Contents

Preface ... vii

Part 1: Time Series as a Subject for Analysis .. 1

Chapter 1 Time Series Data ... 3
 1.1 Time Series Questions .. 3
 1.2 Types of Time Series: Theoretical Considerations ... 4
 1.3 Types of Time Series: Practical Considerations ... 4
 1.4 Time Series Procedures in SAS .. 5
 1.5 References for Data Used in this Book .. 6

Part 2: Time Series in SAS .. 7

Chapter 2 Datetime Variables in SAS .. 9
 2.1 Datetime Variables ... 9
 2.2 Output Formats .. 9
 2.3 Importing Datetime Variables ... 12
 2.4 Handling Datetime Variables .. 14
 2.5 Time Series Data Sets .. 16

Chapter 3 Aggregation Using PROC TIMESERIES ... 19
 3.1 Aggregation .. 19
 3.2 PROC TIMESERIES ... 19

Chapter 4 Interpolation Using PROC EXPAND .. 23
 4.1 Interpolation of Time Series ... 23
 4.2 PROC EXPAND .. 23

Part 3: Forecasting .. 27

Chapter 5 Exponential Smoothing of Nonseasonal Series 29
 5.1 Simple Exponential Smoothing ... 29
 5.2 Double Exponential Smoothing .. 30
 5.3 Forecasting Danish Fertility by Exponential Smoothing ... 33
 5.4 Forecast Errors .. 38
 5.5 Forecast Errors for the Prediction of Danish Fertility .. 39
 5.6 Moving Average Representations ... 40
 5.7 Calculating Confidence Limits for Forecasts .. 42
 5.8 Applying Confidence Limits for Forecasts ... 42
 5.9 Confidence Limits for Forecasts of Danish Fertility ... 43
5.10 Determining the Smoothing Constant .. 46
5.11 Estimating the Smoothing Parameter in PROC ESM ... 47
5.12 Holt Exponential Smoothing and the Damped-Trend Method .. 49
5.13 Forecasting Fertility by the Damped-Trend Method in PROC ESM .. 50
5.14 Concluding Remarks about Exponential Smoothing for Forecasting ... 53

Chapter 6 Forecasting by Exponential Smoothing of Seasonal Series 55
5.1 Seasonal Exponential Smoothing ... 55
6.2 Using the Winters Method for Seasonal Forecasting ... 56
6.3 Forecasting the Number of Overnight Stays by US Citizens at Danish Hotels 57
6.4 Forecasting Using Additive Seasonal Exponential Smoothing with PROC ESM 61
6.5 Forecasting US Retail E-Commerce Using the Winters Method .. 63
6.6 Forecasting the Relative Importance of E-Commerce by PROC ESM ... 67
6.7 Forecasting the Relative Importance of E-Commerce Using a Transformation
in PROC ESM ... 70

Chapter 7 Exponential Smoothing versus Parameterized Models 75
7.1 Exponential Smoothing Expressed as Autoregressions ... 75
7.2 Autoregressive Models .. 76
7.3 Fitting Autoregressive Models ... 77
7.4 Autocorrelations ... 78
7.5 ARIMA Models .. 79
7.6 Estimating Box-Jenkins ARIMA Models in SAS ... 81
7.7 Forecasting Fertility Using Fitted ARMA Models in PROC VARMAX .. 82
7.8 Forecasting the Swiss Business Indicator with PROC ESM ... 86
7.9 Fitting Models for the Swiss Business Indicator Using PROC VARMAX 90

Part 4: Seasonal Adjustments .. 97
Chapter 8 Basic Adjustments Using the Census X11 Method .. 99
8.1 Seasonality .. 99
8.2 Seasonal Adjustment Using Census X11 ... 101
8.3 Seasonal Adjustment of US E-Commerce .. 103
8.4 Seasonal Adjustment of UK Unemployment ... 108

Chapter 9 Additional Facilities in PROC X12 ... 115
9.1 Model Fitting and Forecasting Using PROC X12 .. 115
9.2 Seasonal Adjustment of US E-Commerce Data Using the Additional Features
in PROC X12 ... 116
9.3 Seasonal Adjustment of the Number of Overnight Stays ... 121
Part 5: Unobserved Components Models ... 129

