Contents

Preface ix
Acknowledgments xi

Chapter 1 Pharmaceutical Industry Overview 1
1.1 Introduction 2
1.2 Regulations 2
 1.2.1 Health Insurance Portability and Accountability Act 2
 1.2.2 The Code of Federal Regulations 3
 1.2.3 Guidance for Industry 4
 1.2.4 International Conference on Harmonisation of Technical Requirements 5
 1.2.5 Clinical Data Interchange Standards Consortium 6
1.3 Documentation 7
1.4 Standard Operating Procedures 7
 1.4.1 Companywide Standard Operating Procedures 7
 1.4.2 Department Standard Operating Procedures 8
 1.4.3 Task Standard Operating Procedures 8
1.5 SAS Programming Guidelines 9
1.6 Quality Control versus Quality Assurance 9
1.7 Patient versus Subject 10
1.8 Conclusion 10

Chapter 2 Validation Overview 11
2.1 Introduction 12
2.2 Validation versus Verification 12
2.3 Why Is Validation Needed? 13
 2.3.1 Presenting Correct Information 13
 2.3.2 Validating Early Saves Time 13
 2.3.3 Developing a Positive Relationship 14
3.5.3 One Program, One Purpose 42
3.5.4 Comments, Comments, Comments 43
3.5.5 Use Macros Judiciously 44
3.6 Make Data Maintainable 44
 3.6.1 Order Your Data 44
 3.6.2 Label Everything 49
 3.6.3 Attach Formats Sparingly 50
 3.6.4 Consistency Is Key 51
 3.6.5 Good Housekeeping 51
 3.6.6 Look—but Don’t Touch 53
3.7 Conclusion 56

Chapter 4 General Techniques to Facilitate Validation 57
 4.1 Introduction 58
 4.2 Validation Tools 58
 4.2.1 Procedures 58
 4.2.2 SAS Options and Language Elements 67
 4.2.3 Using Macros Effectively 72
 4.3 Techniques That Facilitate Validation 80
 4.3.1 Start with a Clean Log 80
 4.3.2 Print Only What You Need—When You Need It 81
 4.3.3 Tracking Problems 82
 4.3.4 Using PROC TRANSPOSE or an Alternative Solution 85
 4.3.5 Tracking Dropped Data 89
 4.4 Conclusion 93

Chapter 5 Data Import and Export 95
 5.1 Introduction 96
 5.2 Validating the Import Process 96
 5.3 Validating the Export Process 98
 5.4 General Items to Watch For When Transferring Data 99
5.5 Working with SAS Files 100
 5.5.1 SAS Data Sets 100
 5.5.2 SAS Transport Files 101
5.6 Working with Other File Types 102
 5.6.1 Microsoft Excel Files 102
 5.6.2 Flat Files 103
5.7 Common Procedures Used for Validating Data Transfers 104
 5.7.1 PROC CONTENTS 104
 5.7.2 PROC COMPARE 108
5.8 Conclusion 112

Chapter 6 Common Data Types 113
6.1 Introduction 114
6.2 Study Populations 114
 6.2.1 Safety 115
 6.2.2 Intent-to-Treat 115
 6.2.3 Efficacy 116
6.3 Common Data Domains 116
 6.3.1 Subject Demographics 116
 6.3.2 Inclusion/Exclusion Criteria 117
 6.3.3 Subject Disposition 118
 6.3.4 Medical History 118
 6.3.5 Physical Examination 120
 6.3.6 Vital Signs 120
 6.3.7 Treatment Exposure 122
 6.3.8 Concomitant Medications 123
 6.3.9 Adverse Events 124
 6.3.10 Clinical Laboratory Data 126
6.4 Conclusion 137
Chapter 7 Reporting and Statistics 139
 7.1 Introduction 140
 7.2 Pre-Output Validation Steps 140
 7.2.1 Code Review 140
 7.2.2 Log Review 141
 7.3 Output Validation Steps 142
 7.3.1 Understanding the Data 142
 7.3.2 Understanding the Output 143
 7.3.3 Checking the Result 143
 7.3.4 Cross-Checking Related Output 146
 7.3.5 Checking the Cosmetics 153
 7.3.6 Updating the Specifications 157
 7.3.7 Keeping What Is Important 157
 7.4 Final QC Steps 158
 7.5 Conclusion 158

Appendix A Sample Quality Control Checklists 159
Appendix B Sample Statistical Analysis Plan 163
Appendix C Glossary 181
References 195
Index 197
Chapter 1

Pharmaceutical Industry Overview

1.1 Introduction 2
1.2 Regulations 2
 1.2.1 Health Insurance Portability and Accountability Act 2
 1.2.2 The Code of Federal Regulations 3
 1.2.3 Guidance for Industry 4
 1.2.4 International Conference on Harmonisation of Technical Requirements 5
 1.2.5 Clinical Data Interchange Standards Consortium 6
1.3 Documentation 7
1.4 Standard Operating Procedures 7
 1.4.1 Companywide Standard Operating Procedures 7
 1.4.2 Department Standard Operating Procedures 8
 1.4.3 Task Standard Operating Procedures 8
1.5 SAS Programming Guidelines 9
1.6 Quality Control versus Quality Assurance 9
1.7 Patient versus Subject 10
1.8 Conclusion 10
1.1 Introduction

The pharmaceutical industry, including clinical research organizations (CROs) and biotechnology companies, has adopted many industry standards and requirements. While these standards affect the entire clinical trial process, many have a direct impact on how SAS programmers work, and explain why validation is such a cornerstone of the programming process in this industry.

