

Contents

I Programming in the SAS/IML Language 1
Chapter 1. An Introduction to SAS/IML Software 3
Chapter 2. Getting Started with the SAS/IML Matrix Programming Language 17
Chapter 3. Programming Techniques for Data Analysis 55
Chapter 4. Calling SAS Procedures . 89

II Programming in SAS/IML Studio 107
Chapter 5. IMLPlus: Programming in SAS/IML Studio 109
Chapter 6. Understanding IMLPlus Classes 129
Chapter 7. Creating Statistical Graphs 143
Chapter 8. Managing Data in IMLPlus 173
Chapter 9. Drawing on Graphs . 187
Chapter 10. Marker Shapes, Colors, and Other Attributes of Data 225

III Applications 249
Chapter 11. Calling Functions in the R Language 251
Chapter 12. Regression Diagnostics . 279
Chapter 13. Sampling and Simulation 311
Chapter 14. Bootstrap Methods . 349
Chapter 15. Timing Computations and the Performance of Algorithms 371
Chapter 16. Interactive Techniques . 385

IV Appendixes 413
Appendix A. Description of Data Sets 415
Appendix B. SAS/IML Operators, Functions, and Statements 419
Appendix C. IMLPlus Classes, Methods, and Statements 427
Appendix D. Modules for Compatability with SAS/IML 9.22 435
Appendix E. ODS Statements . 437
Index . 441

From Statistical Programming with SAS/IML® Software by Rick Wicklin. Copyright © 2010, SAS Institute
Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

From Statistical Programming with SAS/IML® Software. Full book
available for purchase here.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19623
http://www.sas.com/apps/sim/redirect.jsp?detail=TR19623

Chapter 2

Getting Started with the SAS/IML Matrix
Programming Language

Contents
2.1 Overview of the SAS/IML Language . 18
2.2 Creating Matrices . 18

2.2.1 Printing a Matrix . 19
2.2.2 The Dimensions of a Matrix . 20
2.2.3 The Type of a Matrix . 21
2.2.4 The Length of a Character Matrix 22

2.3 Using Functions to Create Matrices . 24
2.3.1 Constant Matrices . 24
2.3.2 Vectors of Sequential Values . 25
2.3.3 Pseudorandom Matrices . 27

2.4 Transposing a Matrix . 28
2.5 Changing the Shape of Matrices . 29
2.6 Extracting Data from Matrices . 30

2.6.1 Extracting Rows and Columns . 31
2.6.2 Matrix Diagonals . 33
2.6.3 Printing a Submatrix or Expression 35

2.7 Comparision Operators . 36
2.8 Control Statements . 38

2.8.1 The IF-THEN/ELSE Statement 38
2.8.2 The Iterative DO Statement . 39

2.9 Concatenation Operators . 41
2.10 Logical Operators . 43
2.11 Operations on Sets . 46
2.12 Matrix Operators . 47

2.12.1 Elementwise Operators . 47
2.12.2 Matrix Computations . 49

2.13 Managing the SAS/IML Workspace . 51

From Statistical Programming with SAS/IML® Software. Full book available
for purchase here.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19623

18 Chapter 2: Getting Started with the SAS/IML Matrix Programming Language

2.1 Overview of the SAS/IML Language

SAS/IML is a programming language for high-level, matrix-vector computations. Matrices are rect-
angular arrays that usually contain numbers. A matrix that contains character data is often explicitly
called a character matrix. In statistical programming, matrices often hold data for analysis. Each
row of the matrix is an observation; each column of the matrix is a variable.

If your data are in a matrix, you can carry out many statistical operations by using matrix operations.
The SAS/IML language has functions and matrix operations that enable you to manipulate matrices
as a unit, regardless of the number of rows or columns in the matrix. For an example, see the section
“Case Study: Standardizing the Columns of a Matrix” on page 83.

Operations on numerical matrices are also used to describe a wide variety of statistical techniques,
including ordinary least squares (OLS) regression and principal component analysis.

This chapter is an introduction to the SAS/IML syntax. It includes basic information about how to
define matrices, compare quantities, and call functions and subroutines. It includes a description of
basic programming statements such as IF-THEN/ELSE and the iterative DO statement.