Chapter 10 Models with Unobserved Components .. 131
10.1 Formulation of the Basic Model .. 131
10.2 ARIMA Representation ... 132
10.3 Extensions of the Model .. 132
10.4 Estimation of Unobserved Components Models .. 134
10.5 State Space Models in SAS .. 135

Chapter 11 Analysis of Danish Fertility Using PROC UCM 137
11.1 Component Estimation ... 137
11.2 Outlier Detection ... 139
11.3 Extensions of the Model .. 142

Chapter 12 Analysis of US E-Commerce Using PROC UCM 149
12.1 Estimation of the Components ... 149
12.2 Regression Components ... 155
12.3 Model Fit ... 158

Chapter 13 An Analysis of the Arctic Ice Coverage Series Using Unobserved Components .. 161
13.1 The Time Series ... 161
13.2 Aggregation to Yearly Averages .. 161
13.3 Aggregation to Monthly Averages .. 168
13.4 Aggregation to Weekly Averages ... 173
13.5 Aggregation to a Series Observed Every Second Day 179
13.6 Analysis of the Daily Series .. 181
13.7 Concluding Remarks ... 185

References .. 187

Index .. 189

Chapter 1: Time Series Data

1.1 Time Series Questions

An observed time series is a set of values that are recorded for specific points in time. This book includes many practical series that illustrate the rich variety of areas for which time series analysis is relevant. The following time series are used as examples:

- Ice coverage in the Arctic areas - Daily observations
- The Swiss business indicator - Monthly observations
- Unemployment in UK - Monthly observations
- Danish fertility - Yearly observations
- Number for overnight stays at Danish hotels by US citizens - Monthly observations
- Volume of US E-Commerce - Quarterly observations

A short appendix to this section contains specific references to the origin of these series. The series are available on the author’s web page.

Three other time series are briefly cited in the chapters about handling time series in SAS. These examples are series that are not originally suitable for analyses by the time series procedures in SAS:

- Number of copies taken at a photo copy machine - Observed irregularly
- Movements of the left arm of a baby - Observed 60 times per second
- Speed for automobiles at a highway - Observed at irregular points in time

These series are not analyzed in this book, and they are not included on the author’s web page.

The relation to specific points in time raises special considerations that are irrelevant for other types of data sets. Time series often show a high degree of dependence between observations that are close in time, but this dependence weakens for observations that are made within a longer time span. This is in contrast to many other statistical analyses where all observations are often assumed to be completely independent. Dependence implies that knowledge about the time series in an observation period leads to some ideas of what will happen to the time series after the last available observation. This is the basic principle underlying forecasting: The past provides information about the future. In fact, many practical time series analyses are performed in order to produce forecasts. This is the basic theme for Part 3.

Observations of time series could include seasonal patterns due to weather conditions (for instance, a series of monthly sales of ice cream). Similarly, the variation of sales volumes over a week or hourly registrations of
electricity consumption during a day also exhibit seasonal variation. Often this seasonal variation is only a nuisance because the analyzer is interested in the underlying trend. A typical example is a time series for unemployment, which is, of course, weather dependent. However, because the usual seasonal variation tells nothing about the state of the national economy, a seasonal adjusted time series is needed in order to comment on or react to the real unemployment situation. This is the basic theme for Part 4.

In statistical analyses of time series data, the purpose of the analysis is to gain insight into the underlying mechanism that generated the data. Time series theory provides many tools that are somewhat difficult to apply by non-statisticians because they require some rather advanced mathematical skills. But less effort will suffice if users want only estimates of the trend and seasonality. When coupled with rough ideas of the amount of variation, estimates can form a basic understanding of the data series, which is enough to plan future activities. It is a very easy task to decompose a series into a sum of a few series, each of which describes one fundamental property of the observed series, like a trend, a seasonal component, relationships to other series, and so on. This is the basic theme of Part 5.

1.2 Types of Time Series: Theoretical Considerations

In mathematics, a time series is usually denoted X_t where X is the value of, for example, the outdoor temperature, and the subscript t in some way denotes the time. For the mathematical theory, the exact definition of the time is of no importance and the letter t typically takes values like 1, 2, 3, and so on, or perhaps all real numbers, giving no idea of what the time index really means.