1.2 Regulations

There are many layers to the rules and regulations that govern the pharmaceutical industry. As a SAS programmer, you will be required to follow many of these regulations, which can be broken down into three major categories: federal laws, federal guidelines, and industry standards.

Federal laws (the Code of Federal Regulations) consist of legislation that is passed to control how things are done and how information is handled. Violation of these laws can lead to actions such as prosecution by the federal government. Federal guidelines are formal lists of suggestions that the federal government has issued to let the industry know the best way to conduct trials and submit the data in order to enable approval of a drug or device. These guidelines are simply that—guidelines. Unlike laws, failure to follow these guidelines does not carry as hefty a penalty, although it can lead the government to refuse to review a submission or approve a drug. Finally, with time and experience, companies have developed sets of standards that allow information and data to be shared more effectively. As the need for these industry standards has been recognized, organizations have been formed to determine the areas that need standards, to develop suitable standards, and to then document them to share information across companies.

The main source of information on industry standards and requirements is the Food and Drug Administration (FDA). Through various communication channels (primarily regulations and guidance documents published on the agency’s Web site, www.fda.gov), the FDA defines the requirements and expectations for a New Drug Application (NDA). While many of the guidance documents and regulations that the FDA issues do not directly impact a SAS programmer’s work, some do. Those most relevant to you are discussed here.

1.2.1 Health Insurance Portability and Accountability Act

As summarized by the U.S. Department of Labor (www.dol.gov/dol/topic/health-plans/portability.htm), The Health Insurance Portability and Accountability Act of 1996 (HIPAA)
Chapter 1: Pharmaceutical Industry Overview

... provides rights and protections for participants and beneficiaries in group health plans. HIPAA includes protections for coverage under group health plans that limit exclusions for preexisting conditions; prohibit discrimination against employees and dependents based on their health status; and allow a special opportunity to enroll in a new plan to individuals in certain circumstances. HIPAA may also give you a right to purchase individual coverage if you have no group health plan coverage available, and have exhausted COBRA or other continuation coverage.

How does this impact you as a SAS programmer? It has little or no impact on day-to-day programming, but it is important to understand that the law exists and to have a general idea of its purpose. In simple terms, HIPAA serves to protect the information about a subject's identifying information. While this concept has only recently been so plainly articulated, it is the core reason that the most specific identifying information about each subject in every clinical trial conducted in the United States is limited to the subject's initials and date of birth. Any identifying information that is more specific is carefully protected by the investigating site. When validating data that may come to you as a programmer, it is important to understand that personal information should not be included—and if it is, it is your responsibility to point it out to have it removed.

1.2.2 The Code of Federal Regulations

Title 21 of the Code of Federal Regulations (CFR) pertains to food and drugs. Chapter I pertains to those components that identify the Food and Drug Administration (FDA) and the Department of Health and Human Services (DHHS). Within this set of regulations, Part 11, perhaps the most well-known and referenced section, specifically identifies electronic records and electronic signatures. It is important to note that any requirements listed under Title 21 in general are often referred to as predicate rules.¹ These rules can help determine when Part 11 rules apply to a specific situation, as well as how any aspect of a clinical trial is performed. On the subject of good clinical practice, 21 CFR 50, “Protection of Human Subjects,” is one such predicate rule that requires clinical trial subjects to provide written informed consent to participate in a research trial. More indirectly, Part 820.70(i) addresses automated processes: “When computers or automated data processing systems are used as part of production or the quality system, the manufacturer shall validate computer software for its intended use according to an established protocol.”² While this regulation directly applies to manufacturing, it is the predicate rule that is cited as the reason that SAS programs need to be validated. There are numerous topics within Title 21 that directly (Part 11 and Part 820) or indirectly (Part 50) affect programming. While you don’t need to read each of these, it is helpful to understand what parts of the clinical trial and programming process are driven by these rules.

¹ www.labcompliance.com/info/links/fda/regulations.aspx
² Code of Federal Regulations, Title 21, Volume 8; cite 21CFR820.70
Part 11 of this code contains several sections. Each section outlines the steps to take to ensure that the electronic records, electronic signatures, and handwritten signatures that are applied to electronic clinical data are truthful, dependable, and equal to paper records and handwritten signatures on paper. Most of these regulations are implemented and completed by IT professionals (those responsible for hardware and software installation, documentation, and maintenance). Most important to SAS programmers is the section that dictates how records can be modified: “Use of secure, computer-generated time-stamped audit trails to independently record the date and time of operator entries and actions that create, modify, or delete electronic records. Record changes shall not obscure previously recorded information.” 3 The key principal of this regulation is to understand that data cannot just be changed; a specific procedure must be followed. This regulation is the reason that programmers are not permitted to hard code data changes and why a key part of the validation process is ensuring that the result of a programming effort accurately represents the original data that it is based on.

