will want to use when establishing a link. In
our case, the text entry’s defaultAttribute value is its text attribute. We
do in fact want the graph output control’s graph attribute to be linked to
the text entry control’s text attribute. So with no typing what-so-ever,
our link has been established.

If you were to testaf your application right now, you could type the
graph name in the text entry control and immediately see the graph
output displayed in the frame.

Behind-the-scenes,
1. When the link is defined in the Properties window, an event

handler is established on the object. The event handler is listening
for the ‘attributeName changed’ event, which in our example
would be the ‘text changed’ event coming from the text entry
control.

2. The text entry control, because of its attribute metadata definition
of sendEvent=’Yes’, automatically sends an event when its value
is changed.

3. The graph output control has an event handler that is listening for
that specific event and its _onAttributeChanged method executes.

4. An event object is passed along with the event providing
information about the name of the attribute that has been changed,
its type, the object that owns the attribute and the attribute value.
The implementation for the _onAttributeChanged method
basically turns around and gets the information from the event

3

object and invokes _setAttributeValue on the attribute that has the
link established.

5. The _setAttributeValue method is the one responsible for actually
changing the value of the graph attribute on itself.

Again, all of this is accomplished through attribute metadata definitions
and setting attribute links via the Properties window. There is no
programming required. You get attribute linking for free when using
an SCOM component because all components inherit this behavior.
The _onAttributeChanged and _setAttributeValue methods already have
this functionality built in as part of their implementation.

Two issues were mentioned above that might need further clarification
as they are used in various places throughout this paper and in the
SCOM architecture itself: the _setAttributeValue method and the
defaultAttribute attribute.

What does the _setAttributeValue method do and when is it
used?
Up until this point, we’ve been focusing on the SCOM architecture from
the component side. However, there is also a language side which is
equally powerful called the SAS Component Language (or SCL). SCL
has been enhanced to support a new programming style referred to as
dot syntax. Dot syntax goes hand in hand with the new component
architecture because your SCL code is simpler and can be consistent
across all components.

For example, in Version 6, to programmatically change the name of the
graph displayed in a SAS/GRAPH® Output object, I could use either
statement below:

call notify(‘graphobj’, ‘_set_graph_’,
 ‘sashelp.eisgrph.litebulb.grseg’);
or

graphobj = ‘sashelp.eisgrph.litebulb.gresg’;

The first approach required you to know which method to invoke as
well as the syntax for its parameter list. In Version 6, when you
referenced the object by its name in your SCL, you were actually setting
or querying the value of the object. That is what the second approach is
doing. And while it provided a nice short cut, it was also somewhat
inconsistent because the object value type differed from object to object
and it was not always obvious what characteristic the object name was
actually referencing.

In V7, there is a common language approach to getting and setting
attribute values on your components which is dot syntax. Using the
same example, the following would set the value for the graph attribute:

 graphobj.graph = ‘sashelp.eisgrph.litebulb.grseg’;

In order for you to use dot syntax, the object name must be declared as
an object so that it references the object id and not the value as is the
default for Version 6 legacy classes. New Version 7 components use
this approach by default. When using legacy classes, you can simply
change the value of the object’s objectNameUsage attribute from value
to ID. This will enable you to use dot syntax even for instances of
legacy classes.

Once you begin using dot syntax, it is also important to understand how
that statement gets translated internally by SAS/AF software.
Basically, when you use dot syntax, it translates internally to either a
_setAttributeValue or _getAttributeValue method call (depending on
whether you are changing or querying the attribute value).

These methods are inherited from the Object class and contain a lot of
functionality. They are the backbone to much of the behavior attributes
provide.

For example, the _setAttributeValue method
• verifies the attribute exists
• verifies the type of the attribute matches the type of the value

being set or queried
• on a set call, validates the value against the valid values list if one

exists in the attribute metadata
• invokes the setCAM or getCAM appropriately if they exist
• on set calls, if none of the above conditions have produced an error

condition, the method then
∗ stores the value either on the attribute list or on the IV list

if it is linked to an IV
∗ sends the ‘attributeName changed’ event if the attribute

has sendEvent=’yes’

 If you were to invoke the setCAM or getCAM method directly, all of the
above functionality would be lost. Your application with respect to
attribute linking for example, would not perform as expected since
_setAttributeValue is the one that is responsible for sending out the
‘attributeName changed’ event. So _setAttributeValue is a very
important piece of the underlying architecture.

 What does an object’s defaultAttribute buy you?
 Briefly described earlier, this attribute lets you specify the name of
another attribute on the object. Typically, you would assign the
attribute that has the most meaning for the component – the single piece
of information that if someone queried your object, it would be the
value of the defaultAttribute attribute that would be useful information
to return. In the examples we’ve been discussing, the graph output
control would set defaultAttribute to graph. The text entry control has
text as its defaultAttribute.

