Ggsas

SAS® Drug Development 3.5

Remote APl User’s Guide

Second Edition

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2012. SAS® Drug Development 3.5: Remote API User’s Guide,
Second Edition. Cary, NC: SAS Institute Inc.

SAS® Drug Development 3.5: Remote API User’s Guide, Second Edition
Copyright © 2012, SAS Institute Inc., Cary, NC, USA
All rights reserved. Produced in the United States of America.

For a hardcopy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is
subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227—-19, Commercial Computer Software-Restricted Rights
(June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
Electronic book 1, April 2012
SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For

more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at support.sas.com/
publishing or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

http://support.sas.com/publishing
http://support.sas.com/publishing

Contents

Introduction v
Recommended Reading vii
Chapter1 « Overview e 1
Introduction o e 1
The Capabilities of the Remote APT 1
Benefits of the Remote APL. 2
The Remote APL Serviceso vttt e e e et 2
Accessing the Remote APT Servicest 5
Chapter 2 < Installing the Remote API e 7
Requirements 7
Before YouBegin 8
Install the Remote APT e 9
Chapter 3 « Remote API Reference 1
OVEIVIBW . .« & ettt it e et et e e e et e e e e e e e e e e e e e e 12
Writing and Compiling Code 12
Connection to the SAS Drug Development Servero... 13
Access to the Remote APIServices 14
Foldersand Files o i 15
Trash CanforaFolder........ i 25
Access Control Listsot 26
User Accounts and User GroUPSo v vttt e e 28
SAS Drug Development Processesoouiiti i 36
Audit Trail 38
Chapter 4 « Troubleshooting Connection Problems 41
OVEIVIBW .« & ettt e ettt et e e e e e e e e e e e e e e e e 41
Unable to Find Server 41
No Trusted Certificate Found 42
Server Is Not Configuredt 42
Authentication Exception Null 42
Expired Password 42
Inactive User ID o 43
Retired User ID oo o 43

Connection TIME OULot 43

iv Contents

Introduction

Audience

This guide is for users who want to develop applications with the SAS Drug

Development remote application programming interface (API). You must be familiar
with the following:

» Java programming

SAS Drug Development functionality, such as type definitions, containers, files, and
access permissions

Typographic Conventions Used in This Guide

Throughout this guide, you will see the following typographic conventions:

Convention Description

monospace font denotes code, such as a code example

monospace bold font denotes text that you enter, such as an object name

italics font denotes a value that you specify, such as your name

Vi Introduction

Recommended Reading

vii

» SAS Drug Development: User’s Guide
* SAS Drug Development online Help

For a complete list of SAS publications, go to support.sas.com/bookstore. If you have
questions about which titles you need, please contact a SAS Publishing Sales
Representative:

SAS Publishing Sales

SAS Campus Drive

Cary, NC 27513-2414

Phone: 1-800-727-3228

Fax: 1-919-677-8166

E-mail: sasbook@sas.com

Web address: support.sas.com/bookstore

mailto:sasbook@sas.com
http://support.sas.com/bookstore

viii Recommended Reading

Chapter 1
Overview

Introduction L 1
The Capabilities of the Remote API 1
Benefits of the Remote API 2
The Remote API Services i, 2
OVEIVIBW .« o ettt et e e e e e e e e e e e e 2
Repository Service oot 2
Security Packageot 3
USET SeIVICE . . o v vttt et e e e e e e e 3
GIOUP SEIVICE . . ¢ . vttt ettt e e e e e e e e e e e e e 4
TYPe SErVICe . . o oot 4
SAS SerVICE . . oot 4
Accessing the Remote API Services 5

Introduction

SAS Drug Development integrates with the Internet using certain technologies, such as
workflow engines and encoding engines, typically used by the life sciences industry.
Integration is provided by a component called a remote API.

The remote API enables developers and external applications to extend the functionality
of SAS Drug Development by providing programmatic access to SAS Drug
Development content and metadata. Programmatic access is implemented through a Java
interface to SAS Drug Development. Java objects represent SAS Drug Development
server metadata and repositories.

You can use the remote API to manage SAS Drug Development in a way that meets
your company’s business needs.

The Capabilities of the Remote API

The remote API consists of classes and interfaces that enable you to perform the
following tasks:

» connect to the SAS Drug Development server

* read and write SAS Drug Development content and metadata

2 Chapter 1

Overview

» read information about SAS Drug Development object types
» create, modify, and remove access permissions for SAS Drug Development objects
* read information about SAS Drug Development users and groups

* publish SAS code and parameter information to create a SAS Drug Development
process

Benefits of the Remote API

The remote API provides an object-oriented, client-side view of the SAS Drug
Development repository. The remote API facilitates development when providing
extensions and integration solutions. Some of the benefits provided by the remote API
are:

+ The remote API is entirely remote to the installation of SAS Drug Development and
requires access only to the SAS Drug Development server using the HTTPS
protocol.

* The remote API uses transport protocol mechanisms that are completely abstracted
and transparent. When you use the remote API, you do not need to be concerned
with the low-level transport protocol mechanisms used.

* The remote API is completely validated, which means that it will continue to be the
preferred method to build simple and robust integration solutions.

The Remote API Services

Overview

The remote API provides the following services:

» repository (see “Repository Service” on page 2)
» user (see “User Service” on page 3)

» group (see “Group Service” on page 4)

* type (see “Type Service” on page 4)

* sas (see “SAS Service” on page 4)

These services and their methods are described in this chapter. These services are the
only objects in the remote API that make calls to the SAS Drug Development server.

Repository Service

Use the repository service (located in com.sas.drugdev.remote.repository) to work with
nodes (containers and files) in the SAS Drug Development repository. The repository
service is the service that you use most frequently when working with the remote API.

The repository service provides methods to perform the following general tasks:

» read the properties that are associated with a node

Security Package

User Service

The Remote API Services 3

» set the values for the editable properties that are associated with a node
» enforce the validation rules as defined in the type definition for the node
* move, copy, and delete a node

In addition, the repository service provides methods to perform the following tasks with
containers:

» create a container of any type while enforcing all containment rules
* move and copy a container while maintaining containment restrictions

Furthermore, the repository service provides methods to perform the following tasks
with files:

+ retrieve a file and its content from SAS Drug Development
» create and update a file’s content

» enable file versioning

» view a file’s version history

» check out and check in a file

+ retrieve older versions of a file, including properties and content

See Also
“Folders and Files” on page 15

Use the security package within the repository service (located in
com.sas.drugdev.remote.repository.security) to access and modify the access
permissions on a SAS Drug Development node.

The security package provides methods to perform the following tasks:

* determine whether an access control entry has a specific access permission (such as
Read access)

» change the access permissions of an access control entry

* determine whether an access control entry is a user or user group

See Also

“Access Control Lists” on page 26

Use the user service (located in com.sas.drugdev.remote.admin) to work with user
accounts.

The user service provides methods to perform the following tasks:
+ retrieve user account IDs from SAS Drug Development
» create and update a user account, including password, status, and properties

* add and remove system policies assigned to a user account

4 Chapter1 -

Group Service

Type Service

SAS Service

Overview

See Also

“User Accounts and User Groups” on page 28

Use the group service (located in com.sas.drugdev.remote.admin) to work with user
groups.

The group service provides methods to perform the following tasks:
* retrieve a user group from SAS Drug Development
+ create and update a user group

+ add and remove members of a user group

See Also

“User Accounts and User Groups” on page 28

Use the type service (located in com.sas.drugdev.remote.type) to determine the type
definition of nodes and to access the properties of nodes.

The type service provides methods to perform the following tasks:
+ retrieve a list of type definitions

+ retrieve the properties defined for a type, including whether each property is
required, the default value for each property, and, if applicable, the list of possible
values for each property

See Also
“Folders and Files” on page 15

Use the SAS service (located in com.sas.drugdev.remote.sas) to publish and examine
SAS Drug Development processes.