While the FDA has narrowed the scope and application of this regulation, this does not mean that you can disregard these procedures while conducting clinical trials. The FDA is incorporating the general guidelines in this regulation into other regulations and guidance documents, specifically in the Guidance For Industry, Part 11, Electronic Records; Electronic Signatures—Scope and Application. In this document, the FDA clarifies that it has moved to a risk-based approach to this regulation. In it, the FDA “… recommend[s] that you base your approach [to validation] on a justified and documented risk assessment and a determination of the potential of the system to affect product quality and safety, and record integrity.” While most SAS programming in the pharmaceutical industry would be considered individual programs rather than systems, the general approach to all programs and the development of relevant standard operating procedures (SOPs) governing validation of those programs should take into account the FDA’s thinking on computerized systems.

1.2.3 Guidance for Industry
A series of guidance documents published by the FDA details how information from clinical trials should be submitted. One example of an older guidance document specifically pertaining to programming is Providing Regulatory Submissions in Electronic Format—General Considerations. 4 This guidance document provides some detail on how data sets should be structured and which file formats are acceptable. More recently, the FDA has encouraged use of electronic common technical documents (eCTDs) for submissions. See Providing Regulatory Submissions in Electronic Format—Human Pharmaceutical Product Applications and Related Submissions Using the eCTD Specifications. 5 This document references a separate guidance that is very relevant for programmers, titled “Study

3 Federal Register, 21 CFR Part 11 – Subpart B §11.10 (e)
4 www.fda.gov/cber/gdlns/elecgen.htm
5 www.fda.gov/cder/guidance/7087rev.htm
Data Specifications.” As requirements change, the FDA issues these documents to notify the industry of what those changes are and how to comply with them.

For example, currently the FDA accepts data only as SAS Version 5 compatible transport files. This can be challenging at times because most companies now use SAS Version 8 or later. These versions offer much more flexibility and greater functionality than SAS Version 5; specifically, variable names can be longer than 8 characters, character variables can be larger than 200 bytes, and variable labels can be longer than 40 characters. However, due to SAS Version 5 compatibility restrictions, many of these data set features cannot be used. Until this restriction changes, programmers need to remain aware and work with data set structures prior to SAS Version 8 throughout the programming process so significant restructuring of data is not required later.

Another technical issue is the file size restrictions imposed by the FDA. At one time, the maximum file size allowed in a submission was 5 MB. Currently, the maximum file size is 100 MB, and while this may seem adequate for most types of data, keep this restriction in mind when designing all data sets. Unnecessary variables and duplication of information can push the limits of this restriction and cause future issues. While requirements may change over time, it is important to keep abreast of any such issues that could impact how you structure your programs and the output they create.

1.2.4 International Conference on Harmonisation of Technical Requirements

While the US FDA is the world’s leading drug approval agency, other countries also develop drugs and have agencies that regulate their approval. In a global setting, it is important for all parties involved in drug development to have a standard set of definitions for similar concepts and a common understanding for how drugs should be developed. This way, companies that develop drugs in one country under one set of rules can apply to have the same drug approved in other countries without having to redevelop it. If all countries have the same understanding of the rules, data developed elsewhere will follow a consistent set of rules. The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) is a global organization that provides these common definitions and guidelines and is often a source for standard values for certain data (e.g., country of origin). E6 Good Clinical Practice: Consolidated Guidance is one of the more general guidance documents published by ICH that defines many common terms (such as adverse drug reaction) and general guidance for how trials should be conducted (such as how safety data should be reported). E9 Statistical Principles for Clinical Trials is a more narrow guidance that lays forth

6 www.fda.gov/cder/regulatory/ersr/Studydata.pdf
7 www.fda.gov/cder/guidance/959fnl.pdf
8 www.fda.gov/Cder/guidance/ICH_E9-fnl.pdf
the general statistical principles that guide the development of complete programs (what types of studies should be conducted to support claims of safety and efficacy) and how individual studies should be designed (sample size, parallel group or crossover or other design, randomization/blinding, for example) and reported. While these guidance documents may not impact your programming responsibilities directly, they are part of the framework that built the studies and the specifications you work with regularly.

1.2.5 Clinical Data Interchange Standards Consortium

The Clinical Data Interchange Standards Consortium (CDISC) is a team of industry professionals, including members from the FDA. According to CDISC (www.cdisc.org), its mission is “to develop and support global, platform-independent data standards that enable information system interoperability to improve medical research and related areas of healthcare.”

In other words, the CDISC end product is a set of data standards that companies in the industry can follow to expedite filing a clinical trials outcome. Each module that CDISC delivers contains the structure, derivation rules, attributes, and components of the data that the FDA will receive. The goal is to achieve a standard set of data that the FDA needs to program only once. Consequent receipt of clinical data can then be analyzed using standard programming, and the review process can be expedited.

It is important for programmers to understand CDISC standards and to realize that CDISC actually has several standards. Two key sets of standards that affect the majority of clinical trial programmers are the Study Data Tabulation Model (SDTM) used for submitting data tabulations and the Analysis Data Set Model (ADaM) used for submitting analysis data sets. While these two sets of standards overlap in many areas, both have many distinct components that can effect how data is stored. Other standards are currently under development, so it is important to keep abreast of the most recent documentation.