 Setting this attribute on all of your components offers multiple
advantages. From the user-interface standpoint, there are several places
in the Class Editor and in the Properties window that ask you for the
name of an attribute on an object. By default, these windows will
initialize the value to be what is specified for the object’s
defaultAttribute. Our attribute linking example above already
mentioned that when establishing an attribute link, the Link To window
fills in with the name of the defaultAttribute automatically.

 This information is used in other places as well such as when defining
the dragInfo and dropInfo attributes which control what information
is passed between objects during the drag and drop process. This saves
typing since in most of these situations, you will find that the
defaultAttribute is the one you want selected.

 From a programming viewpoint, this attribute also has much value. If
you are familiar with the SCL SET function. Using SET can
significantly reduce the coding required for accessing variable values in
a data set. After a CALL SET, whenever a read is performed from the
SAS data set (i.e., FETCHOBS call), the values of the corresponding
SCL variables are set to the values of the matching SAS data set
variables.

 To think of a realistic example, suppose you have a frame that contains
two text entry objects and the names of these objects are ‘firstName’
and ‘lastName’. The purpose of this frame is to read observations from
a SAS data set that has variables by the same name as the text entry
controls on your frame. Performing a CALL SET and then a
FETCHOBS will automatically cause the text entry fields to display the
values for firstName and lastName from the observation.

 This will work automatically because behind-the-scenes, a
_setAttributeValue call is made on each object and it uses the setting of
each object’s defaultAttribute attribute to determine which attribute to
set the value for. In the case of a text entry control, its defaultAttribute
setting is its text attribute which makes sense since that is the single
most important information a text entry control owns most likely. Thus,
the value from the firstName variable in the data set will automatically

4

get set as the text attribute on the firstName object. The same occurs
for the lastName object and for all objects in the frame whenever
SAS/AF finds an object name that matches the name of a variable in the
open data set.

 Drag and Drop
 In Version 6, in order for you to build any application that utilized drag
and drop functionality, you had to override one or more of the drag and
drop methods. A simple example would be a frame that has a list box
that displays the 4-level GRSEG entry names. The frame also has a
SAS/GRAPH Output object on it. You want the user to be able to drag
an item from the list box and have the graph automatically display in the
graph output control.

 To do this in V6, you’d need the following FRAME SCL code:

 length lib cat entry type $ 8 fullname $43;
 INIT:
 /* create an instance of the SAS catalog class */
 catclass= loadclass(‘sashelp.fsp.catalog.class’);
 catobj = instance(catclass);
 entryinfo = makelist();
 /* tell it which catalog you want to retrieve entry names
from */
 call send(catobj, ‘_setup_’, ‘sashelp.eisgrph’);
 /* retrieves a list of sublists with catalog entry information
for GRSEG
 entries only */
 call send(catobj, ‘_get_members_’, entryinfo, ‘libname
catname
 objname objtype’, “objtype=’grseg’”);
 /* entries is the name of the variable specified in the list
box’s object
 attribute window as the one that will contain the SCL list
to fill the list
 box */
 entries = makelist();
 /* loop through the entryinfo list to build the fullname string
to insert into
 the list that displays in the list box */
 do j = 1 to lislen(entryinfo);
 sublist = getiteml(entryinfo, j);
 lib = getnitemc(sublist, ‘LIBNAME’,1,1,’’);
 cat = getnitemc(sublist, ‘CATALOG’,1,1,’’);
 entry = getnitemc(sublist, ‘OBJNAME’,1,1,’’);
 type = getnitemc(sublist, ‘OBJTYPE’,1,1,’’);
 fullname =
trim(lib)||’.’||trim(cat)||’.’||trim(entry)||’.’||trim(type);
 rc = insertc(entries, fullname, -1);
 end;
 /* clean-up */
 rc = dellist(entryinfo, ‘Y’);
 call send(catobj, ‘_term’);
 return;

 TERM:
 rc = dellist(entries);
 return;

 And, you’d need to override the _getDragData method on the drag site
object (list box):

 getdata: method rep op $ 40 data x y 8;
 if rep = ‘_DND_TEXT’ then do;
 call send(_self_, ‘_get_last_sel_’, row, issel, text);

 rc = setitemc(data, text, 1, ‘y’);

 end;
 else call super(_self_, ‘_get_drag_data_’, rep, op, data, x, y);
 endmethod;

 And, you’d need to override the _drop method on the drop site (graph
output):

 drop: method rep op $ 40 data 8 from $ 7 x y 8;
 if rep = ‘_DND_TEXT’ then do;
 grafname = getitemc(data, 1);
 call send(_self_, ‘_set_graph_’, grafname);
 end;
 else call super(_self_, ‘_drop_’, rep, op, data, from, x, y);
 endmethod;

 In comparison, to accomplish the same thing in V7, you would take the
following steps:
• create the list box on your frame.
• from the new Component Window, select the Catalog Entry List

Model and drop it on top of the list box (this establishes a
model/view relationship which is discussed in more detail later in
this paper).