The SAS service provides methods to perform the following tasks:

» use process-ready SAS code and parameter information to publish a SAS Drug
Development process

+ examine a SAS Drug Development process by getting the parameters defined for that

process

See Also
“SAS Drug Development Processes” on page 36

Accessing the Remote API Services 5

Accessing the Remote API Services

To access the remote API services, you must have a SAS Drug Development user ID
and password. You must follow these general steps:

1. Connect to the SAS Drug Development server by creating a session.

For sample code that illustrates how to connect to the SAS Drug Development
server, see “Connection to the SAS Drug Development Server” on page 13.

Note: You are authenticated to the server for as long as the session is active. You
have access to the remote API services throughout the session.

2. Use the service manager to look up and access the remote API services available in
the session.

6 Chapter1 -« Overview

Chapter 2
Installing the Remote API

Requirements e 7
Technical Requirementst 7
Required Documentation i 7
Before YouBegin 8
Environment Hosted by SAS 8
Environment Hosted by Your Organization, 8
Install the Remote APY 9
Requirements

Technical Requirements

The remote API is supported on Microsoft Windows and UNIX host environments. To
install and use the remote API, your environment must include the following
components:

Server:

* SAS Drug Development 3.5 or later

» The capability to deploy the remote API over the Web through the HTTPS protocol
Client:

* An operating system that runs Java 1.5.0 or later

» Java 2 Standard Edition Version 1.5 Software Development Kit (SDK) for the Java
compiler

Required Documentation

Documentation that you need to install the remote API is included in the
SASDrugDevRemoteAPI.zip file. Contact your internal SAS Drug Development project
manager to get the location of this file.

As you learn about the remote API, the following additional resource might be helpful:

» the SAS Drug Development Remote API reference, which can be viewed with a
Web browser

» example source files and sample programs

8 Chapter2 - Installing the Remote API

Before You Begin

Environment Hosted by SAS

If SAS hosts SAS Drug Development for your organization, confirm with your internal
SAS Drug Development project manager that the server component of the remote API
has been installed.

Environment Hosted by Your Organization

If your organization hosts SAS Drug Development, you must install the server
component of the remote API before setting up the development environment. Perform
these steps to install the server component:

1.

10.
11.
12.
13.
14.

Get the following information:

» the location of the file sas-sdd-p21.ear

» the URL to the WebLogic console application

» the WebLogic system administrator user name and password
Create a backup copy of the file sas-sdd-p21.ear.

Note: Do not skip this step.

Download the SASDrugDevRemoteApiServer.tar file and copy it to the temporary
location where SAS Drug Development is deployed on the Web server.

To get the location of this downloadable file, contact your internal SAS Drug
Development project manager.

Extract the SASDrugDevRemoteApiServer.tar file to a folder named
SASDrugDevRemoteApiServer.

Navigate to the SASDrugDevRemoteApiServer directory.
Submit the following command:
sh install.sh <path to sas-sdd-p21>/sas-sdd-p2l.ear

Modify the ownership and access permissions of the sas-sdd-p21.ear file to match
the ownership and access permissions of the user ID and group that own the domain
and that run the process as follows:

rwXx rwx --- (770)

Log on to the WebLogic console application.

From the left pane, select sdddomain = Deployments.
Click Lock & Edit.

In the right pane, select the sas-sdd-p21 check box.

In the right pane, click Update, and then click Finish.
In the left pane, click Activate Changes.

In the left pane, select sdddomain = Environment => Servers.

15.

16.
17.
18.
19.
20.
21.
22.

Install the Remote APl 9

In the right pane, select the server to add the API queue to (usually of the form
sddserverXX, where XX is the server number).

Click the Queues tab.

Click Lock & Edit, and then click New.

Type Name: ApiExecuteQueue.

Click OK.

Click Activate Changes.

Log out of the WebLogic console applications.

Restart the WebLogic managed servers.

Install the Remote API

Download and extract the SASDrugDevRemoteAPI.zip file.

To obtain the location of this file, contact your internal SAS Drug Development
project manager.

Here is an illustration of the extracted files and folders:

[Chdoc

b

[hsamples

2] README bt
iﬁtestCDnnectiDn.bat
[testConnection.sh
[Z] VERSION, kxt

At a command prompt, type the following command to verify that the Java compiler
is in the executable path:

java -version

If the Java compiler is not in the executable path, submit one of the following
commands:

¢ Microsoft Windows:
set PATH=<path to jdk>\bin;%PATH%
« UNIX:
PATH=<path to jdk>/bin:${PATH}
export PATH

Submit one of the following commands to verify that you have a connection to the
SAS Drug Development server:

¢ Microsoft Windows:
testConnection.bat
« UNIX:

testConnection.sh

10 Chapter 2 + Installing the Remote API

These test connection files are included in the files that you extracted from the
SASDrugDevRemoteAPI.zip file.

4. When prompted for the SAS Drug Development server URL, your user name, and
your password, use the URL https://<your server>/sddremote, your SAS
Drug Development user 1D, and your password.

Note: If you are connecting to an instance of SAS Drug Development that is hosted
by SAS, and you are connecting from within a firewall and behind proxy servers,
you might need to address proxy requirements or restrictions. If HTTPS traffic is
proxied, submit the following Java command to set the system properties that
enable you to configure the Java run-time environment so that a specified proxy
server and port is honored:

java -Dhttps.proxyHost=<proxy host name>

-Dhttps.proxyPort=<proxy port number>

If you receive a message stating that your connection was not successful, see Chapter 4,
“Troubleshooting Connection Problems,” on page 41.

Chapter 3

11

Remote APl Reference

OVeIVIEW . . . o 12
Writing and Compiling Code 12
Connection to the SAS Drug Development Server 13
Open a ConNection vttt e e e e 13
Close @ CONNECHION . .« . v\ vt e ettt e e e et e e e e e et 14
Access to the Remote API Services 14
Foldersand Files 15
OVEIVIEW « .« ettt et e et e e e e e e e e e e e e e 15
Create a File 15
Create a Folder. 16
GetaFile 16
CopyaFolderorFile..... i 17
MoveaFolderor File 17
DeleteaFolderor File i 18
List the Contents of a Folder. 19
Get the Properties of a Folderor File, 20
Set the Properties of a FolderorFile 21
Enable Object Versioningttt 22
Check Out, Check In, and Get Version Numbers 23
Get Available Object Typesottt e 24
Trash CanforaFolder 25
Access Control Lists 26
OVEIVIEW .« o ettt et e e e e e e e e e e e e e e 26
Add and Remove User Accounts and User Groupsoovuvenenon.... 26
Determine and Change Access Permissions 28
User Accounts and User Groups i, 28
(01554 1< 28
Create a User ACCOUNt ottt e 29
GetalUser ACCOUNtot e e e 29
Get the System Policies fora User Account, 30
Update the System Policies fora User Account., 30
Get and Set the Properties of a User Account, 31
GetalUser Groupot e 32
Get the Members of a User Group oot 33
Create a User GIOUPottt e 34
Update the Members of a User Group oviit i 34

SAS Drug Development Processes 36

12 Chapter 3 + Remote API Reference

Publish a SAS Drug Development Process, 36
Examine the Parameters of a SAS Drug Development Process 37
Audit Trailo 38

Overview

A remote API application that you create connects to the SAS Drug Development server.
An application can use the services provided by the remote API to create, read, and write
metadata.

After you have established a connection to the SAS Drug Development server, but
before you begin to create your application, review the code in the Samples folder
located in the SASDrugDevRemoteAPI.zip file. In the Samples folder, the following
classes are presented:

* SASDrugDevRemoteAPISample.java enables you to test the connection to the SAS
Drug Development server and to list directory contents for a specified path.

* SASDrugDevRemoteAPIRepositoryServiceSample.java provides sample methods to
perform various repository actions.

* SASDrugDevRemoteAPIAdminServiceSample.java provides sample methods to
perform administrative functions.

