
%FLATFILE, and Make Your Life Easier
M. Michelle Buchecker, SAS Institute Inc., Chicago, IL

ABSTRACT

%FLATFILE is a macro that will create a flat file from a SAS®
data set. This macro takes 3 parameters: the SAS data library
name, the SAS data set name, and the name of the flat file to
create. The beauty of %FLATFILE is that it will query the data
set to determine the variable names and write out the PUT
statement INCLUDING the variables' permanent format (or a
default if there is none).

Operating Systems: ALL
Version: SAS 6.07 or higher

INTRODUCTION

This paper discusses an easy way to create a fixed column flat
file (ascii file, text file, whatever you want to call it) from a SAS
data set. The DATA step provides the mechanism to create a
flat file from a SAS data set, but has a few drawbacks. You
must

• know the names of the variables you want to write
• specify the format to write for each variable
• know how to write the DATA step code
• calculate the column widths to ensure there is no overlap.

The macro in this paper will do all of the above for you!

Let's take an in-depth look at each point and see how the
macro solves the problem.

KNOW THE NAMES OF THE VARIABLES YOU WANT TO
WRITE

Past Solutions

This problem is a bit more complex. If you have ever used the
CONTENTS procedure or the DATASETS procedure, you
know that either of these two procedures will produce the
names of the variables from a data set in your log or output
window. However, the problem is we would like to capture
that information and put it inside of our DATA step code.

There have been a few macros in the past that have done
exactly that. But, as you can imagine, they were fairly
complicated, since they had to

1. re-direct output to a file
2. issue the PROC CONTENTS or PROC DATASETS code
3. read the file produced by the procedure
4. strip off the unwanted information (of which there was

much)
5. carefully search for variable names
6. store those variable names into macro variables
7. write the DATA step.

THE DICTIONARY.COLUMNS TABLE

Starting with Version 6.07 of the SAS® System, you now have
the SQL dictionary tables at your disposal. The SQL
dictionary tables are essentially data sets about your data sets

(and catalogs and all other SAS files). This macro uses the
dictionary table named DICTIONARY.COLUMNS. The
DICTIONARY.COLUMNS table (SQL data sets are called
tables) contains information like

• data set name
• data set library
• variable name
• variable type
• variable length.

There is one row (row is the SQL term for observation) for
each variable in each data set that your current SAS session
knows about.

Selecting Variable Names, Types, Lengths, and Formats

The first step of the macro uses the SQL procedure to read
the DICTIONARY.COLUMNS table for the data set and library
that were supplied as parameters to the macro. Notice the
WHERE clause (SQL statements are called clauses since
there is no semicolon preceding each one). The column name
(SQL variables are called columns) LIBNAME is a column in
DICTIONARY.COLUMNS referring to a SAS data library
name. The column name MEMNAME refers to members
(data sets) in that data library.

By subsetting DICTIONARY.COLUMNS based on the library
and data set, you obtain information just on that data set. The
select clause extracts just the

• column name (NAME)
• column type (TYPE)
• column format (FORMAT)
• column length (LENGTH).

Remember, there is one row (observation) for each column
(variable). These results are then stored in the SAS view (data
set) WORK.TEMP.

Creating Macro Variables for Variable Names and Formats

 The DATA step reads the data set created by PROC SQL
and creates a series of macro variables named

• VAR1-VARn
• FMT1-FMTn.

n is the total number of variables in the data set.

To create these macro variables, CALL SYMPUT is used.
CALL SYMPUT takes two arguments. The first argument is
the name of the macro variable to create. The second
argument is the value the macro variable will contain. For
example, we want the value of the first macro variable, VAR1,
to be the name of the first variable in the data set you want to
write out. The macro variable FMT1 is that variables'
permanent format. If the variable does not have a permanent
format, a format of BEST10. is assigned.

 Since we know the macro variable name always starts with
VAR, the word VAR is enclosed in quotes because it is
constant. Next, we have to append a number/counter. The
DATA step automatically contains a variable called _N_ that

counts the number of iterations through the DATA step. The
put function changes the numeric counter, _N_, to the
character representation of that number so there are no notes
written to the log that SAS is converting it for us. The left
function removes leading blanks in front of the number, so we
don't try to create a macro variable named VAR 1. Then the
two vertical bars concatenate the left justified number to the
word VAR.

Notice the second argument to CALL SYMPUT is NAME,
which is the name of the variable from
DICTIONARY.COLUMNS. Since NAME is not in quotes, the
DATA step has to assume that it is a variable in the Program
Data Vector (PDV). During execution, the DATA step looks
inside the PDV for the value of NAME and finds the name of
the first variable.