While these standards are not yet a requirement, but rather a guideline, the FDA does recommend following them. Ultimately, the use of these standards will depend on your company’s policies. These standards are quickly becoming industry standards, so implementing them is highly recommended. Regardless, having a set of standards for data collection and storage such as those provided by CDISC streamlines programming for the pharmaceutical company and expedites the review and approval process for the FDA. Once the CDISC standards have been completed, the FDA will probably adopt them as a requirement for submitting data. Getting to know the CDISC standards now and implementing those standards as much as possible will save time in the future.
1.3 Documentation

Another way that FDA requirements directly affect a SAS programmer’s daily responsibilities is in the area of documentation. The term documentation refers to several things—both information that programmers work with and information that programmers provide. It can refer to the documents that are used to form the programming structures and ideologies within a company, including standard forms, guidelines, standard operating procedures, and other written guidance documents. It can also mean keeping hardcopy and electronic records of the process and results of programming. In addition, documentation can refer to keeping detailed flow information within a program itself to instruct other users of the purpose and methods used within the program.

All aspects of programming must be documented in one way or another. Documentation is an integral part of the programming process and provides the evidence that your programming efforts were effective. The documentation that is directly involved in programmers’ day-to-day activities is discussed in detail in a later chapter. The documentation that is standard for the industry and forms the framework for how programmers perform their job functions, including the requirements for validation, is discussed below.

1.4 Standard Operating Procedures

One key set of documents required by the FDA is standard operating procedures (SOPs). SOPs are documents that describe procedures to follow for a specific operation or task. They detail all aspects of working in the pharmaceutical industry from high-level SOPs (such as defining the process for creating and/or modifying SOPs) to lower-level SOPs (such as defining each step to be followed while programming, validating, and delivering SAS programming output). SOPs may be created for several different levels of clinical trial programs.

In general, if a process is listed or mentioned in the CFR, then there will be an SOP that outlines the process. While following these CFR-related SOPs is required, following other procedures outlined in SOPs (as opposed to guidelines or no guidance at all) is up to the individual company. It is important for programmers to know which SOPs directly influence how their jobs are performed. There are several categories of SOPs that can affect programming processes.

1.4.1 Companywide Standard Operating Procedures

Each pharmaceutical company or clinical research organization (CRO) creates and maintains standard operating procedures for the daily functioning of its business. These high-level SOPs usually contain general company operating guidelines followed by every employee. Typically, they identify:
1.4.2 Department Standard Operating Procedures

Each pharmaceutical company or CRO also creates and maintains standard operating procedures for the daily functioning of its individual departments. Programmers are trained in these detailed SOPs, which typically identify:

- using SAS programming standards or guidelines
- computer system structure, usage, and permissions
- randomization scheduling and programming
- blinding and unblinding procedures

1.4.3 Task Standard Operating Procedures

Sometimes programmers must perform job tasks that need to be described in more detail than company and department standard operating procedures. In most cases, a SAS programming department creates task-level SOPs to outline standard procedures for dealing with these varying tasks. Task-level SOPs normally identify procedures to follow to accomplish programming in the following areas:

- importing data
- validating derived or analysis data
- validating summary tables and figures
- exporting of data and/or reports
- studying drug compliance

Each company’s SOPs structure and layout may differ, but they all accomplish the same task: creating a standard, structured, and controlled set of procedures for all employees to follow. These standards ensure that tasks are completed consistently and with a similar level of quality. SOPs often specify checklists that include the individual processes that need to be followed to ensure a consistent level of quality. For example, an SOP that details how the validation of data set programs is performed may also have a checklist to
be completed for every program that creates a data set. That checklist may include items such as:

- ensure all variables detailed in the specification are included in the data set
- ensure that numeric variables are rounded correctly and per specification
- ensure that values in character variables are not truncated
- check a sample of derived variable values against source data to ensure correct derivation

It is important to know whether your company has SOPs governing validation and what these SOPs include. If they are available, following validation SOPs will help to ensure that each programmer produces the same quality of output.

1.5 SAS Programming Guidelines

Standard operating procedures are normally written as an overview or on a very general level. This generality avoids the need to change the SOPs frequently, when minor details need to change. Because SOPs must be approved by several levels of management and controlled through a document management system, frequent changes become time-consuming and problematic. To avoid making multiple changes to the programming SOPs, SAS programming guidelines are created. These guidelines serve as a more detailed set of instructions for programmers to follow to maintain a consistent program structure and methodology for performing common tasks. The guidelines often outline program structure (headings, comments, white space, and compute blocking, for example), standard calculation formulas, methods for validation, and how to handle deviations from the SOPs. Programming guidelines are often the key to providing consistency between members of a programming team.

Because programming guidelines are not as tightly controlled as SOPs, they allow for more flexibility and change. When a version of SAS changes, operating systems change, or other changes are made, the guidelines can easily be updated, distributed, and taught.

1.6 Quality Control versus Quality Assurance

Quality control (QC) and quality assurance (QA) are important parts of a clinical trials environment. They act to maintain standards and excellence in completing a successful trial. Quality control is defined as “an aggregate of activities (as design analysis and inspection for defects) designed to ensure adequate quality especially in manufactured
Quality assurance is defined as “a program for the systematic monitoring and evaluation of the various aspects of a project, service, or facility to ensure that standards of quality are being met.”