Many time series like the outdoor temperature are defined for all points in time, and mathematicians then denote them as time series in continuous time. For series like these, the time index could theoretically be all real numbers, all positive real numbers, or an interval of real numbers.

Other time series, such as total retail sales, are published as a monthly total, and it is hard to imagine that these sales could be considered as phenomena that could realistically be defined in continuous time. Mathematicians denote such series as time series in discrete time. A discrete time series is called equidistant if it is observed at points in time separated by equal distances (for example, total sales every month). For time considerations, such series could use $t = 1$ for the first observation and let the index take all integer values up to $t = T$ for the last observation. Forecasts are then defined as the expected values for time $t = T + 1$, $t = T + 2$, and so on. For the mathematical analysis, the time window from $t = 1$ to $t = T$ is often extended to all positive integers or even to all integer values, including negative numbers.

In practical analyses, the notion of an infinite past is meaningless, and even the infinite future is hard to relate to, but in mathematical theory such concepts are of great interest. Mathematical theory provides theorems that ensure the effectiveness and consistency of the applied methods, such as convergences and consistency results. These results are important because they do in fact underlie and justify all the practical methods in this book. However, because this book focuses on the practical aspects of using SAS for analyzing time series, I generally avoid such purely theoretical concepts.

1.3 Types of Time Series: Practical Considerations

All the algorithms behind the SAS procedures that are used in this book rely on the assumption that the series is discrete and equidistant. In practice this means that a time series of, say, 12 years of monthly data is considered as observations X_1, ..., X_{144}, and forecasts are then the expected values for X_{145}, X_{146}, and so on. You have to keep in mind that the first observation is for, say, January 1995, and the last observation is for December 2006. This time frame means that the forecasts are for January 2007, and so on. Every time you look at these data for forecasts, plots, and so on, you have to keep track of the translation from the observation number to the corresponding point in time. For practical applications, it is a better strategy to specify this correspondence as an element of the data set by defining t as a proper point in time. SAS offers a rich variety of datetime formats which, in combination with functions and procedures for time series handling, provide the basis for labeling the time index in a way suitable for immediate presentation. This is demonstrated in Chapter 2.
Many observed series are not originally generated as equidistant discrete time series but must be converted in various ways before the SAS procedures can be applied. Part 2 of this book presents some of the facilities offered by SAS for handling time series data in order to transform the data into SAS data sets that are convenient for further analysis. Chapter 3 is devoted to the aggregation of time series, including an example that converts sales on different days to a series of monthly total sales by accumulation. Chapter 4 similarly describes how to interpolate time series for which some observations are for some reason missing. This situation could arise for measurements of temperature if the measuring equipment is out of order for some of the planned observations. By using a combination of aggregation and interpolation, an irregularly sampled continuous time series can be converted into a discrete, equidistant time series. The data example in Chapter 13 illustrates all of this by applying several aggregation and interpolation levels.

1.4 Time Series Procedures in SAS

SAS/ETS® software is dedicated to econometric and time series (ETS) analysis. SAS/ETS includes procedures such as PROC TIMESERIES and PROC EXPAND for the practical handling of time series data such as aggregation and interpolation. These two procedures are the subject of Part 2, which also includes an overview of how SAS treats datetime variables and time series data.

SAS/ETS also contains procedures for the statistical analysis of econometric models and for time series analysis. Even if many of these procedures are specially designed for econometric analyses, the underlying statistical methods are of major relevance for many other scientific areas such as geosciences, medicine, and so on.

In this book, the main topics are procedures for simple time series analysis from SAS/ETS. The procedures covered are all simple to use and do not require much programming. The analyses are not intended to end up with a fully specified statistical model for the data series. The idea is to show that it is easy to obtain useful results like forecasts and trend judgments because many procedures in SAS/ETS are designed for this purpose. It turns out that this can be done without lengthy statistical modeling. Algorithms, along with rather simple ideas, can help you achieve results that are fully comparable with results from more involved and costly model building.