SPECIFY THE FORMAT TO WRITE FOR EACH VARIABLE

 The next series of statements checks to see if that variable
already has a format. If so, the first IF condition is true and a
macro variable named FMTn is created whose value is the
name of the format. If no format is assigned, the next
statement checks to see if it is a character variable. A
character variable has a value of CHAR in the TYPE column
from DICTIONARY.COLUMNS. If the variable is character, a
character format is created based on the length of that
variable. For example, if the length of the character variable is
12, a format of $12. is created. If a variable is numeric and has
no format, a format of BEST10. is assigned.

The DATA step continues to loop through, creating 2 macro
variables for each variable in the original data set.

 Finally, it's extremely helpful to know how many variables
are in the data set you want written out, so the last statement
says if this is the last observation, create a macro variable
named NUMVAR whose value is the total number of variables.

KNOW HOW TO WRITE THE DATA STEP CODE

The general form for writing a data set out to a flat file is:

DATA _NULL_ ;
 SET SAS-data-set ;
 FILE 'name-of-file-to-write' ;
 PUT column-pointer variable-name format ...;
RUN ;

When calling the macro, you will supply the name of the data
set and the name of the flat file. The macro will then build the
PUT statement for you.

The SET Statement

Notice the SET statement in the last DATA step. The macro
variables LIB and DSN are supplied when calling the macro.
So why are there two periods after &LIB? The macro facility
treats all periods that follow a macro variable reference as a
delimiter to end a macro variable name. This is useful if you
have additional text that needs to be the suffix to the value of
the macro variable. The period is then thrown away. If one
period's not enough, use two! The first still works as a
delimiter and gets thrown away, but the second period is then
treated as text to separate the libref from the data set name.

The FILE Statement

 The FILE statement has double quotes around the macro
variable reference &FILE to allow the macro variable to
resolve. The macro facility does not "peek inside" single
quotes.

The PUT Statement

 The word PUT only needs to be in the DATA step once, so
it is outside of the %DO loop.

The %DO loop will execute for as many times as there are
variables in the original data set, which is determined by
&NUMVAR. The code that is generated is sent to the DATA
step compiler. The index counter, I, in the %DO loop is a
macro variable and will be used to cycle through the macro
variables we created earlier (VAR1 - VARn, FMT1 - FMTn).

 To retrieve the value from the macro variable VAR1, we
need to precede the macro variable name with an ampersand
(ie. &VAR1). However, since the number at the end is not
always a 1, we need to substitute the 1 with our index counter,
&I. So now we have &VAR&I. So the macro facility would
scan looking for a macro variable called &VAR. It won't find
one, and will generate a warning message. Then &I will
resolve to 1. But the &VAR did not resolve properly.

So if one ampersand isn't enough, try two!
&&VAR&I
With multiple ampersands, the macro facility takes two
ampersands and makes them one. The word VAR isn't a
macro trigger, so it just tags along for the ride. &I the first time
through the %DO loop resolves to 1. So now we have
&VAR1. Exactly what we wanted. The macro facility then re-
scans &VAR1, and that resolves to the name of the first
variable in the data set.

The same is true for the format, but this time the word FMT
tags along for the ride so we have &FMT1.

CALCULATE THE COLUMN WIDTHS TO ENSURE THERE
IS NO OVERLAP

The +1 moves the column pointer over to the next field to put
a space between this column and the next. Notice there is no
semicolon inside the %DO loop. The %DO loop continues
looping, writing out the variables on one PUT statement. After
all of the variables have been written to the PUT statement,
the %DO loop ends execution.

11 However, the PUT statement still does not have a
semicolon to end that statement. That is what the semicolon
on the line by itself accomplishes.

CALLING THE MACRO

Now, let's create a flat file on MVS named MYID.FLAT.FILE
based on the data set SASUSER.HOUSES. The code to call
the macro is:

%flatfile(lib=sasuser, dsn=houses,
file=myid.flat.file)

If you are using a directory-based system, you might code:

%flatfile(lib=sasuser, dsn=houses,
file=flat.dat)

CONCLUSION

The SAS macro facility provides a dynamic, maintenance free
way to write your SAS code. By incorporating this capability
with the SQL dictionary tables, you can create an extremely
powerful tool to

• improve your productivity
• create libraries of shared and re-usable code
• decrease the likelihood of syntax and logic errors.

For more information on the SQL dictionary tables, please
refer to SAS ® Technical Report
P-222, Changes and Enhancements to Base SAS® Software,
Release 6.07 (order #C59139).

SAS is a registered trademark or trademark of SAS Institute
Inc. in the USA and other countries. ® indicates USA
registration. Other brand and product names are registered
trademarks or trademarks of their respective companies.