The files sample.bat (Microsoft Windows) and sample.sh (UNIX) are scripts that
execute the sample code. These files contain information that helps you set the class path
to execute your own code. The files show several ways to execute remote API
commands, and show the results of each remote API command.

This chapter presents sample code that shows the most common tasks that you perform
while developing a remote API application.

Writing and Compiling Code

Use the SAS Drug Development Remote API and this chapter to help you write your
remote API application. The SAS Drug Development Remote API is located in the doc
folder in the SASDrugDevRemoteAPI.zip file.

After you write your code, submit the following command to compile your code and to
create the class file in the directory:

compile.bat <java source file>

The files compile.bat (Microsoft Windows) and compile.sh (UNIX) are scripts that
specify the class path and compile the sample code.

As a final step, execute and test your code to ensure that you have set up everything
correctly. Remember to test in a non-production environment if you do not want testing
to affect the audit trail in your SAS Drug Development production system. If you do not
have a test instance, identify and use a location in your production environment for
testing that does not affect other users.

Connection to the SAS Drug Development Server 13

Connection to the SAS Drug Development Server

Open a Connection

The first step when developing a remote API application is to create a connection to the
SAS Drug Development server. A session stores the state of the connection to the server
and provides the access point to the service manager.

You create and initialize a session by calling SessionFactory.newSession(URL,
credentials). Then, use isValid() to determine whether the session is active.

Here is an example:

public class SASDrugDevRemoteAPIRepositoryServiceSample

{

private Session session;
private ServiceManager serviceMgr;
private RepositoryService repositoryService;

public SASDrugDevRemoteAPIRepositoryServiceSample (URL serverURL, String userName, String password) {

init (serverURL, userName, password) ;

// Initialize this SASDrugDevRemoteAPIRepositoryServiceSample

instance private void init (URL serverURL, String userName, String password)
//Create a new session

session = createSASDrugDevSession (serverURL, userName, password) ;

//Check for a valid session and initialize service manager

if (session.isvalid()) {

serviceMgr = session.getServiceManager () ;
repositoryService = serviceMgr.getRepositoryService () ;

//Create session/open connection to SDD server
public Session createSASDrugDevSession(URL serverURL, String userName,String password) {
// Create a session using the given user credentials
Session session = null;
try {
Credentials credentials = new UsernamePasswordCredentials (userName, password.toCharArray());

session = SessionFactory.newSession (serverURL, credentials);

} catch (AuthenticationException e) {
// Handle exception

14 Chapter 3 + Remote API Reference

e.printStackTrace () ;

} catch (PasswordExpiredException e)
// Handle exception
e.printStackTrace () ;

} catch (UserInactiveException e)

// Handle exception
e.printStackTrace () ;

} catch (UserRetiredException e) {

// Handle exception
e.printStackTrace () ;

} catch (RemoteException e) {

// Handle exception
e.printStackTrace () ;

} catch (UnsupportedCredentialsException e) {
// Handle exception
e.printStackTrace () ;

return session;

}

Close a Connection

When you are finished using the SAS Drug Development server, close the connection by
first checking for a valid session and then using invalidate() to close the connection.
Here is an example:

// Check if session is valid before closing server session

if (session.isvalid()

// Invalidate session and free up server side resources held by this session
session.invalidate() ;

}

Access to the Remote API Services

To access the services in the remote API, retrieve the service manager from the session
object. The remote API uses the service manager to access all of the services available in
the session.

The following example shows how to connect to the services, use the service manager,
and access the repository service:

// Check for a valid session and initialize service manager
if (session.isvalid()){

serviceMgr = session.getServiceManager () ;
repositoryService = serviceMgr.getRepositoryService () ;

}

Folders and Files 15

Folders and Files

Overview

The repository service provides methods to manipulate folders and files in the SAS Drug
Development repository.

The type service provides methods for handling the types of objects in SAS Drug
Development.

Create a File

To create a file in the SAS Drug Development repository, you must specify the path and
the type of file. You can specify a predefined SAS Drug Development type or a custom
type, or you can allow the type to be determined by the type of the uploaded file.

Here is an example:

// Create a new file of the given type in SAS Drug Development

String sddFilePath = "/SDD/Testing/foo.txt";

String typeName = "document";

String localFilePath = "c:\temp\foo.txt";

Properties properties = new Properties();

properties.put ("description", "Created by sample code");

try {

//Construct a FileBean with the SAS Drug Development path and specified file type
FileBean fileBean = new FileBean(pathinSDD, new TypeBean (typeName)) ;

//Set contents of the FileBean using the localFile to be pushed to SAS Drug Development repository
fileBean.setContents (new File(localFilePath)) ;

//Set properties if available, else will be set to default values
fileBean.setProperties (properties) ;

//Create this file on the server
RemoteFile remoteFile = repositoryService.createFile(fileBean) ;

//Create was successful, use remoteFile to perform other actions on this file
System.out.println("\n Created new file " + remoteFile.getPath() + " with id = " +
remoteFile.getId() + "\n");

} catch (Exception e) {
// Handle exception
e.printStackTrace () ;

16 Chapter3 + Remote API Reference

Create a Folder

To create a folder in the SAS Drug Development repository, you must specify the path.
You can specify the type of folder if you need to create a container other than a Folder
object. You can specify a type provided by SAS Drug Development or a custom-defined

type.
Here is an example:

// Create a new folder and protocol

String sddFolderPath = "/SDD/Testing/newFolder";
String sddProtocolPath = "/SDD/Testing/newProtocol";

try {

//Construct a ContainerBean with the SAS Drug Development path and specified file type

ContainerBean folderBean = new ContainerBean (sddFolderPath) ;
ContainerBean protocolBean = new ContainerBean (sddProtocolPath, new TypeBean ("protocol"));

//Create this container on the server
RemoteContainer remoteFolder = repositoryService.createContainer (folderBean) ;
RemoteContainer remoteProtocol = repositoryService.createContainer (protocolBean) ;

//Create was successful, use remote container to perform other actions on this file

System.out.println("\n Created new folder" + remoteFolder.getPath() + " with id = " +
remoteFolder.getId() + "\n");

System.out.println("\n Created new protocol" + remoteProtocol.getPath() + " with id = " +
remoteProtocol.getId() + "\n");

} catch (Exception e) {
// Handle exception
e.printStackTrace() ;

Get a File

To get a file from the SAS Drug Development repository, you must specify the path to
the file or the file ID, if it is available. You can also specify the version of the file that
you want to get.

When you get a file, only the file’s metadata (including properties, owner, and version
information) is returned, not the contents of the file. To get the contents of a file, use
getContents().

Here is an example:

// Get a file of specified path from SAS Drug Development

String sddFilePath = "/SDD/Testing/foo.txt";

try {
FileBean fileBean = new FileBean(sddFilePath) ;
RemoteFile remoteFile = repositoryService.getFile(fileBean) ;

Folders and Files 17

} catch (IllegalStateException e)
// Handle exception
e.printStackTrace() ;

} catch (InvalidVersionException e) {
// Handle exception
e.printStackTrace() ;

} catch (InvalidTypeException e) {

// Handle exception
e.printStackTrace() ;

} catch (RemoteException e) {

// Handle exception
e.printStackTrace() ;

} catch (InvalidSessionException e) {
// Handle exception
e.printStackTrace() ;

Copy a Folder or File

To copy a folder or file from one location in the SAS Drug Development repository to
another location in the repository, you must specify a source path and a destination path.

Here is an example:

// Copy a file from one location in SAS Drug Development to another

String srcPath = "/SDD/Testing/foo.txt";
String destPath = "/SDD/Testing/MyFolder/foo.txt";

// Construct FileBean for the source and destination paths

FileBean srcfileBean = new FileBean (srcPath);
FileBean destfileBean = new FileBean (destPath) ;

// Note: to copy container objects, you will need to use ContainerBean instances

try {

RemoteNode copiedNode = repositoryService.copyNode (srcFileBean,destFileBean) ;
String newPath = copiedNode.getPath() ;

System.out.println("\n"+srcPath+" has been copied to "+newPath) ;

catc Exception e

h (i)
// Handle exception
e.printStackTrace() ;

Move a Folder or File

To move a node (a folder or file) in the SAS Drug Development repository, you must
specify a source node and a destination node.