The main difference between QA and QC is that QC is performed within each department. For programmers, QC is maintained using standards and documentation (for example, standard operating procedures and SAS programming guidelines). QC occurs when a programmer checks his or her own output (for example, printing observations from a data set before and after manipulation and then comparing the results) and when two programmers within the same department independently produce output and then compare the results.

On the other hand, QA is performed by an independent group outside of the programming department. In the pharmaceutical industry, this is typically the Regulatory Department. In some companies, this department also has SAS programmers who independently try to replicate the results produced by the programmers in other departments. The Regulatory Department is well-versed in the requirements of both FDA and federal law and will scrutinize all of the clinical trial’s output that comes from the company to make sure it is in compliance with these requirements.

1.7 Patient versus Subject

For as long as the industry has been thriving, there has been an ongoing debate about what terminology to use to refer to the participants of clinical trials. In the beginning, the term patient was used. As clinical trials became more involved and started going through developmental cycles, the term subject was used because many of the trials were being conducted on healthy participants. For consistency, we use the term subject to refer to all participants in clinical trials throughout this book.

1.8 Conclusion

There are many rules, regulations, and guidelines that affect a programmer’s work and govern the validation process. It is helpful to understand the source of these rules so that any changes are easier to follow. Often these rules can be subject to interpretation. When you are making validation policy decisions, it can be important to refer to the original documentation rather than relying on secondary sources. Detailed sources of information are available for many of the topics discussed in this chapter. Refer to the References section for details. Now that the basis for validation has been established, we can discuss more specific topics that directly influence SAS programming.

From Validating Clinical Trial Data Reporting with SAS® by Carol I. Matthews and Brian Shilling. Copyright © 2008, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.
Index

A
aCRFs (annotated CRFs) 26–29
action taken upon adverse events 126
ADaM (Analysis Data Set Model) 6
adverse events 26, 124–126
cross-checking (example) 148–152
dictionaries for 124
outcomes 126
seriousness of 125
alert version, documenting 33
alignment in output presentation 154
Analysis Data Set Model (ADaM) 6
analysis data sets 114
annotated CRFs (aCRFs) 26–29
archiving incoming data 97
archiving validation process 157–158
ASCII files 103
asking questions 16
attitude regarding validation 14
AXIS1 and AXIS2 statements 133, 135

B
baseline values for vital signs 121
body comments 34–35, 43
body systems 119, 120
box plots 132
BY statements, PRINT statement with 61

C
capitalization in program code 41–42
case in program code 41–42
case report forms (CRFs) 26–29, 96
 annotated (aCRFs) 26–29
categorical data, validating 64–67
CDISC (Clinical Data Interchange Standards
 Consortium) 6
cell index 61–63
CFR (Code of Federal Regulations) 3–4
checklists for validation 20
chemistry data 126
clearly of program code 38–44
Clinical Data Interchange Standards
 Consortium (CDISC) 6
clinical laboratory test data 26, 126–128
code documentation 32–35
Code of Federal Regulations (CFR) 3–4
code review 140–141
See also validation
coding medication names 123
column alignment 154
combining data 82
comma-delimited files 103
comments
 flagging problem data 83–85
 in code 34–35, 43
 on studies 26
 tracking dropped data 89–93
 variable and data set labels 49–50
company-wide SOPs 7–8
COMPARE procedure
 for validation 108–112
 ID statement 112
COMPARE statement 44–49
 LISTALL option 47
comparing versions of incoming data 98
compatible transport files 5
compliance of subjects 26
concomitant medications 26, 123
counsel status 118
consistency in programming 51
CONTENTS procedure 26–28, 35
 for validation 104–108
 ordering data with 104–108
 POSITION option 104
 requesting output from 97
 VARNUM option 104
continuous variables, validating values of
 65–67
converting between file formats 97
converting units, validating 121, 128–129
COPY procedure, creating transport files with 101–102
correctness of information, importance of 13
cosmetics of output, checking 153–157
CPORT procedure, creating transport files with 101–102
CRFs (case report forms) 26–29, 96
annotated (aCRFs) 26–29
criteria for inclusion/exclusion 26, 117
cross-checking related output 146–152
CSV files 103