The Code
The macro code is:
options mprint;
%macro flatfile(lib=,dsn=,file=);
 %let lib=%upcase(&lib); /* uppercase library and data set names */
 %let dsn=%upcase(&dsn);

proc sql;

 create view temp as
 select name, type, format, length
 from dictionary.columns
 where libname = "&lib" and memname = "&dsn";
 quit;

data _null_;

 set temp end=last;
 call symput ('var'!!left(put(_n_,3.)),name);
 if format ne ' ' then

 call symput ('fmt'!!left(put(_n_,3.)),format);
 else
 if upcase(type) = 'CHAR' then
 call symput ('fmt'!!left(put(_n_,3.)),'$'!!put(length,3.)!!'.');
 else
 call symput ('fmt'!!left(put(_n_,3.)),'best10.');

 if last then call symput('numvar',left(put(_n_,3.)));

 data _null_;
 set &lib..&dsn;
 file "&file";
 put
 %do i = 1 %to &numvar;
 &&var&i &&fmt&i +1

 %end;
 ; /* end put statement */

 run;
 %mend;

The Log
Here is an example log run under Windows (formatted slightly to fit the
page):
578 %flatfile(lib=sasuser, dsn=houses, file=f:\sugi\flat.dat)
MPRINT(FLATFILE): PROC SQL;

MPRINT(FLATFILE): CREATE VIEW TEMP AS SELECT NAME, TYPE, FORMAT, LENGTH
 FROM DICTIONARY.COLUMNS WHERE LIBNAME = "SASUSER"
 AND MEMNAME = "HOUSES";
NOTE: SQL view WORK.TEMP has been defined.
MPRINT(FLATFILE): QUIT;
NOTE: The PROCEDURE SQL used 0.55 seconds.

MPRINT(FLATFILE): DATA _NULL_;
MPRINT(FLATFILE): SET TEMP END=LAST;
MPRINT(FLATFILE): CALL SYMPUT ('var'!!LEFT(PUT(_N_,3.)),NAME);
MPRINT(FLATFILE): IF FORMAT NE ' ' THEN
 CALL SYMPUT ('fmt'!!LEFT(PUT(_N_,3.)),FORMAT);
MPRINT(FLATFILE): ELSE IF UPCASE(TYPE) = 'CHAR' THEN
 CALL SYMPUT ('fmt'!!LEFT(PUT(_N_,3.)),'$'!!PUT(LENGTH,3.)!!'.');
MPRINT(FLATFILE): ELSE CALL SYMPUT ('fmt'!!LEFT(PUT(_N_,3.)),'best10.');
MPRINT(FLATFILE): IF LAST THEN CALL SYMPUT('numvar',LEFT(PUT(_N_,3.)));

NOTE: The DATA statement used 1.04 seconds.

MPRINT(FLATFILE): DATA _NULL_;
MPRINT(FLATFILE): SET SASUSER.HOUSES;
MPRINT(FLATFILE): FILE "f:\sugi\flat.dat";
MPRINT(FLATFILE): PUT STYLE $ 8. +1 SQFEET BEST10. +1 BEDROOMS BEST10. +1
 BATHS BEST10. +1 STREET $ 16. +1 PRICE DOLLAR12. +1 ;
MPRINT(FLATFILE): RUN;

NOTE: The file "f:\sugi\flat.dat" is:
 FILENAME=f:\sugi\flat.dat,
 RECFM=V,LRECL=256

NOTE: 15 records were written to the file "f:\sugi\flat.dat".
 The minimum record length was 71.
 The maximum record length was 71.
NOTE: The DATA statement used 1.1 seconds.

The Output
Here is the resulting file:
RANCH 1250 2 1 Sheppard Avenue $64,000
SPLIT 1190 1 1 Rand Street $65,850
CONDO 1400 2 1.5 Market Street $80,050
TWOSTORY 1810 4 3 Garris Street $107,250
RANCH 1500 3 3 Kemble Avenue $86,650
SPLIT 1615 4 3 West Drive $94,450
SPLIT 1305 3 1.5 Graham Avenue $73,650
CONDO 1390 3 2.5 Hampshire Avenue $79,350
TWOSTORY 1040 2 1 Sanders Road $55,850
CONDO 2105 4 2.5 Jeans Avenue $127,150
RANCH 1535 3 3 State Highway $89,100
TWOSTORY 1240 2 1 Fairbanks Circle $69,250
RANCH 720 1 1 Nicholson Drive $34,550
TWOSTORY 1745 4 2.5 Highland Road $102,950
CONDO 1860 2 2 Arcata Avenue $110,700