2.2 Creating Matrices

A matrix is an n�p array of numbers or character strings. The integers n and p are the dimensions
of the matrix. The row dimension is n; the column dimension is p. A vector is a special case of a
matrix. An n � 1 matrix is called a column vector, whereas a 1 � n matrix is called a row vector.
A 1 � 1 matrix is called a scalar. In general, this book refers to any SAS/IML variable as a matrix,
regardless of its dimensions.

In a SAS/IML program, all variables are matrices, so you do not need to specify the type of a
variable. Furthermore, matrices are dynamically reassigned as needed, so you do not need to specify
the size or the type (numeric or character) of a matrix. For example, the following statements are
all valid:

/* create matrices of various types and sizes */
x = 1; /* scalar */
x = {1 2 3}; /* reassign to row vector */
y = {1 2 3, 4 5 6}; /* 2 x 3 numeric matrix */
y = {"male" "female"}; /* reassign to 1 x 2 character matrix */

See the section “Running a PROC IML Program” on page 7 for instructions on how to run SAS/IML
programs. The first statement creates x as a numerical scalar matrix. The second statement redefines
x as a numerical row vector; spaces separate entries in different columns. The third statement
defines y as a 2 � 3 numerical matrix; commas indicate a new row. The last statement redefines y
as a 1 � 2 character matrix.

Printing a Matrix 19

Programming Tip: When defining a matrix, use a comma to indicate a new row.

2.2.1 Printing a Matrix

You can use the PRINT statement to display the value of one or more matrices. The following
statement displays the values of the matrices defined in the previous section:

print x, y;

Figure 2.1 Numeric and Character Matrices

x

1 2 3

y

male female

Notice that a comma in the PRINT statement indicates that the second matrix should be displayed
on a new row. If you omit the comma, the matrices are displayed side by side.

The PRINT statement has four useful options that affect the way a matrix is displayed:

COLNAME=matrix
specifies a character matrix to be used for column headings.

FORMAT=format
specifies a valid SAS or user-defined format to use when printing matrix values.

LABEL=label
specifies a label for the matrix. If this option is not specified, the name of the matrix is used
as a label.

ROWNAME=matrix
specifies a character matrix to be used for row headings.

These options are specified by enclosing them in square brackets after the name of the matrix that
you want to display, as shown in the following example:

/* print marital status of 24 people */
ageGroup = {"<= 45", " > 45"}; /* headings for rows */
status = {"Single" "Married" "Divorced"}; /* headings for columns */
counts = { 5 5 0, /* data to print */

2 9 3 };
print counts[colname=status

rowname=ageGroup
label="Marital Status by Age Group"];

20 Chapter 2: Getting Started with the SAS/IML Matrix Programming Language

pct = counts / 24; /* compute proportions */
print pct[format=PERCENT7.1]; /* print as percentages */

Figure 2.2 Matrices Displayed with PRINT Options

Marital Status by Age Group
Single Married Divorced

<= 45 5 5 0
> 45 2 9 3

pct

20.8% 20.8% 0.0%
8.3% 37.5% 12.5%

You can also use these options by specifying their first letters: C=, F=, L=, and R=.

2.2.2 The Dimensions of a Matrix

You can determine the dimensions of a matrix by using the NROW and NCOL functions, as shown
in the following statements:

/* dimensions of a matrix */
n_x = nrow(x);
p_x = ncol(x);
print n_x p_x;

Figure 2.3 Dimensions of a Matrix

n_x p_x

1 3

n_u p_u

0 0

A matrix that contains no elements is called an empty matrix. There are several reasons why a
matrix can be empty:

� It has not been defined.

� Its memory was freed by using the FREE statement.

� It is the result of a query that returned the empty set (such as the intersection of disjoint sets).

The output from the following statements (see Figure 2.4) shows that each dimension of an empty
matrix is zero.