The following procedures in SAS/ETS are featured in this book:

- PROC ESM (an up-to-date procedure for forecasting; see Part 3)
- PROC X12 (for seasonal adjustments; see Part 4)
- PROC UCM (for unobserved component models; see Part 5)

PROC AUTOREG, PROC ARIMA, and PROC VARMAX, which are designed for model-based econometric analyses, are briefly mentioned in Chapter 7. This is done mainly in order to establish the connection between the practical techniques focused on in this book and more careful statistical methods, but you could read the overview given in Chapter 7 as an introduction to ordinary model-based time series analysis.

It is, of course, impossible to cover all the facilities offered by these procedures in this book. For more information, you should see the SAS Help that is either shipped as a part of the SAS installation or included on the SAS support web site. Especially consult the syntax in the SAS Help for exact answers in case of doubt.

You could use other time series procedures in SAS/ETS for almost the same analyses, but from different viewpoints and with different focuses. Moreover, many procedures overlap to a certain degree, so the choice of the "correct" procedure is often irrelevant.

In Chapter 7, a very short review of the Box-Jenkins class of time series models is given as a short introduction. The main purpose in this section is to clarify to what extent the automatic methods presented in this book are closely related to the more complicated, detailed econometric time series models. This section serves as an argument for the viewpoint that in many respects, the automatic models in the procedures covered by this book make the use of the more complicated procedures superfluous. In Chapter 7, PROC VARMAX is applied in order to derive a forecast by ARIMA models that is parallel to more intuitive forecasting algorithms.
VARMAX, which includes some facilities for model selection that make Box-Jenkins modeling easy, is a fairly new procedure designed for much more advanced analyses of multivariate time series. The discussion of it here is in no way a comprehensive description. Other procedures for time series analysis are PROC ARIMA and PROC AUTOREG, which are thoroughly discussed by Brocklebank and Dickey (2003).

1.5 References for Data Used in this Book

This section presents brief references to the series that are used in the various examples in this book. All series are downloaded at some point and later revisions of the series are not incorporated in the examples. The focus is on applications and not on specific conclusions about the series and their impact. They are analyzed without any political or economic viewpoints to ensure that the presentation is neutral and purely technical.

Time series examples soon become by nature obsolete. Even forecasting experiments where more recent observations are compared with forecasts begin to seem like historical exercises after a while. Keeping this in mind, forecasts in this book are in no way suggested to be the future realizations of the time series.

The series are available at the author’s web page (http://support.sas.com/publishing/authors/milhoj.html). The series are used as a member of the library SASTS (for SAS Time Series) in all code in this book.

In the book, two Danish series are applied.

Danish fertility - Yearly observations

Number for overnight stays at Danish hotels by US citizens - Monthly observations.

Both of the above series are published by the Danish Statistical Office Danmarks Statistik as a part of this institution’s database system named Statistikbanken. The web page is located at http://dst.dk/, and the English version of the database home page is http://www.statbank.dk/statbank5a/default.asp?w=1920.

The following time series are also used in this book:

Ice coverage in the Arctic areas - Daily observations

This series is published by NASA. This particular series is available at http://polynya.gsfc.nasa.gov/datasets/Np_29yrs_78-07.area.txt. The last column is the total sea area covered with ice.

The Swiss Business Indicator - Monthly observations

This series is published by OECD, along with similar series for many other countries. See http://stats.oecd.org/. You can download the actual series from http://stats.oecd.org/Index.aspx?DatasetCode=MEI_CLI#

Unemployment in UK - Monthly observations

This series is published by the Organisation for Economic Co-operation and Development (OECD), along with similar series for many other countries. See http://stats.oecd.org/#, where many labor market series, including unemployment series, are published. This particular series is from the database Registered Unemployed and Job Vacancies (MEI).

Volume of US E-Commerce - Quarterly observations

The series is published by the United States Bureau of the Census. It is located at http://www.census.gov/. The specific series is found at http://www.census.gov/retail/index.html#ecommerce. This web page also gives the total retail sales, which is used as the independent variable in a regression-style model in Chapter 12.
Index