If the destination node is an existing container, the source node is moved into the
destination container, and the source node’s name remains the same.

18 Chapter3 + Remote API Reference

If the destination node does not exist, but its parent node does exist, the source node is
moved into the parent node. The source node’s name is changed to the value specified
for the destination node because the destination is assumed to be a full path, including
the node name.

Here is an example:

// Move a file or container from one location in SAS Drug Development to another

String srcPath = "/SDD/Testing/TestFolder";
String destPath = "/SDD/Testing/MyFolder";

try {

// Construct ContainerBean instances for the source and destination paths in SDD
ContainerBean srcContainerBean = new ContainerBean (srcPath) ;
ContainerBean destContainerBean = new ContainerBean (destPath);

// Note: to copy file objects, you will need to use FileBean instances

RemoteNode moveNode = repositoryService.moveNode (new NodeBean (srcPath), new NodeBean (destPath)) ;

String newPath = moveNode.getPath() ;
System.out.println("\n" + srcPath + " has been moved to " + newPath);

} catch (Exception e) {
// Handle exception
e.printStackTrace() ;

Delete a Folder or File

To delete a folder or file in the SAS Drug Development repository, you must specify a
node (a folder or file).

If the node is a folder, all of the node’s children are also deleted.

If the user does not have access permission to delete the node below the specified folder,
nothing is deleted and an exception is thrown.

Here is an example:

// Delete a file or container in SAS Drug Development

String filePath = "/SDD/Testing/foo.txt";

try {

// Delete the given object in SAS Drug Development using the repository service
FileBean fileBean = new FileBean(filePath);
repositoryService.deleteNode (fileBean) ;

System.out.println("/nSuccessfully deleted "+ filePath);

} catch (IllegalStateException e)
// Handle exception
e.printStackTrace() ;

} catch (InvalidNodeException e) {

Folders and Files 19

// Handle exception
e.printStackTrace () ;

} catch (PermissionException e)
// Handle exception
e.printStackTrace () ;

} catch (RemoteException e) {

// Handle exception
e.printStackTrace () ;

} catch (InvalidSessionException e) {
// Handle exception
e.printStackTrace () ;

List the Contents of a Folder

To list the contents of a folder, you must specify a full path (starting with /SDD) to the
folder in the SAS Drug Development repository. The path must be to a folder.

You can request all of the child objects or the child objects of a specific type.

A list of the children of the folder is returned. If the specified folder does not have any
children, an empty list is returned.

Here is an example that shows how to print the names of the children of a folder:

// List contents of a directory

String sddContainerPath = "/SDD/Testing";

try {

// Get children for the specified container using repository service
List children = repositoryService.getChildren (new ContainerBean (sddContainerPath)) ;

// Print the child node paths
System.out.println("Children of "+ sddContainerPath + " are:");

for (Iterator iter = children.iterator(); iter.hasNext();) {
Node node = (Node) iter.next();
System.out.println(node.getPath()) ;

}

} catch (IllegalStateException e)
// Handle exception
e.printStackTrace() ;

} catch (InvalidNodeException e) {
// Handle exception
e.printStackTrace() ;

} catch (InvalidTypeException e) {
// Handle exception
e.printStackTrace() ;

} catch (RemoteException e) {

// Handle exception
e.printStackTrace() ;

} catch (InvalidSessionException e) {
// Handle exception

20 Chapter3 « Remote APl Reference

e.printStackTrace () ;

}

Here is an example that shows how to get a list of the SAS processes in a folder. To
determine which object types are available, see “Get Available Object Types” on page
24,

// List the SAS processes that are in a specified directory

String sddContainerPath = "/SDD/Testing";

try {
// Get a list of the SAS process for the specified container using repository service
List children = repositoryService.getChildren(new ContainerBean (sddContainerPath), “process”);
// Print the child node paths
System.out.println("SAS Processes contained in "+ sddContainerPath + " are:");

for (Iterator iter = children.iterator(); iter.hasNext();) {
Node node = (Node) iter.next();
System.out.println(node.getPath()) ;

} catch (IllegalStateException e)
// Handle exception
e.printStackTrace() ;

} catch (InvalidNodeException e) {
// Handle exception
e.printStackTrace() ;

} catch (InvalidTypeException e) {
// Handle exception
e.printStackTrace() ;

} catch (RemoteException e) {

// Handle exception
e.printStackTrace() ;

} catch (InvalidSessionException e) {
// Handle exception

e.printStackTrace() ;

Get the Properties of a Folder or File

To get the properties of a folder or file, you must create a file bean that represents the
folder or file. Then, you must create a node that represents the bean. And then, you need
to get the properties of the node.

Here is an example that shows the use of a bean and node to print the properties of a
folder:

// Sample code to get properties

String sddPath = "/SDD/Testing";

try {

Folders and Files 21

FileBean fileBean = new FileBean (sddPath) ;
RemoteNode node = repositoryService.getNode (fileBean) ;

System.out.println("\nGetting properties for "+ path);
Map properties = node.getProperties() ;

// Look up properties by name

// Iterate through the properties
for (Iterator iter = properties.keySet().iterator(); iter.hasNext();)
{

String propertyName = (String) iter.next();

String propertyValue = (String)properties.get (propertyName) ;

// Do something with the property, for ex: print them out
System.out.println(propertyName + " = " + propertyValue);

} catch (RemoteException e) {
// Handle exception
e.printStackTrace() ;

} catch (InvalidSessionException e) {
// Handle exception
e.printStackTrace() ;

Set the Properties of a Folder or File

Here is an example that shows how an individual file property can be set:

// Example to show how node properties can be modified individually

String filePath = "/SDD/Testing/foo.txt";
FileBean updateBean = new FileBean (filePath);

String propertyName = "description";
String propertyValue = "new description";
try {

RemoteNode node = repositoryService.getNode (updateBean) ;

// Checking write permission requires a call to the server

if (node.canWrite())

{

// Set a single property

updateBean.setProperty (propertyName, propertyValue);

node = repositoryService.updateNode (updateBean) ;

System.out.println("Modified " + propertyName + " to " + propertyValue.toString());

}

else

{

System.out.println("You do not have permissions to modify this node");

}

} catch (RemoteException e) {
// Handle exception
e.printStackTrace() ;

22 Chapter 3 - Remote API Reference

} catch (InvalidNodeException e) {
// Handle exception
e.printStackTrace() ;

} catch (InvalidNodeBeanException e) {
// Handle exception
e.printStackTrace() ;

} catch (InvalidSessionException e) {
// Handle exception
e.printStackTrace() ;

} catch (NodeModifiedException e)
// Handle exception
e.printStackTrace() ;

} catch (ValidationException e)
// Handle exception
e.printStackTrace() ;

} catch (InvalidTypeException e) {
// Handle exception
e.printStackTrace () ;

} catch (PermissionException e)
// Handle exception
e.printStackTrace() ;

}

Enable Object Versioning

To enable object versioning, you must create a file bean that specifies the path to the file,
and then use enableVersioning().

Here is an example that shows the exceptions that are thrown by enableVersioning():

// Enable versioning on a file

String sddFilePath = "/SDD/Testing/foo.txt";
try {

// Construct FileBean class using the SAS Drug Dev file path
FileBean sddFileBean = new FileBean (sddFilePath) ;

// Turn versioning on using repository service
RemoteFile versionedFile = repositoryService.enableVersioning (sddFileBean) ;

System.out.println("\n Versioning is enabled on " + versionedFile.getPath());

} catch (InvalidTypeException e) {
// Handle exception
e.printStackTrace() ;

} catch (PermissionException e)
// Handle exception
e.printStackTrace() ;

} catch (InvalidNodeException e) {
// Handle exception
e.printStackTrace() ;

} catch (RemoteException e) {

// Handle exception
e.printStackTrace() ;

} catch (InvalidSessionException e) {

Folders and Files 23

// Handle exception
e.printStackTrace() ;

}

Check Out, Check In, and Get Version Numbers

You might need to check out a file, make changes to it, and then check it back in. When
you check out a file, changes made to the file are made on a working version of the file.
Only the user who has the file checked out can see the working version. Changes are not
written back to the SAS Drug Development repository until the file is checked in. When
the file is checked in, a new version of the file is created, and other users can see the
changes that were made.