D
data, understanding 143
data definition tables (DDTs) 35–36
data domains 116–137
 adverse events 26, 124–126, 148–152
 clinical laboratory test data 26, 126–128
 concomitant medications 26, 123
 inclusion and exclusion criteria 26, 117
 medical history 26, 118–120
 physical examination 26, 120
 subject demographics 26, 116–117, 146–148
 subject disposition 26, 118
 treatment exposure 122–123
 vital signs 26, 120–122
data export process
 See export process
data import process
 See import process
data listing programs 42–43
data maintenance 44–55
data management system variables 26–28
data ordering 44–49
 with CONTENTS procedure 104–108
data presentation 153–157
data rounding, checking 146
data sets 100–101
 deleting records from 89–90
data types 114–137
 See also data domains
 See also variables
 applying normal ranges 121, 128, 132–137
data transfers, issues with 99
 Excel files, issues with 102–103
 for study populations 114–116
 standardizing units 128–132
 data unit standardization 128–132
 data sets, exporting
 See export process
data sets, importing into
 See import process
 See import programs
DATA step
 combining data with 82
 dropping duplicate records 90
 ending 42
 transposing data with 85–88
data subsets
 displaying 58–63, 81–82
 validating input 98
data summaries
 See reporting
data traceability 99
data transfers
 See export process
 See import process
data transposition 85–88
data validation
 See validation
dates
 adverse events 124–125
 data transfers 99
 discontinuation dates 26, 118
 imputing dates for medical history 120
 medication start and stop dates 123
 with Excel files 102–103
 with treatment exposure 122
DDTs (data definition tables) 35–36
deleting data
 when duplicated 90–93
 when unnecessary 89–90
delimited text files 103
demographics data 26, 116–117
 cross-checking (example) 146–148
department SOPs 8
design phase (SDLC) 21
dictionaries
 for adverse events 124
 for medical history events 119, 120
 for medications 123
 MedDRA 119, 124
 WHODRL 123
directories of programs 36–37
discontinuation dates 26, 118
disposition 26, 118
documentation 7, 24–37
 alert version 33
 assembling key specifications 25–32
 external 35–37
 internal program documentation 32–35
 list of data domains 116–137
 needed for validation 14–15
 of export process 99
 of validation 14–15, 24, 37
 validating 20
 what to keep 157–158
domains of data
 See data domains
DROP statements 53
dropped data, tracking 89–93
duplicated records, dropping 90–93
DUPOUT= option, SORT procedure 92

E
E6 Good Clinical Practice 5
E9 Statistical Principals for Clinical Trials 5–6
eCTDs (electronic common technical documents) 4–5
efficacy population flags 116
efficiency through validation 13, 16
electronic common technical documents (eCTDs) 4–5
electronic dictionaries
 See dictionaries
errors
 See also validation
discovering early 13
 reviewing 141–142
 event dictionaries 119, 120
 examination 26, 120
Excel files 102–103
exclusion criteria 26, 117
export process
 See also output validation
documentation of 99
reproducibility of data transfers 99
validating 98–100, 103
what to watch for 99–100
 with ASCII files 103
Export Wizard 98
exposure to study treatment 122–123
external documentation 35–37

F
FDA (Food and Drug Administration) 2, 6
files sent to 101–102
guidance documents 4–5
industry guidelines 4–5
federal laws in pharmaceutical industry 2
figure creation programs 42–43
file content issues 99–100
file formats (file types)
 converting between 97
 delimited 103
 flat files 103
 incoming data 96–97
 what to watch for 99–100
file size restrictions 5
filename conventions 101
files, SAS 100–102
first-level validation 18
flags
 efficacy population flags 116
 flagging problem data 83–85
flat files 103
Food and Drug Administration
 See FDA
FOOTNOTE statement 136
FORMAT procedure 65–67
formats
 checking with MEANS procedure 146
 user-defined 50–51, 101
formatted values, checking 146
formatting of program code 38–44
FREQ procedure, for validation 64–67, 129, 144–145
G
 good clinical practice 3–4
GPLOT procedure 136
 PLOT statement 136
GUESSINGROWS option, IMPORT procedure 99
guidance documents, FDA 4–5
H
 hard-coding data 53–55
 header, program 32–33
Health Insurance Portability and Accountability Act (HIPPA) 2–3
 hematology data 126
 HIPAA (Health Insurance Portability and Accountability Act) 2–3
 histograms 131
 history, subject 26, 118–120
 HSIZE graphing option 136
 human subjects, protection of 3–4
I
 ICH 5–6
 ID statement
 COMPARE procedure 112
 PRINT statement with 61
 TRANSPOSE procedure 85
 implementation phase (SDLC) 21
 IMPORT procedure, GUESSINGROWS option 99
 import process
 archiving incoming data 97
 comparing versions of incoming data 98
 file formats 96–97
 from Excel or ASCII files 102–103
 reproducibility of data transfers 99
 validating 96–98, 102–103
 what to watch for 99–100
 import programs 97
 Import Wizard 97
imputing dates
 for adverse events 124–125
 for medical history 120
 medication start and stop dates 123
IN= system option 67, 68, 82
inclusion criteria 26, 68, 82
incoming data
 See import process
incorrect information, avoiding
 See validation
indentations in program structure 40
independent programming (validation) 18–19
industry guidance, FDA 4–5
information, importance of correctness 13
informed consent status 118
intent-to-treat population 115–116
internal program documentation 32–35
International Conference on Harmonisation on Technical Requirements for Registration of Pharmaceuticals for Human Use 5–6
interval for treatment exposures 122
ITT (intent-to-treat) population 115–116

K
key specifications 25–32

L
LABEL statement 50
labeling variables 49–50
laboratory test data 26, 126–128
laws in pharmaceutical industry 2
layout of program code 38–44
legibility of program code 38–44
%LET identifier 59
LISTALL option, COMPARE statement 47
listing programs 42–43
logs 20, 69
 after merging data sets 68
 clean, starting with 80
 notes in 80, 141–142
 reviewing 141–142
LVREF= option, PLOT statement (GPLOT) 136