A

additive outliers
about 115
Danish fertility example 139–140
Danish hotel overnight stays by US citizens example 121–122
e-commerce example 117
aggregation of time series
about 19, 161
aggregation to monthly averages 168–173
aggregation to series observed every second day 179–181
aggregation to weekly averages 173–179
aggregation to yearly averages 161–168
analysis of daily series 181–185
TIMESERIES procedure supporting 19–22
AIC (Akaike information criterion) 77
Airline Model 80
Akaike information criterion (AIC) 77
ALPHA= option
FORECAST statement (ESM) 45
FORECAST statement (UCM) 138, 163
ANYDTDTE informat 12–13
ANYDTDTE20. informat 13, 16
ANYDTDTM informat 13
ANYDTTME informat 13
Arctic ice coverage example
about 185–186
aggregation to monthly averages 168–173
aggregation to series observed every second day 179–181
aggregation to weekly averages 173–179
aggregation to yearly averages 161–168
analysis of daily series 181–185
ARIMA (Box-Jenkins) models
about 79–82
seasonal adjustments and 116–118, 123–127
unobserved components models and 132, 134
ARIMA procedure
about 5
ARIMA (Box-Jenkins) models and 81
ARMA models and 172
ARIMA statement, X12 procedure 118
ARMA models
Arctic ice coverage example 172
Danish fertility example 82–85
Swiss Business Indicator example 90–95
autocorrelations 78, 81
AUTOMDL statement, X12 procedure 117–118, 123
AUTOREG procedure
about 5
ARIMA (Box-Jenkins) models and 81
ARMA models and 172
AUTOREG statement, UCM procedure 164
autoregressive models
about 76–77
Arctic ice coverage example 171–173
exponential smoothing and 75–76
fitting 77–78
B

BACK= option, ESM procedure 34, 66, 86–87
Box-Cox transformations 116
Box-Jenkins ARIMA models
about 79–82
seasonal adjustments and 116–118, 123–127
unobserved components models and 132, 134
C

Census Bureau X11 method
See X11 method
certainty limits
applying for forecasts 42–43
calculating for forecasts 42
Danish fertility example 43–46
continuous time series 4
CONVERT statement, EXPAND procedure
METHOD= option 23
TRANSFORMOUT= option 25
CYCLE statement, UCM procedure 145, 176–177
cycles, trend and business 101–103, 124–125
D
damped-trend method 49–51
Danish fertility example
component estimation 137–139
certainty limits for forecasts 43–46
estimating smoothing parameter with ESM
procedure 47–49
forecast errors 38–40
forecasting by exponential smoothing 33–38
forecasting using damped-trend method 50–51
forecasting with fitted ARMA models 82–85
model extensions 142–148
outlier detection 139–142
UCM procedure and 137–148
Danish hotel overnight stays by US citizens example
exponential smoothing and 57–61
seasonal adjustment and 121–128
data sets, datetime variables and 16–17
date formats in procedure calls 10–11
DATEPART function 11, 14
DATESTYLE system option 13, 16
datetime variables
about 9
calculating time span between dates 17
extracting data from date variable example 15
handling 14–16
importing 12–14
output formats 9–12
datetime variables (continued)
 plotting quarterly data by year example 14–15
 time series data sets and 16–17
DATETIME20. format 11
DATETIME20.3 format 12
deleting outliers 185
DEPLAG statement, UCM procedure
 about 177
 ARMA models and 172
 LAG= option 146–147
DIF function 16–17, 20
DIF= option, MODEL statement (VARMAX) 84
DIF12 function 16–17
discrete time series 4
dollar sign ($) 9
double exponential smoothing
 about 30–33
 Danish fertility example 36, 45
 forecasting variance for 42
E
 e-commerce example
 ESM procedure supporting 63–74
 estimation of components 149–155
 model fit 158–160
 regression components 155–158
 seasonal adjustment in 103–108, 116–120
 UCM procedure and 149–160
 Winters method 63–68
 X11 method and 103–108
 X12 procedure and 116–120
ESM procedure
 See also FORECAST statement, ESM procedure
 about 5
 BACK= option 34, 66, 86–87
 damped-trend method 50–51
 Danish fertility example 33–36, 43–53
 Danish hotel overnight stays by US citizens example 59–63
 e-commerce example 63–74
 estimating smoothing parameter 47–49
 ID statement 64
 LEAD= option 65
 OUTFOR= option 33–34
 PLOT= option 44
 PRINT= option 33–34, 47, 51, 66, 87
 Swiss Business Indicator example 86–90
 transformation facilities in 70–74
 UCM procedure and 147, 160
 Winters method 63–68
 X12 procedure and 116, 128
ESTIMATE statement, UCM procedure
 about 146, 158, 164
 EXTRADIFFUSE= option 170
 PLOT= option 139, 141, 146, 158, 161, 167
EURDFDD10. format 11
EURDFMY5. format 10
EURDFMY7. format 10
EXPAND procedure
 about 5, 23
 Arctic ice coverage example 181–182, 185
 CONVERT statement 23, 25
 time series aggregation example 22
 TO= option 23
exponential smoothing
 about 29–30, 53, 55–56
 additive smoothing 61–63
 applying confidence limits for forecasts 42–43
 basic formula 40–41
 calculating confidence limits for forecasts 42
 damped-trend method 49–53
 Danish fertility example 33–40, 44
 Danish hotel overnight stays by US citizens example 57–61
 determining smoothing constant 46–47
 double 30–33, 36, 42
 ESM procedure supporting 61–63, 67–74
 estimating smoothing parameter in ESM procedure 47–49
 Holt method 49–50
 moving averages and 40–41
 nonseasonal 29–53
 parameterized models versus 75–95
 relative importance of e-commerce example 67–74
 seasonal 55–74
 US retail e-commerce example 63–67
 Winters method 55–56, 63–68
EXTRADIFFUSE= option, ESTIMATE statement (UCM) 170
F
 fertility example
 See Danish fertility example
FIRSTOBS= option, PRINT procedure 12
FORCE= option, X11 statement (X12) 123
forecast errors
 See prediction errors
FORECAST statement, ESM procedure
 ALPHA= option 45
 MEDIAN option 72
 METHOD= option 50–51, 59, 61, 64, 87
 MODEL= option 35, 44
 TRANSFORM= option 74
FORECAST statement, UCM procedure
 about 138, 163–164
 ALPHA= option 138, 163
forecasts
 applying confidence limits for 42–43
 calculating confidence limits for 42
 confidence limits for Danish fertility example 43–46
 exponential smoothing of nonseasonal series 29–53
exponential smoothing of seasonal series 55–74
exponential smoothing versus parameterized models 75–95
X12 procedure and 115–116
formats, including in procedure calls 10–12