Here is an example that shows how to check out a file, change the contents of the file,
and then check it back in. File version information is then printed:

// Checkin/Checkout a file and print file version information

String sddPath = "/SDD/Testing/foo.txt";
String checkinFilePath = "c:\temp\foo.txt";

try {
// Construct a FileBean with given path
FileBean fileBean = new FileBean (sddpath) ;

// Checkout the file using the repository service
RemoteFile remoteFile = repositoryService.checkoutFile (fileBean) ;

// Construct a filebean for the version to be checked in
FileBean checkinFileBean = new FileBean (sddpath) ;

// Set contents of new version
File localFile = new File(checkinFilePath) ;
checkinFileBean.setContents (localFile) ;

// Checkin a new version using the repository service
RemoteFile checkedinFile = repositoryService.checkinFile (checkinFileBean);

// Get version information
List versions = checkedinFile.getVersions();

if (versions != null)

{

System.out.println("\n File " + path + " has " + versions.size() + " versions");

for (Iterator iter = versions.iterator(); iter.hasNext() ;)

{

String version = (String)iter.next();

// Print version information
System.out.println(version) ;

}

} catch (IllegalStateException e)
// Handle exception

24 Chapter 3 - Remote API Reference

e.printStackTrace () ;

} catch (InvalidNodeException e) {
// Handle exception
e.printStackTrace () ;

} catch (PermissionException e)
// Handle exception
e.printStackTrace () ;

} catch (InvalidTypeException e) {
// Handle exception
e.printStackTrace () ;

} catch (RemoteException e) {

// Handle exception
e.printStackTrace () ;

} catch (InvalidSessionException e) {
// Handle exception
e.printStackTrace () ;

}

Get Available Object Types

To get the different object types that are supported in SAS Drug Development, use the
type service. The type service is the entry point for information about the type
definitions defined in SAS Drug Development. Each object type lists the available
metadata for an object of that type.

Here is an example that lists all of the object types:

// List the different node/object types available in the SAS Drug Development domain

try {

TypeService typeService = serviceMgr.getTypeService() ;

if (typeService != null)

{

List sddTypes = typeService.getTypes () ;

if (sddTypes != null)
{
System.out.println("\n Node Types defined on SAS Drug Dev Server: \n");
for (Iterator iter = sddTypes.iterator(); iter.hasNext();) {
Type type = (Type)iter.next();
System.out.println("type name =" + type.getName());

}

} catch (RemoteException e) {
e.printStackTrace() ;

} catch (InvalidSessionException e) {
e.printStackTrace() ;

}

Trash Can for a Folder 25

Trash Can for a Folder

A container object in SAS Drug Development can have a Trashcan object associated
with it. If a container has a trash can associated with it, any object that is deleted within
the container is copied to the trash can. You can retrieve the deleted object from the trash
can.

Here is an example that demonstrates how to specify the trash can for a folder, and then
how to retrieve the name of an existing trash can for a folder.

Note: Even though a folder has a trash can assigned to it, the trash can will not appear
until an object within the folder is deleted. Attempting to get the name of a trash can
associated with a folder before an object has been deleted from the folder results in
an exception.

// create a trashcan for an existing folder

String sddPath = "/SDD/Testing";

String trashcanName = "testTrashcan";

// Note: the recurse flag is used to control whether the trashcan
// applies to just the current container and objects or all

// contained containers and their objects

boolean recurse = false;

try
ContainerBean containerBean = new ContainerBean (sddPath) ;
repositoryService.setTrashcan (containerBean, sddpath + trashcanPath, recurse);

}

catch (Exception e)

{
// Handle exception
e.printStackTrace () ;

// get the name and path of a trashcan associated with an existing folder
String sddPath = "/SDD/Testing";

try

ContainerBean containerBean = new ContainerBean (sddPath) ;
RemoteContainer trashcan = repositoryService.getTrashcan(containerBean) ;
System.out.println(“Name: “ + trashcan.getName()) ;
System.out.println(“Full path: “ + trashcan.getPath());

}

catch (Exception e)

{

// Handle exception
e.printStackTrace () ;

26 Chapter 3

Remote API Reference

Access Control Lists

Overview

An access control list (ACL) controls the access permissions to a node in the SAS Drug
Development repository. Each node contains a single ACL. An ACL contains a set of
access control entries.

An access control entry (ACE) contains a set of access permissions for a single user
account or user group. The access permissions for a file are:

* Read

* Write

* Delete

* Manage

A container has the access permissions of a file and these additional access permissions:
* Inherit Read

* Inherit Write

* Inherit Delete

* Inherit Manage

The “inherit” access permissions determine the access permissions for a new node
created within the container.

Add and Remove User Accounts and User Groups

Before you can specify the access permissions for a user account or user group, you
must add the user account or user group to the ACL. To remove all access permissions

for a user account or user group, you remove the user account or user group from the
ACL.

Here is an example that shows how to manipulate an ACL by using ACEs. The example
also shows how to add access permissions of an ACE, how to print the current access
permissions, how to edit the access permissions, and then how to print the new access
permissions.

// Sample code that demonstrates removing/adding of users/groups from/to an

// access control list of a file in SDD repository

String sddFilePath = "/SDD/Testing/foo.txt";
String removeGroupName = "Group A";

String removeUserId = "userl";
String addUserId = "user2";
String addGroupName = "Group B";

try {
FileBean fileBean = new FileBean (sddFilePath) ;

RemoteFile remoteFile = repositoryService.getFile(fileBean) ;

// Get access control list for this file

Access Control Lists
AccessControlList acl = repositoryService.getAccessControlList (remoteFile) ;

// Remove group from Access Control List
if (! "".equals (removeGroupName)) {
// remove entry corresponding to specified group name
acl.removeGroupEntry (removeGroupName) ;

// Remove userid from Access Control List
if (! "".equals (removeGroupName)) {
// remove entry corresponding to userid to be removed from ACL
acl.removeUserEntry (removeUserId) ;

// Construct set of permissions to be associated with the user/group added to this file
Set permissions = new HashSet () ;

permissions.add (Permission.DELETE PERMISSION) ;

permissions.add (Permission.READ PERMISSION) ;

permissions.add (Permission.WRITE PERMISSION) ;

permissions.add (Permission.MANAGE PERMISSION) ;

// Add userid to Access Control List
if (! "".equals(addUserid)) {

// Create entry for user to be added
AccessControlEntry newUserAce = acl.createUserEntry(addUserId) ;
newUserAce.setPermissions (permissions) ;

acl.setEntry(newUserAce) ;

// Add group to Access Control List

if (! "".equals (addGroupName))
AccessControlEntry newGroupAce = acl.createGroupEntry (addGroupName) ;
newGroupAce.setPermissions (permissions) ;

acl.setEntry (newGroupAce) ;

// Perform the Access Control List changes on the server

repositoryService.updateFileAccessControlList (acl) ;

// Retrieve Access Control List that was modified and print the access control entry names
AccessControlList updatedAcl = repositoryService.getAccessControlList (remoteFile) ;
List aceEntries = updatedAcl.getEntries();

System.out.println("\nUpdated Access Control List for " + sddFilePath + ": \n");

for (Iterator iter = aceEntries.iterator(); iter.hasNext();) {
AccessControlEntry ace = (AccessControlEntry) iter.next();

if (ace.isGroupEntry())

{

System.out.println("Group Entry ACE, name =" + ace.getName()) ;