M
macros
 effective use of 72–73
 for general use 22
 judicious use of 44
 MLOGIC system option for validation 79
 MPRINT system option for validation 73–76
 SYMBOLGEN system option for validation 76–78
 validating 73–79, 81
maintenance
 of data 44–55
 of programs 38–44
maintenance phase (SDLC) 21
maximum file size 5
MEANS procedure
 to check formats 146
 to check truncation 145
measurement unit standardization 128–132
MedDRA dictionary 119, 124
medical history 26, 118–120
medications
 coding names of 123
 dictionaries for 123
 start and stop dates 123
meeting minutes 31–32
merging data sets 64–67
 demographics data 116–117
 log and 68
 merging data to itself 69–71, 87
Microsoft Excel files 102–103
minutes of meetings 31–32
misspellings 153
MLOGIC system option 79
modification information for programs 33
MPRINT system option 73–76
MSGLEVEL= system option 67–69

N
N option, PRINT statement 61
names of medications, coding 123
naming conventions
 data sets 38
 filenames 101
 output files 38
 programs 38
 transport files 101
 variables 38
NDA (New Drug Application) 2
NOBYLINE graphing option 135
NODATE graphing option 135
NODUPKEY option, SORT procedure 90–93
NODUPREC option, SORT procedure 90–93
NOGFOOTNOTE option, ODS statement 136
NOGTITLE option, ODS statement 136
NONUMBER graphing option 135
normal probability plots 132
normal ranges for data 121, 128, 132–137
notes in logs
 removing 80
 reviewing 141–142
numeric data, truncated 145

O
OBS= option, PRINT procedure 35
ODS statement
 for applying normal ranges 132, 136
 NOGFOOTNOTE option 136
 NOGTITLE option 136
one-off programs, validating 22
ORDER BY statement 44–46
ordering data 44–49
 with CONTENTS procedure 104–108
ORIENTATION= graphing option 136
outcomes of adverse events 126
outgoing data
 See export process
output files, naming 38
output from CONTENTS and PRINT procedures 97
output titles 35
output validation 142–158
 See also validation
 checking results 143–146
 cross-checking related output 146–152
 pre-output validation 140–142
 presentation cosmetics 153–157
 understanding data and output 142–143
 validating export process 98–100, 103
 what documentation to keep 157–158

P
page breaks in output 154–157
Part 11 rules (CFR) 3–4
patients versus subjects (terminology) 10
peer review (validation) 19–20
pharmaceutical industry 2–10
 regulation in 2–6
physical examination 26, 120
planning the validation process 15
PLOT statement, GPLOT procedure 136
 LVREF= option 136
 VREF= option 136
PLOT statement, UNIVARIATE procedure 131–132
plots
 box plots 132
 histograms 131
 normal probability plots 132
populations
 checking population counts 148
 data types for 114–116
 efficacy population flags 116
 intent-to-treat (ITT) 115–116
POSITION option, CONTENTS procedure 104
positive relationships through validation 14
pre-output validation 140–142
predicate rules 3
presentation cosmetics, checking 153–157
PRINT procedure 35
 appropriate use of 81–82
 displaying data subsets with 58–63, 81–82
 OBS= option 35
 requesting output from 97
PRINT statement
 BY statements with 61
 ID statement with 61
 N option 61
proactive validation 16–17
probability plots, normal 132
problematic data sets 82–83
PROC steps, ending 42
procedural validation 58–67
program code
 case in 41–42
 clarity of 38–44
Index 203

documentation 32–35
formatting 38–44
review 140–141
program comments 34–35, 43
program directories 36–37
program header 32–33
program logs
See logs
program maintenance 38–44
program modification information 33
program naming 38
program types 42–43
programming, independent 18–19
programming consistency 51
programming guidelines 9
programming specifications 24
assembling 25–32
updating 157
validation and 14–15
proof of validation 14, 24
validation files 37
protection of human subjects 3–4
protocols 25

Q
QA (quality assurance) 9–10
QC (quality control) 9–10, 158
questions, asking 16
QUIT statements 42

R
randomization status 118
ranges for data 121, 128, 132–137
readability of program code 38–44
records
deleting from data sets 89–90
dropping duplicates 90–93
sorting within data sets 44–49
records management 4
regulation in pharmaceutical industry 2–6
related output, cross-checking 146–152
removing duplicated records 90–93
reporting 140–158
final QC 158
output validation 142–158
pre-output validation 140–142
reproducibility of data transfers 99
requirements phase (SDLC) 21
resources for validation, obtaining 16–17
results checking 143–146
reviewing SAS code and logs 140–142
See also validation
ROUND function 146
rounding accuracy, checking 146
rules in pharmaceutical industry 2–6
RUN statements 42