G

Gaussian distribution
Danish fertility example 39
unobserved components models 135

H

Henderson moving average 124
Holt exponential smoothing method 49–50

I

ID statement
ESM procedure 64
TIMESERIES procedure 168, 179
UCM procedure 137, 161, 168, 181
VARMAX procedure 82
importing datetime variables 12–14
INTCK function 17
interpolation of time series 23–26
INTERVAL= option
ID statement (ESM) 64
ID statement (TIMESERIES) 168, 179
ID statement (UCM) 137, 168, 181
ID statement (VARMAX) 82
IRREGULAR statement, UCM procedure 172, 182

K

Kalman filter 134–135
KEEPH= option, SEASON statement (UCM) 175

L

LAG= option, DEPLAG statement (UCM) 146–147
LAG12 function 16–17
LEAD= option
ESM procedure 65
OUTPUT statement (VARMAX) 91
LEVEL statement, UCM procedure about 149, 157
PLOT= option 138, 142
PRINT= option 142
likelihood function 81, 135
likelihood ratio testing 81
Ljung-Box test 118

M

maximum likelihood estimation 81
MEDIAN option, FORECAST statement (ESM) 72
METHOD= option
CONVERT statement (EXPAND) 23
FORECAST statement (ESM) 50–51, 59, 61, 64, 87
MODEL statement (VARMAX) 91
MINIC= option, MODEL statement (VARMAX) 91
missing values
autoregressive models and 76
EXPAND procedure and 23
TIMESERIES procedure and 21–22, 181–182
UCM procedure and 185
MMDDYY6. format 10
MMDDYY10. format 10
MODEL= option, X11 statement (X12) 121
model fitting
ARMA models 82–85
autoregressive models 77–78
X12 procedure and 115–116
MODEL= option, FORECAST statement (ESM) 35, 44
MODEL statement, UCM procedure 137, 156
MODEL statement, VARMAX procedure about 82
DIF= option 84
METHOD= option 91
MINIC= option 91
NOINT option 84
NSEASON= option 94
PRINT= option 94
TREND= option 94
monthly averages, aggregation to 168–173
MONYY5. format 9–10
MONYY7. format 9–10
moving averages 40–41, 124