}

else

{

27

28 Chapter3 « Remote APl Reference

System.out.println("User Entry ACE, name =" + ace.getName());

} catch (Exception e) {
// Handle exception
e.printStackTrace() ;

Determine and Change Access Permissions

Here is an example that shows how to set the Delete and Write access permissions for a
file:

// Get Access Control List of a file and grant delete and write permissions

String sddFilePath = "/SDD/Testing/foo.txt";

try {
FileBean fileBean = new FileBean(sddFilePath) ;

RemoteFile remoteFile = repositoryService.getFile(fileBean) ;

// Set write and delete permissions for current user
AccessControlList acl = repositoryService.getAccessControlList (remoteFile) ;
List aceEntries = acl.getEntries();

AccessControlEntry ace;

for (Iterator iter = aceEntries.iterator(); iter.hasNext();) {
ace = (AccessControlEntry) iter.next();
if (! ace.hasPermission(Permission.DELETE PERMISSION))

{

ace.addPermission (Permission.DELETE PERMISSION) ;

}

if (! ace.hasPermission(Permission.WRITE PERMISSION))

ace.addPermission (Permission.WRITE PERMISSION) ;

repositoryService.updateFileAccessControlList (acl) ;
System.out.println("Access Control List updated.");
System.out.println("Delete and write permissions granted to all access control entries.");

catc Exception e

h (i)
// Handle exception
e.printStackTrace() ;

User Accounts and User Groups

Overview

The user service provides methods for manipulating user accounts.

User Accounts and User Groups 29

The group service provides methods for manipulating user groups.

Create a User Account

To create a user account, you must specify a user ID, password, first name, last name,
and e-mail address.

Note: Before the user can access the remote API, the user must consent through the SAS
Drug Development interface.

Here is an example that shows how to create a user account:

//Create a user with userId newuser
String userId = johndoe;

String password = "Passwordl! ";
String firstName = "John";

String lastName = "Doe";

String email = "johndoe@test.com;
tryf

//Construct a UserBean with the intended SAS Drug Development userId

UserBean userBean = new UserBean (userId) ;

//set the password
userBean.setPassword (password.toCharArray()) ;

//set the first name
userBean.setFirstName (firstName) ;

//set the last name
userBean.setLastName (lastName) ;

//set email address
userBean.setEmailAddress (email) ;

//create this user on the server
RemoteUser remoteUser = userService.create (userBean) ;

System.out.prinln("\n Created new user" + remoteUser.getUserId());

} catch (Exception e) {
// Handle exception
e.printStackTrace() ;

Get a User Account

To get a user account, you must specify a user ID. Here is an example that shows how to
get a user account:

// Get a user of the specified userid from SAS Drug Development
String userId = "johndoe";
try {

RemoteFile remoteUser = userService.get (userId);

System.out.println("Got user: " + remoteUser.getUserId();

30 Chapter3 » Remote API Reference

} catch (InsufficientPrivilegesException e) {
// Handle exception
e.printStackTrace() ;
} catch (RemoteException e) {
// Handle exception
e.printStackTrace() ;
} catch (InvalidSessionException e) {
// Handle exception
e.printStackTrace() ;

Get the System Policies for a User Account

Here is an example that shows how to get the list of SAS Drug Development system
policies for a user account:

// Get the list of SAS Drug Development policies assigned to this user

String userId = "johndoe";

try {
RemoteFile remoteUser = userService.get (userld);
List policies = remoteUser.getPolicies();
for (Iterator iter = policies.iterator(); iter.hasNext();) {
Policy policy = (Policy) iter.next();
System.out.prinln(userId + "has policy: " + policy);
}
} catch (InsufficientPrivilegesException e) {
// Handle exception
e.printStackTrace() ;
} catch (RemoteException e) {
// Handle exception
e.printStackTrace() ;
} catch (InvalidSessionException e) {
// Handle exception
e.printStackTrace() ;

Update the System Policies for a User Account

To update the system policies for a user account, you must create a user bean that
represents the user account. Then, you must update the bean. Here are the methods to
update system policies for a user account:

addPolicy and addPolicies

These methods add one or more system policies.
removePolicy and removePolicies

These methods remove one or more system policies.
setPolicies

This method overwrites all system policies for the user account with the system
policies specified in the updated user bean.

User Accounts and User Groups 31

Note: You can update the system policies only for a user account that exists on the SAS
Drug Development server. If you attempt to add or remove a user account while
updating the system policies, an exception is thrown.

//add policies to a user

String userId = "johndoe";

try {
UserBean userBean = new UserBean (userId);
ArraylList policies = new ArrayList();
policies.add(Policy.USER_POLICY OWNER_MANAGER) ;
policies.add(Policy.USER_POLICY UNDO_CHECKOUT) ;
userBean.addPolicies (policies) ;
userBean.removePolicy (Policy.USER_POLICY SIGNER) ;

//call update to make the changes on the server
RemoteUser remoteUser = service.update (userBean) ;
List policies = remoteFile.getPolicies();
for (Iterator iter = policies.iterator(); iter.hasNext();) {
Policy policy = (Policy) iter.next();
System.out.prinln(userId + "has policy: " + policy);
}
} catch(PropertyValidationException e)
// Handle exception
e.printStackTrace() ;
} catch(InvalidUserException e)
// Handle exception
e.printStackTrace() ;
} catch (InsufficientPrivilegesException e) {
// Handle exception
e.printStackTrace() ;
} catch (RemoteException e) {
// Handle exception
e.printStackTrace() ;
} catch (InvalidSessionException e) {
// Handle exception
e.printStackTrace() ;

Get and Set the Properties of a User Account

You manipulate most of the properties of a user account using the get and set methods
on a user bean.

However, there are other properties of a user account that you can get and set using
methods associated with a remote user. These properties include optional user account
information such as employee ID, title, phone number, and fax number. Other user
account properties that you can get, but not set, are the last login date and the number of
successful logins.

Note: If you attempt to set a property that cannot be set, an exception is thrown.

//update properties on user

String userId = "johndoe";

32 Chapter3 » Remote API Reference

try {
UserBean userBean = new UserBean (userId) ;

//update the user’s last name
userBean.setLastName ("Deer") ;

//update the user’s contact info
userBean.setProperty (UserBean.PROPERTY PHONE, "1-800-555-5555");

userBean.setProperty(UserBean.PROPERTY_FAX, , "1-800-555-5556") ;

//call update to make the changes on the server
RemoteUser remoteUser = service.update (userBean) ;

//check user’s updated info

System.out.prinln(userId + "has last name: " + remoteUser.getLastName());
System.out.prinln(userId + " phone number is: " +

updatedUser.getProperties () .get (UserBean.PROPERTY PHONE) ;
System.out.prinln(userId + " fax number is: " +

updatedUser.getProperties () .get (UserBean.PROPERTY FAX) ;

} catch(PropertyValidationException e)
// Handle exception
e.printStackTrace () ;

} catch(InvalidUserException e)

// Handle exception
e.printStackTrace() ;

}Jcatch (InsufficientPrivilegesException e)
// Handle exception
e.printStackTrace() ;

} catch (RemoteException e) {

// Handle exception
e.printStackTrace() ;

} catch (InvalidSessionException e) {
// Handle exception
e.printStackTrace() ;

Get a User Group
To get a user group, you must create a group bean with the name of a specific user
group.

Here is an example that shows how to create a group bean, and then print the properties
of the user group:

// Sample code to get group name and description

String groupName = "SDD";

try {
GroupBean groupBean = new GroupBean (groupName) ;

RemoteGroup remoteGroup = (RemoteGroup)groupService.get (groupBean) ;

System.out.println("\nGetting name for " + groupName) ;
String returnedName = remoteGroup.getName () ;
String returnedDescription = remoteGroup.getDescription();

User Accounts and User Groups 33

// print out the name and description
System.out.println("Got group: " + returnedName) ;
System.out.println("Description: " + returnedDescription);

} catch (RemoteException e) {

// Handle exception
e.printStackTrace() ;

} catch (InvalidSessionException e) {
// Handle exception
e.printStackTrace() ;

} catch(InvalidGroupException e) {

// Handle exception
e.printStackTrace () ;

} catch (InsufficientPrivilegesException e) {
// Handle exception
e.printStackTrace() ;

Get the Members of a User Group

To get the members of a user group, you must create a group bean with the name of a
specific user group. Then, you access the list of members within the user group.