The Type of a Matrix 21

/* dimensions of an empty matrix */
n_u = nrow(empty_matrix);
p_u = ncol(empty_matrix);
print n_u p_u;

Figure 2.4 Dimensions of an Empty Matrix

n_u p_u

0 0

2.2.3 The Type of a Matrix

A matrix is either numeric or character or undefined; you cannot create a matrix that contains both
numbers and character strings. You can determine whether a matrix is numeric or character by using
the TYPE function, as shown in the following statements:

/* determine the type of a matrix */
x = {1 2 3};
y = {"male" "female"};
type_x = type(x);
type_y = type(y);
print type_x type_y;

Figure 2.5 Types of Matrices

type_x type_y

N C

If a matrix is numeric, the TYPE function returns the character 'N'. If a matrix is character, the
TYPE function returns the character 'C'. If a matrix is empty, then the TYPE function returns 'U'
(for “undefined”) as shown in the following statements:

/* handle an empty or undefined matrix */
type_u = type(undefined_matrix);
if type_u = 'U' then

msg = "The matrix is not defined.";
else

msg = "The matrix is defined.";
print msg;

Figure 2.6 Result of Handling an Undefined Matrix

msg

The matrix is not defined.

22 Chapter 2: Getting Started with the SAS/IML Matrix Programming Language

Programming Tip: A matrix is either numeric or character or undefined; you cannot create a
matrix that contains both numbers and character strings.

2.2.4 The Length of a Character Matrix

SAS/IML character matrices share certain similarities with character variables in the DATA step.
In the DATA step, the length of a character variable is determined when the variable is initialized:
either explicitly by using the LENGTH statement or implicitly by the length of the first value for
the variable. Similarly, every element in a SAS/IML character matrix has the same number of char-
acters: the length of the longest element. This length is determined when the matrix is initialized.
Strings shorter than the longest element are padded with blanks on the right.

For example, the following statements define a character matrix with length 4:

c = {"Low" "Med" "High"}; /* maximum length is 4 characters */

The matrix c is initialized to have length 4, the length of its longest character string. Shorter strings
such as “Low” are padded on the right so that the first element of c is stored as Low� where �
indicates a blank character.

Programming Tip: The length of a character matrix is determined by the length of its longest
element at the time it is created.

You can find the length of a character matrix by using the NLENG function, which returns a single
number. You can find the number of characters for each element of a character matrix by using the
LENGTH function, which returns a number for each element. These functions are shown in the
following statements:

/* find the length of a character matrix and of each element */
nlen = nleng(c); /* length of matrix */
len = length(c); /* number of characters in each element */
print nlen len;

Figure 2.7 Lengths of Elements in a Character Matrix

nlen len

4 3 3 4

Notice that the LENGTH function returns a numerical matrix that is the same dimension as its input
argument. For example, the ij th element of len is the number of characters in the ij th element
of c. (Strictly speaking, both functions return numbers that represent bytes. Because each English
character is one byte long, the numbers also give the number of characters for matrices that contain
English strings.)

The Length of a Character Matrix 23

When you set the value of an element of an existing matrix, the value is truncated if it is too long,
as shown in the following statements:

/* assign a long string to a matrix with a shorter length */
c[2] = "Medium"; /* value is truncated! */
print c;

Figure 2.8 A Truncated Character String

c

Low Medi High

The output from these statements is shown in Figure 2.8. The matrix c was initialized to have
length 4, so when you assign a longer string to an element, only the first four characters fit into the
matrix element.

You cannot dynamically change the length of a character matrix, but you can copy its contents to
a vector that has a longer (or shorter) character length. The following statements use the PUTC
function in Base SAS software to copy a vector of values:

/* copy character strings to a matrix with a longer length */
c = {"Low" "Med" "High"}; /* maximum length is 4 characters */
d = putc(c, "$6."); /* copy into vector with length 6 */
d[2] = "Medium"; /* value fits into d without truncation */
nlen = nleng(d);
print nlen, d;

Figure 2.9 Result of Changing the Length of a Character Vector

nlen

6

d

Low Medium High

In the previous statements, the PUTC function applies the $6. format to every element of c. The
PUTC function returns a matrix with the same dimensions as c. This matrix is stored into d.

Notice that c contains a vector of character strings, but that the PUTC function acted on each
element. This is generally true: you can pass a matrix of values to Base SAS functions and expect
them to act on each element.

Programming Tip: You can call functions in Base SAS software from SAS/IML programs. In
most cases, these functions act on each element of a matrix.