N

NLDATE12. format 11
NOEST option
SEASON statement (UCM) 168
SLOPE statement (UCM) 143, 151–153, 162
NOINT option, MODEL statement (VARMAX) 84
nonseasonal exponential smoothing about 29–30, 53
applying confidence limits for forecasts 42–43
basic formula 40–41
calculating confidence limits for forecasts 42
damped-trend method 49–53
Danish fertility example 33–40, 44
determining confidence limits for forecasts 42
double 30–33, 36, 42 estimating smoothing constant 46–47
estimating smoothing parameter in ESM procedure 47–49
Holt method 49–50
moving averages and 40–41
NOPRINT option, OUTPUT statement (VARMAX) 91
normal distribution, in exponential smoothing 42
NSEASON= option, MODEL statement (VARMAX) 94
OBS= option, PRINT procedure 12
ODS Graphics System 91, 104
ODS OUTPUT statement 120
OECD (Organization for Economic Co-operation and Development) 86
Organization for Economic Co-operation and Development (OECD) 86
OUT= option, OUTPUT statement (VARMAX) 91
OUTFOR= option, ESM procedure 33–34
OUTLIER statement
UCM procedure 137, 139
X12 procedure 121–122
outliers
additive 115, 117, 121–122, 139–140
Arctic ice coverage example 185–186
deleting 185
exponential smoothing of 43, 57, 61
UCM procedure and 139–142
X11 method and 103–104, 111, 113, 115
X12 procedure and 115–118, 121–122
output formats for datetime variables 9–12
OUTPUT statement
VARMAX procedure 82, 91
X12 procedure 104–108, 110–113, 118–120, 124–128
parameterized models versus exponential smoothing 75–95
percent sign (%) 9
period (.) 9
PLOT= option
ESM procedure 44
ESTIMATE statement (UCM) 139, 141, 146, 158, 161, 167
LEVEL statement (UCM) 138, 142
RANDOMREG statement (UCM) 157
SEASON statement (UCM) 154
SLOPE statement (UCM) 142
VARMAX procedure 83
PLOTS= option, UCM procedure 169, 182
prediction errors
Danish fertility example 34, 39–40, 52
Danish hotel overnight stays by US citizens example 61
e-commerce example 66, 69, 72, 74
exponential smoothing and 38–39
Swiss Business Indicator 89–90
PRINT= option
ESM procedure 33–34, 47, 51, 66, 87
LEVEL statement (UCM) 142
MODEL statement (VARMAX) 94
SEASON statement (VARMAX) 94
PRINT procedure
FIRSTOBS= option 12
OBS= option 12
procedure calls, including formats in 10–12
RANDOMREG statement, UCM procedure
about 156–157
PLOT= option 157
regression coefficient 155–158
REGRESSION statement, X12 procedure 116, 122
SAS/ETS software 5
SBC (Schwarz’s Bayesian Criterion) 77, 91
Schwarz’s Bayesian Criterion (SBC) 77, 91
SEASON statement, UCM procedure
about 149, 157, 174, 177
KEEPH= option 175
NOEST option 168
PLOT= option 154
PRINT= option 169
VAR= option 168
seasonal adjustments
unobserved components models and 133
X11 method for 99–113
X12 procedure and 115–128
seasonal exponential smoothing
about 55–56
additive smoothing 61–63
Danish hotel overnight stays by US citizens example 57–61
e-commerce examples 63–74
ESM procedure supporting 61–63, 67–74
Winters method 55–56, 63–68
seasonality 99–101
SET statement 120
SETRMISSING= option, TIMESERIES procedure 21
SGPLOT procedure
Danish fertility example 33–34, 39–40
Danish hotel overnight stays by US citizens example 57–58, 124–128
e-commerce example 104–105, 118–120
time series aggregation example 20–21
time series interpolation example 24
SLOPE statement, UCM procedure
about 149, 157
NOEST option 143, 151–153, 162
PLOT= option 142
VAR= option 143, 151–153, 162
smoothing constant 46–47
smoothing parameter, ESM procedure 47–49
SORT procedure 16–17
state space models 135
STATESPACE procedure 135
Statistical Graphics facility 43–44
STEPwise AutoRegression (STEPAR) method 78, 90
Student’s t-distribution 39, 42
Swiss Business Indicator example
 ESM procedure and 86–90
 VARMAX procedure and 90–95