Here is an example:

// Sample code to get group membership

String groupName = "SDD";

try {
GroupBean groupBean = new GroupBean (groupName) ;

RemoteGroup remoteGroup = (RemoteGroup)groupService.get (groupBean) ;

System.out.println("\nGetting members for " + groupName) ;
List users = remoteGroup.getUsers();

// Iterate through the users
for (Iterator iter = users.iterator(); iter.hasNext();) {
String username = iter.next();

// Do something with the user, for ex: print them out
System.out.println (username) ;

} catch (RemoteException e) {

// Handle exception
e.printStackTrace() ;

} catch (InvalidSessionException e) {
// Handle exception
e.printStackTrace() ;

} catch(InvalidGroupException e) {

// Handle exception
e.printStackTrace() ;

} catch(InsufficientPrivilegesException e) {
// Handle exception

34 Chapter3 » Remote API Reference

e.printlnStackTrace() ;

}

Create a User Group

To create a user group, you must create a group bean with the name of the user group.
The name must conform to certain rules, which are listed in the online SAS Drug
Development Remote API reference. You can create a description and add members to
the user group.

Here is an example:

// Create a new group

tryf
//construct a new group bean to represent the group to be created
GroupBean groupBean = new GroupBean ("newGroup") ;
groupBean.setDescription("description") ;
groupBean.addUser ("admin") ;

//call the group service to create the group on the server
service.create (groupBean) ;

//check to ensure the new group was created
RemoteGroup group = (RemoteGroup)service.get (groupBean) ;
System.out.println("New Group: " + group.getName()) ;

} catch(InvalidSessionException e) {
//handle exception
e.printStackTrace() ;

} catch(InsufficientPrivilegesException e) {
//handle exception
e.printStackTrace() ;

} catch(InvalidGroupException e) {
//handle exception
e.printStackTrace() ;

} catch(InvalidUserException e) {
//handle exception
e.printStackTrace() ;

} catch(RemoteException e) {

//handle exception
e.printStackTrace() ;

} catch(InvalidGroupBeanException e) {
//handle exception
e.printStackTrace() ;

Update the Members of a User Group

To update the members (user accounts) of a user group, you must update the user group
members on a group bean that has the name of the user group. Then, you issue update()
to write the changes back to the SAS Drug Development repository.

Here are the methods to update members in a user group:

e addUser and addUsers

User Accounts and User Groups 35

These methods add one or more members.
» removeUser and removeUsers

These methods remove one or more members.
» setUsers

This method overwrites all members in the user group with the members specified in
the updated group bean.

Note: You can specify only members that exist on the SAS Drug Development server. If
you attempt to add or remove a member while updating the members of a user group,
an exception is thrown.

tryf{
//sample user update
String groupName = "SDD";

String userl = "admin";
String user2 = "user";
String user3 = "user2";

GroupBean groupBean = service.get (new GroupBean (groupName)) ;
groupBean.removeUser (userl) ;

groupBean.addUser (user2) ;

groupBean.addUser (user3) ;

//call update on the service to make the changes on the server
service.update (groupBean) ;

//do something with the newly modified group
RemoteGroup group = (RemoteGroup)service.get (new GroupBean (groupName)) ;

List users = group.getUsers();
for(Iterator iter = users.iterator(); iter.hasNext();){
System.out.println("User: " + iter.next());

}

} catch(InvalidSessionException e) {
//handle exception
e.printStackTrace() ;

} catch(InsufficientPrivilegesException e) {
//handle exception
e.printStackTrace() ;

} catch(InvalidGroupException e) {
//handle exception
e.printStackTrace() ;

} catch(InvalidUserException e) {
//handle exception
e.printStackTrace() ;

} catch(RemoteException e) {
//handle exception
e.printStackTrace() ;

} catch(ObjectModifiedException e) {
//handle exception
e.printStackTrace() ;

} catch(InvalidGroupBeanException e) {
//handle exception
e.printStackTrace() ;

36 Chapter3 » Remote API Reference

SAS Drug Development Processes

Publish a SAS Drug Development Process

To publish a SAS Drug Development process, you must provide the following
information:

+ process-ready SAS code that contains macro references that you want to appear as
parameters in the SAS Drug Development process

* parameter information to help define the parameters in the SAS Drug Development
process

You must create a file bean that specifies the SAS code content and the SAS Drug
Development path information. Parameter information is specified in a set of
ProcessParameter classes. The file bean and list of ProcessParameter classes are passed
to the publishProcess method in the SAS service.

There are four types of parameters that can be published in an SAS Drug Development
process with the SAS service:

* ProcessFolderParameter

* ProcessOutputFileParameter
* ProcessInputFileParameter

* ProcessIgnoredParameter

Here is an example:

String sddProcessPath = "/SDD/Testing/process.sas";
String typeName = "process";
String localFilePath = "c:\\temp\\sample.sas";

// Construct a FileBean with the SAS Drug Development path and process file type
FileBean fileBean = new FileBean (sddProcessPath, new TypeBean (typeName)) ;

// Set SAS code contents of the FileBean using the localFile
fileBean.setContents (new File(localFilePath));

// create ProcessParameter classes for parameters you want defined in the SDD process

ProcessFolderParameter folderParm = new ProcessFolderParameter ("folderA", null,
"/SDD/remoteAPI/testFolder", true, null, true, false, false);

ProcessOutputFileParameter outputFileParm = new ProcessOutputFileParameter ("outfile", null,
"/SDD/remoteAPI/testFolder", "testOutfile.txt", false);

List parms = new ArrayList();
parms.add (folderParm) ;
parms.add (outputFileParm) ;

RemoteFile remoteFile = null;
try {

remoteFile = sasService.publishProcess(fileBean, parms);
} catch (RemoteException e) {

// TODO Auto-generated catch block

e.printStackTrace() ;

SAS Drug Development Processes 37

} catch (InvalidSessionException e) {
// TODO Auto-generated catch block
e.printStackTrace() ;

} catch (PermissionException e)

// TODO Auto-generated catch block
e.printStackTrace() ;

} catch (InvalidProcessException e) {
// TODO Auto-generated catch block
e.printStackTrace() ;

} catch (InvalidNodeBeanException e) {
// TODO Auto-generated catch block
e.printStackTrace() ;

} catch (ValidationException e)

// TODO Auto-generated catch block
e.printStackTrace() ;

} catch (InvalidTypeException e) {

// TODO Auto-generated catch block
e.printStackTrace () ;

} catch (ContainmentException e) {

// TODO Auto-generated catch block
e.printStackTrace() ;

} catch (InvalidParameterException e) {
// TODO Auto-generated catch block
e.printStackTrace () ;

}

Examine the Parameters of a SAS Drug Development Process

To examine the parameters of a SAS Drug Development process, you must call the
getProcessParameters method in the SAS service. A ProcessParameter class is returned
for every parameter that is defined in the process, and is one of these four types:

* ProcessFolderParameter

* ProcessOutputFileParameter

* ProcesslgnoredParameter

* ProcessInputFileParameter

If the parameter is not one of these four types, then it returns:
* ProcessUnknownParameter

Here is an example:

String sddProcessPath = "/SDD/Testing/process.sas";
List publishedParms = null;

try {
publishedParms = sasService.getProcessParameters (new FileBean (sddProcessPath));
} catch (RemoteException e) {
// TODO Auto-generated catch block
e.printStackTrace () ;
} catch (InvalidSessionException e) {
// TODO Auto-generated catch block
e.printStackTrace() ;
} catch (PermissionException e)
// TODO Auto-generated catch block

38 Chapter3 -

Remote API Reference

e.printStackTrace() ;

} catch (InvalidNodeException e) {
// TODO Auto-generated catch block
e.printStackTrace() ;

} catch (InvalidProcessException e) {
// TODO Auto-generated catch block
e.printStackTrace() ;

if (publishedParms ! = null){
for (Iterator iter=publishedParms.iterator(); iter.hasNext();){
ProcessParameter processParm = (ProcessParameter)iter.next();
System.out.println("Process has parameter: " + processParm.getName());

}

Audit Trail

try

{

SAS Drug Development keeps track of most important operations performed by users in
a global audit trail. This audit trail is accessible to users who have the associated policy.
The audit trail can be searched via the API.