• in the Properties window, set the following attributes on the
Catalog Entry List Model component:

⇒ catalog = ‘sashelp.eisgrph’
⇒ typeFilter = ‘GRSEG’

• which will automatically display the list of GRSEG entries
available from that catalog in the list box due to the model/view
communication that occurs behind the scenes.

• in the Properties window again,
⇒ for the list box, set dragEnabled = ‘Yes’
⇒ for the graph, set dropEnabled = ‘Yes’

Then make sure your SCL code appears as follows:

“Where’s the beef?”, you ask. That’s right! Absolutely no SCL has to
be written to enable basic drag and drop applications like these. Just run
your application and watch it go!

In the example above, the list box control already has defaults set for its
dragInfo attribute to send the value of the currently selectedItem
attribute when dragged. The graph output control also has default
dropInfo attribute settings to take the value passed to it and set it on its
graph attribute. Since the value of the selectedItem will be a 4-level
GRSEG name, that is what the graph attribute expects and it will then
display the graph.

When the drop occurs, the _drop method is passed an object that
contains data which includes the name of the drag site attribute and its
value. The _drop method uses this information to invoke
_setAttributeValue on itself. The attribute set on the drop site comes
from the dropInfo attribute.

And since all of the V7 components that SAS/AF software offers will
already have default drag and drop attribute settings, it truly makes drag

5

and drop a very simple process. If you want to change the defaults,
they’re just attributes like everything else. Simply go to the Properties
window and use the provided editors to specify something different.
Again, no SCL code needed!

Model/View
In the above example, you probably noticed the amount of code that was
eliminated to fill the list box with a list of GRSEG entries from a
specific catalog. The reason that code is no longer needed in V7 is
because we now offer model/view as way to establish communication
between a model (like the Catalog Entry List Model) and a viewer (like
the List Box Control).

The new Version 7 models are already enabled for model/view
communication through their support for the staticStringList interface.
All of our viewer controls that display things in lists have been enabled
for model/view communication as well using the same interface.

Interfaces are new to V7. Using the Interface Editor, you can define an
interface which is basically a set of rules that two components must
follow in order to establish a model/view relationship. Basically, an
interface contains a set of methods with specific method signatures.
One component says it supports the interface. Another component says
it requires the interface.

When dragging a model onto a frame and dropping it on top of a viewer,
SAS/AF software goes to work and based on each component’s
interface information, establishes the model/view relationship for you.
One indicator that a model/view relationship has been established is by
looking at the viewer’s model attribute. It should contain the name of
the model. You can share the same model across multiple viewers in
your frame by setting the model attribute directly on each viewer.

Due to the interface, the viewer has been designed to know how and
when to communicate with the model to get data. In our example, the
viewer knows how to get to the list of items that the model creates and
then displays it.

Behind-the-scenes,
1. When the model attribute is set in the Properties window, an event

handler is established on the viewer. The event handler is listening
for the ‘contents updated’ event.

2. The ‘contents updated’ event gets sent by the model when one of
its attributes specified in the contentsUpdatedAttributes attribute
changes. The contentsUpdatedAttributes attribute contains the
name of one or more attributes on the component. These attributes
are the ones that the component has identified as being critical.
They affect the contents of the model and the viewer should be
notified when their values change.

3. The viewer has an event handler that is listening for this event and
its _onContentsUpdated method executes. It’s up to the viewer in
its _onContentsUpdated to then call back to the model to retrieve
updated information. It knows how to communicate with the
model because of the methods defined in the interface.

In our example, the _onContentsUpdated method on the viewer has been
overridden to invoke the _getItems method on the model. This method
is defined in the staticStringList interface, thus, telling the viewer that it
is implemented by the model and can be invoked.
While this approach to establishing communication between objects
does require programming, it is encapsulated method code and
transparent to the end users working with these components in the
frame.

Model/View in its simplest form appears to mimic attribute linking
behavior where you get the value for one attribute from the value of
another attribute. But, often the model/view communication process is
much more complex than simply accessing one or two attributes.
Through the use of interfaces, components can be designed so that even

the most complex relationships can be established by simply specifying
a model value.

CONCLUSION
The sooner you begin working this functionality into your application
designs, the sooner you will reap the rewards of lower development and
maintenance costs. Through the use of attribute linking and drag and
drop you will have less code to manage. By designing new components
with the model/view methodology in mind and utilizing interface
support, you should experience a significant drop in your project time to
completion due to the code reuse that will quickly begin to take place.

There were many new terms and concepts introduced in this paper.
Hopefully, this has shed some light on what they mean and how you will
be able to take advantage of them in your application development
environment.

AUTHORS
Tammy L. Gagliano
SAS Institute Inc.
Two Prudential Plaza, 52nd Floor
Chicago, IL 60601
phone: (312) 819-6824
email: sastlg@unx.sas.com

Glen R. Walker
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
phone: (919) 677-8000
email: sasgrw@unx.sas.com

SAS , SAS/GRAPH, and SAS/AF are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ®
indicates USA registration.

Other brand and product names are registered trademarks or trademarks
of their respective companies.