T
 time formats in procedure calls 12
 time series
 additional information 6
 aggregation of 19–22, 161–186
 datetime variables 9–18
 examples of 3–4
 interpolation of 23–26
 SAS procedures supporting 5–6
 trends in 101–103, 124–125
 types of 4–5
 TIMESERIES procedure
 about 5, 161
 aggregation example 19–22, 161–186
 ID statement 168, 179
 SETMISSING= option 21
 WHERE statement 161
 TO= option, EXPAND procedure 23
 TOD12. format 11
 TRANSFORM= option, FORECAST statement (ESM) 74
 TRANSFORM statement, X12 procedure 116
 TRANSFORMOUT= option, CONVERT statement
 (EXPAND) 25
 TREND= option, MODEL statement (VARMAX) 94
 TRENDMA= option, X11 statement (X12) 124
 trends in time series 101–103, 124–125
 TYPE= option, OUTLIER statement (X12) 121

U
 UCM procedure
 See also ESTIMATE statement, UCM procedure
 See also SEASON statement, UCM procedure
 See also SLOPE statement, UCM procedure
 about 5, 25
 Arctic ice coverage example 161–185
 AUTOREG statement 164
 CYCLE statement 145, 176–177
 Danish fertility example 137–148
 DEPLAG statement 146–147, 172, 177
 e-commerce example 108, 149–160
 FORECAST statement 138, 163–164
 ID statement 137, 161, 168, 181
 IRREGULAR statement 172, 182
 LEVEL statement 138, 142, 149, 157
 MODEL statement 137, 156
 OUTLIER statement 137, 139
 PLOTS= option 169, 182
 RANDOMREG statement 156–157
 state space models and 135
 TIMESERIES procedure and 161
 unobserved components models and 131
 unemployment in UK example 108–113
 UNIVARIATE procedure 137
 unobserved components models
 about 131–132
 Arctic ice coverage example 161–186
 ARIMA representation 132
 Danish fertility example 137–148
 e-commerce example 149–160
 estimation of 134–135
 extensions of 132–134
 state space models and 135
 V
 VAR= option
 SEASON statement (UCM) 168
 SLOPE statement (UCM) 143, 151–153, 162
 VARMAX procedure
 about 5–6
 ARIMA (Box-Jenkins) models and 81–82
 ARMA models and 172
 Danish fertility example 82–85
 fitted ARMA models and 82–85
 ID statement 82
 MODEL statement 82, 84, 91, 94
 OUTPUT statement 82, 91
 PLOT= option 83
 Swiss Business Indicator example 90–95
 X12 procedure and 116
 W
 weekly averages, aggregation to 173–179
 WHERE= option, SET statement 120
 WHERE statement, TIMESERIES procedure 161
 Winters method
 Danish hotel overnight stays by US citizens
 example 62–63
 e-commerce examples 63–68
 for seasonal forecasting 56–57
 transformation and 70
 X
 X11-ARIMA method, X12 procedure 101, 116–117
 X11 method
 about 101–103
 e-commerce example 103–108
 “forgetting” algorithm 113
 outliers and 115
 unemployment in UK example 108–113
 X11 procedure 101, 104
 X11 statement, X12 procedure 123
 MODE= option 121
 TRENDMA= option 124
 X12 procedure
 about 5, 115–116
 ARIMA (Box-Jenkins) models and 116
 ARIMA statement 118
 AUTOMDL statement 117–118, 123
X12 procedure (continued)
 Danish hotel overnight stays by US citizens
 example 121–128
 e-commerce example 104, 108, 116–120
 model fitting and forecasting 115–116
 OUTLIER statement 121–122
 REGRESSION statement 116, 122
 seasonal adjustment and 116–128
 TRANSFORM statement 116
 UCM procedure and 160
 unemployment in UK example 110–113
 X11-ARIMA method 101, 116–117
 X11 statement 121, 123–124

Y

yearly averages, aggregation to 161–168

Symbols

. (period) 9
% (percent sign) 9
$ (dollar sign) 9
Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.