S
safety population data types 115
SAPs (statistical analysis plans) 29–31
SAS alert version, documenting 33
SAS code review 140–141
SAS data sets
See data sets
SAS Export Wizard 98
.SAS file, reviewing 140–141
SAS files 100–102
SAS/GRAPH, for validation 132–136
SAS Import Wizard 97
SAS logs
See logs
SAS notes, reviewing 141–142
SAS programming guidelines 9
SAS statement structure 39–40
SAS transport files 101–102
SAS Version 5 compatible transport files 5
SAS versions 100–101
.SAS7BDAT files 101
scheduling time for validation 16–17
.SD2 files 100
SDLC (software development life cycle) 21–22
SDTM (Study Data Tabulation Model) 6
second-level validation 18–19
section breaks in program code 43
separate programming 18–19
single-use programs, validating 22
software development life cycle (SDLC) 21–22
SOPs (standard operating procedures) 7–9
SORT procedure
 DUPOUT= option 92
 NODUPKEY option 90–93
 NODUPREC option 90–93
 to remove duplicates 90–93
sorting data
 See ordering data
specifications
 See programming specifications
spelling mistakes 153
spreadsheets, Excel 102–103
SQL procedure for ordering data 44–49
standard operating procedures (SOPs) 7–9
standardizing units 128–132
start and stop dates for medications 123
statement structure 39–40
statistical analysis plans (SAPs) 29–31
statistics
 summary statistics 114, 143, 146–152
 understanding 143
structuring program code 38–44
Study Data Tabulation Model (SDTM) 6
study disposition 26, 118
study populations, data types for 114–116
study protocols 25
study treatment, exposure to 122–123
subject compliance 26
subject demographics 26, 116–117
 cross-checking (example) 146–148
subject disposition 26, 118
subject examination 26, 120
subject exclusion criteria 26, 117
subject inclusion criteria 26, 117
subject medical history 26, 118–120
subject populations, data types for 114–116
subject protection 3–4
subjects versus patients (terminology) 10
subsets of data
 displaying 58–63, 81–82
 validating input 98
summarizing data
 See reporting
summary statistics 114, 143
cross-checking related output 146–152
SYMBOL1 and SYMBOL2 statements 133, 135
SYMBOLGEN system option 76–78
system options for validation 79
 IN= 65–67
 MLOGIC 79
 MPRINT 73–76
 MSGLEVEL= 65–67
 SYMBOLGEN 76–78
T
tab-delimited files 103
table creation programs 42–43
task-level SOPs 8–9
temporary variables 51–53
test data 26, 126–128
test ranges, normal 121, 128, 132–137
testing phase (SDLC) 21
text files 103
time savings through validation 13, 16
TITLE statement 136
titles for output 35
TLFs
 annotated CRFs and 28–29
 statistical analysis plans and 29–31
traceability of data 99
tracking dropped data 89–93
tracking problems (validation) 82–85
transferring data
 See export process
 See import process
transformation of units, validating 121, 128–129
transport files 5, 101–102
TRANSPOSE procedure 70–71, 85–88
 ID statement 85
transposing data for analysis 85–88

treatment exposure 122–123

truncation
 checking for 144–145
 issues with data transfers 99–100
 of numeric data 145

U

unit conversions, validating 121, 128–129

unit standardization 128–132

U.S. Food and Drug Administration
 See FDA

UNIVARIATE procedure
 for validation 129–132
 PLOT statement 131–132

unnecessary data 89–90

updating specifications 157

user-defined formats 50–51, 101

V

validation 12–22
 See also output validation
 archiving validation process 157–158
 attitude regarding 14
 categorical data 64–67
 checklists 20
 COMPARE procedure for 108–112
 CONTENTS procedure for 104–108
 documenting 14–15, 24, 37
 efficiency through 13, 16
 export process 98–100, 103
 FDA guidelines for 4, 9
 first-level 18
 FREQ procedure for 64–67, 129, 144–145
 how to approach 14–17
 import process 96–98, 102–103
 independent programming 18–19
 methods for 17–20
 normal ranges, applying 121, 128, 132–137
 obtaining resources for 16–17
 of documentation 20
 of macros 73–79, 81
 of unit conversions 121, 128–129
 of values for continuous variables 65–67
 one-off programs 22
 peer review 19–20
 planning 15
 positive relationships through 14
 pre-output validation 140–142
 proactive 16–17
 procedural 58–67
 programming specifications and 14–15
 proof of 14, 24, 37
 reasons for 13–14
 SAS/GRAPH for 132–136
 scheduling time for 16–17
 second-level 18–19
 single-use programs 22
 software development life cycle (SDLC) 21–22
 study population data 114–116
 subsets of data 98
 system options for 65–67, 73–79
 techniques for facilitating 80–93
 time savings with 13, 16
 tools for 58–79
 tracking problems 82–85
 verification versus 12–13

validation files 37

variables
 See also data types
 confirming inclusion in data transfers 100
 continuous, validating values of 65–67
 data management system variables
 26–28
 formatted values, checking 146
 in study populations 114–116
 labeling 49–50
 naming conventions for 38
 ordering 44–49
 temporary, cleaning up 51–53
 UNIVARIATE procedure for 129–132
INDEX

INDEX

VARNUM option, CONTENTS procedure 104
verification, versus validation 12–13
Version 5 compatible transport files 5
versions of incoming data, comparing 98
versions of SAS 100–101
vital signs 26, 120–122
VREF= option, PLOT statement (G PLOT) 136
VSIZE graphing option 136

W
warnings in logs, reviewing 141–142
white space in program code 41
WHODRL dictionary 123

From Validating Clinical Trial Data Reporting with SAS® by Carol I. Matthews and Brian Shilling. Copyright © 2008, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.
Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.