Strings that are smaller than the maximum length of a character matrix are padded with blanks on

24 Chapter 2: Getting Started with the SAS/IML Matrix Programming Language

the right. You can see this in Figure 2.9 by noticing that there is more space between the words
“Low” and “Medium” than between the words “Medium” and “High.” The value stored in the first
element of d is “Low���” where� indicates a blank character.

The padding of character strings with blanks on the right can cause a problem when you use the
CONCAT function or the string concatentation operator (C) to concatenate strings. The solution to
this problem is to use the TRIM function in Base SAS software to remove trailing blanks, as shown
in the following statements:

/* use the '+' operator to concatenate strings */
msg1 = "I like the " + d[1] + " value."; /* blanks! */
msg2 = "I like the " + trim(d[1]) + " value."; /* no blanks */
print msg1, msg2;

Figure 2.10 Result of Concatenating Strings and Removing Trailing Blanks

msg1

I like the Low value.

msg2

I like the Low value.

There are times when a character string also has leading blanks. You can use the STRIP function
in Base SAS software to remove both leading and trailing blanks. In most situations that involve
string concatenation, you will want to remove leading and trailing blanks.

Programming Tip: When concatenating character strings, use the STRIP function to remove
leading and trailing blanks from elements of a character matrix.

2.3 Using Functions to Create Matrices

The SAS/IML matrices in the previous section were created by typing in the elements. More typi-
cally, matrices are obtained by using SAS/IML functions to generate data or by reading data from
a SAS data set. This section describes creating matrices by using SAS/IML functions; creating
matrices by reading a SAS data set is covered in Chapter 3, “Programming Techniques for Data
Analysis.”

2.3.1 Constant Matrices

The simplest matrix is a constant matrix. In SAS/IML, the J function creates a constant matrix.
The syntax is J(nrow, ncol, value), although you can omit the third argument, which defaults to the

Vectors of Sequential Values 25

value 1. For example, the following statements create several constant matrices:

/* create constant matrices */
c = j(10, 1, 3.14); /* 10 x 1 column vector */
r = j(1, 5); /* 1 x 5 row vector of 1's */
m = j(10, 5, 0); /* 10 x 5 matrix of zeros */
miss = j(3, 2, .); /* 3 x 2 matrix of missing values */

The first statement creates a column vector with ten rows; each element has the value 3:14. The
second statement creates a row vector with five columns; each element is a 1 because the value
argument is omitted. The third statement creates a 10�5matrix of zeros. The last statement creates
a 3 � 2 matrix in which every element is a missing value.

Programming Tip: Do not confuse an empty matrix with a matrix that contains missing values or
with a zero matrix. An empty matrix has no rows and no columns. A matrix that contains missing
values has at least one row and column, as does a matrix that contains zeros.

You can also use the REPEAT function to create a constant matrix or, more generally, a matrix with
a repeating pattern of values. The REPEAT function creates a new matrix by repeating a given
matrix a specified number of times in each dimension, as shown in the following example:

/* create a matrix by repeating values from another matrix */
g = repeat({0 1}, 3, 2); /* repeat the pattern 3 times down */
print g; /* and 2 times across */

Figure 2.11 A Repeated Pattern of Values

g

0 1 0 1
0 1 0 1
0 1 0 1

The REPEAT function takes three arguments: a matrix of values, the number of times that matrix
should be repeated in the vertical dimension, and the number of times that matrix should be repeated
in the horizontal dimension. In the example, the vector {0 1} is repeated three times down the rows
and twice across the columns.

You can also use the J function and the REPEAT function to create character matrices.

2.3.2 Vectors of Sequential Values

The next simplest matrix to construct is a matrix in which entries follow an arithmetic progression.
The DO function (not to be confused with the iterative DO statement) creates a vector with elements
that follow an arithmetic series. The syntax is DO(start, stop, increment). Similar to the DO
function is the “colon operator,” which can create an arithmetic series with an increment of 1 or �1.