Searching the audit trail requires building a query of parameters and then processing the
returned records. Two helper methods are provided which return the full list of event
types and object types defined in SAS Drug Development.

Here is an example that demonstrates how to use the helper methods and construct a
query for all detail audit records, on all objects in the system, for all dates, and for a
specific user.

// build a list of parameters

List<AuditSearchParameter> parameters = new ArrayList<AuditSearchParameters () ;

// detail records

parameters.add(new AuditSearchParameter (AuditSearchParameter.PARAM RECORD LEVEL,

// start date

AuditSearchParameter .AUDIT LEVEL DETAIL)) ;

parameters.add(new AuditSearchParameter.PARAM RECORDS AFTER, new Date (1900, 1, 1)));

// end date

parameters.add(new AuditSearchParameter.PARAM RECORDS AFTER, new Date()));

// get a list of all valid event types and add each to the parameters

List<String> eventTypes = auditService.getEventTypes();

for (String event:eventTypes)

{

parameters.add(new AuditSearchParameter (AuditSearchParameter.PARAM EVENT TYPE, event));

}

// get a list of all valid object types and add each to the parameters

List<String> objectTypes = auditService.getObjectTypes() ;

for (String object:objectTypes)

{

Audit Trail 39

parameters.add (new AuditSearchParameter (AuditSearchParameter.PARAM OBJECT TYPE, object));

}

// specific user to restrict records to
Parameters.add(new AuditSearchParameter (AuditSearchParameter.PARAM USER ID, “testAuditUser”);

// Path to restrict search to (entire tree in this example)
Parameters.add (new AuditSearchParameter (AuditSearchParameter.PARAM OBJECT PATH, “/SDD");

// restrict search to current folder or all subfolders
Parameters.add(new AuditSearchParameter (AuditSearchParameter.PARAM INCLUDE SUBCONTAINERS, “true”);

// execute the search

List<AuditRecords> records = AuditService.search(parameters) ;

// add code to process the records returned ...

catch (Exception e)

{

// add code to handle exceptions

40 Chapter3 « Remote APl Reference

Chapter 4

41

Troubleshooting Connection
Problems

OVeIVIEW . . . 41
Unable to Find Server e 41
No Trusted Certificate Found 42
Server Is Not Configured 42
Authentication Exception Null 42
Expired Password e 42
Inmactive User ID 43
Retired User ID 43
Connection Time Out 43

Overview

There are many causes of connection problems. The most common solutions are listed in
this chapter. There is additional text that appears in the error message. Use this
additional text to determine the root cause of the error.

Unable to Find Server

If the connection fails because the URL could not be resolved as a valid remote API
connection, the following error message appears:

com.sas.drugdev.remote.session.RemoteException

To correct this problem, when you are prompted for the SAS Drug Development server
URL, user name, and password, ensure that you have specified the server URL as shown
here:

https://<your server>/SDDremote

Note: You must use https.

42 Chapter 4

Troubleshooting Connection Problems

No Trusted Certificate Found

If the connection fails because the secure sockets layer (SSL) certificate is invalid (it is
out of date or for the wrong host name), or the certificate authority (CA) is not in the
certification chain list, the following message appears:

Exception executing authentication attempt:
sun.security.validator.ValidatorException: No trusted certificate

To correct this problem, contact your SAS Drug Development site administrator to
request that a valid certificate be used for the server, or that the required CA be installed.

Server Is Not Configured

If the connection fails because the server is not configured properly, the following
message appears:

com.sas.drugdev.remote.RemoteException: The url is not valid.
at com.sas.drugdev.remote.client.SessionRemote.connect

To correct this problem, verify that the SDDDrugDevRemoteAPIServer Web application
is installed on the server. Then, verify that the SDDDrugDevRemoteAPIServer Web
application is deployed.

Authentication Exception Nuli

If the connection fails because your user ID or password is invalid, the following
message appears:

com.sas.drugdev.remote.session.AuthenticationException
null

To correct this problem, provide valid credentials or verify that you have access to the
SAS Drug Development user interface.

Expired Password

If the connection fails because your password has expired, the following message
appears:

com.sas.drugdev.remote.session.PasswordExpiredException
null

To correct this problem, ensure that you are using the correct password. If your
password has expired, ask your internal SAS Drug Development project manager to
reset your password.

Connection Time Out 43

Inactive User ID

If the connection fails because your user ID is inactive, the following message appears:

com. sas.drugdev.remote.session.UserInactiveException
null

To correct this problem, ensure that you are using the correct user ID. If your user ID is
inactive, ask your internal SAS Drug Development project manager to reactivate your
password.

Retired User ID

If the connection fails because your user ID is retired, the following message appears:

com.sas.drugdev.remote.session.UserRetiredException
null

To correct this problem, ensure that you are using a correct active user ID. If your user
ID is retired, ask your internal SAS Drug Development project manager to create a new
user account. Once a user account is retired, it cannot be reused.

Connection Time Out

If the connection times out because the network is not allowing access to the specified
URL or because there is a possible proxy issue, the following message appears:

Exception executing authentication attempt: Connection timed out: connect
To correct this problem, try one of the following solutions:
* Verify that you have Internet access.
* Verify that you have access through the SAS Drug Development user interface.

* Verify the proxy requirements and match the settings as defined in your Web
browser. You might need to contact your network administrator for proxy
information.

44 Chapter4 - Troubleshooting Connection Problems

	Contents
	Introduction
	Audience
	Typographic Conventions Used in This Guide

	Recommended Reading
	Overview
	Introduction
	The Capabilities of the Remote API
	Benefits of the Remote API
	The Remote API Services
	Overview
	Repository Service
	Security Package
	User Service
	Group Service
	Type Service
	SAS Service

	Accessing the Remote API Services

	Installing the Remote API
	Requirements
	Technical Requirements
	Required Documentation

	Before You Begin
	Environment Hosted by SAS
	Environment Hosted by Your Organization

	Install the Remote API

	Remote API Reference
	Overview
	Writing and Compiling Code
	Connection to the SAS Drug Development Server
	Open a Connection
	Close a Connection

	Access to the Remote API Services
	Folders and Files
	Overview
	Create a File
	Create a Folder
	Get a File
	Copy a Folder or File
	Move a Folder or File
	Delete a Folder or File
	List the Contents of a Folder
	Get the Properties of a Folder or File
	Set the Properties of a Folder or File
	Enable Object Versioning
	Check Out, Check In, and Get Version Numbers
	Get Available Object Types

	Trash Can for a Folder
	Access Control Lists
	Overview
	Add and Remove User Accounts and User Groups
	Determine and Change Access Permissions

	User Accounts and User Groups
	Overview
	Create a User Account
	Get a User Account
	Get the System Policies for a User Account
	Update the System Policies for a User Account
	Get and Set the Properties of a User Account
	Get a User Group
	Get the Members of a User Group
	Create a User Group
	Update the Members of a User Group

	SAS Drug Development Processes
	Publish a SAS Drug Development Process
	Examine the Parameters of a SAS Drug Development Process

	Audit Trail

	Troubleshooting Connection Problems
	Overview
	Unable to Find Server
	No Trusted Certificate Found
	Server Is Not Configured
	Authentication Exception Null
	Expired Password
	Inactive User ID
	Retired User ID
	Connection Time Out