26 Chapter 2: Getting Started with the SAS/IML Matrix Programming Language

(The colon operator is also known as the index creation operator since it is often used to create an
index start:stop.) The following statements demonstrate these functions:

/* create a vector of sequential values */
i = 1:5; /* increment of 1 */
j = 5:1; /* increment of -1 */
k = do(1, 10, 2); /* odd numbers 1, 3, ..., 9 */
print i, j, k;

Figure 2.12 Vectors with Sequential Values

i

1 2 3 4 5

j

5 4 3 2 1

k

1 3 5 7 9

The index creation operator (:) has lower precedence than arithmetic operators, as shown by the
following statements and by Figure 2.13:

/* the index creation operator has low precedence */
n1 = 1;
n2 = 10;
h = n1+2:n2-3; /* equivalent to 3:7 */
print h;

Figure 2.13 Precedence of Index Creation Operator

h

3 4 5 6 7

Programming Tip: The index creation operator (:) has lower precedence than arithmetic opera-
tors. Therefore, a+b*c:d+e*f is equivalent to (a+b*c):(d+e*f).

The DO function requires that its arguments are numerical. But there is one situation in which the
index creation operator can be used with character values: the creation of variable names with a
common prefix and a numerical suffix. For example, if you have 10 variables and want to name
them x1, x2, . . . , x10, the index creation operator can create these variable names, as shown in the
following statements:

/* create variable names with sequential values */
varNames = "x1":"x10";
print varNames;

Pseudorandom Matrices 27

Figure 2.14 Variable Names with Sequential Values

varNames

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Programming Tip: Use the index creation operator to create a vector of names with a common
prefix and a numerical suffix (for example, "x1":"x10").

2.3.3 Pseudorandom Matrices

Probability theory and statistics describe events that contain aspects of randomness. A random
number algorithm is an algorithm that generates a sequence of numbers whose statistical properties
are such that the sequence is indistinguishable from a truly random sequence. Of course, it is
technically impossible to generate a random sequence, since, by definition, a random process is not
deterministic. Therefore, some people prefer use the term pseudorandom numbers to describe a
sequence of numbers that are generated by a computer and that behave similarly to random variates
from a specified distribution.

In SAS software a pseudorandom sequence of numbers is initialized with a seed value that deter-
mines the sequence. If you use a different seed value, you get a different sequence of numbers.

There are several SAS/IML functions and subroutines that generate pseudorandom variates. The
UNIFORM and NORMAL functions generate random variates from the uniform distribution on
Œ0; 1� and from the standard normal distribution, respectively. For example, the following statements
generate two variables that are linearly related to each other.

/* create pseudorandom vectors */
seed = j(10, 1, 1); /* set seed (=1) and dimensions */
x = uniform(seed); /* 10 x 1 pseudorandom uniform vector */
y = 3*x + 2 + normal(seed); /* linear response plus normal error */

The UNIFORM and NORMAL functions are convenient for simple simulations and for quickly
generating test data. In the previous statements, the seed value is 1. The size and shape of the seed
matrix determines the shape of the output from the UNIFORM and NORMAL functions. Since
seed is a 10 � 1 vector, the column vector x contains 10 pseudorandom numbers in the interval
Œ0; 1�. Similarly, the NORMAL function returns a normally distributed “error vector,” so that the
vector y is a linear function of x plus an error term.

Programming Tip: Use the UNIFORM and NORMAL functions when you need to quickly
generate a small random sample for an example or for testing purposes.

The statistical properties of the pseudorandom numbers generated by the UNIFORM and NOR-
MAL functions are not as good as those generated by the newer Mersenne-Twister random number

28 Chapter 2: Getting Started with the SAS/IML Matrix Programming Language

generator that is implemented in the RANDGEN subroutine. Consequently, you should use the
RANDGEN subroutine when you intend to generate millions of pseudorandom numbers.

The RANDGEN subroutine is used extensively in Chapter 13, “Sampling and Simulation.” When
you use RANDGEN, you need to allocate a matrix that will hold the random numbers, perhaps by
using the J function. For the sake of completeness, the following statements use the RANDGEN
subroutine to generate two variables that are linearly related to each other:

/* create pseudorandom vectors (better statistical properties) */
call randseed(12345); /* set seed for RANDGEN */
x = j(10, 1); /* allocate 10 x 1 vector */
e = x; /* allocate 10 x 1 vector */
call randgen(x, "Uniform"); /* fill x; values from uniform dist */
call randgen(e, "Normal"); /* fill e; values from normal dist */
y = 3*x + 2 + e; /* linear response plus normal error */

Programming Tip: Use the RANDGEN subroutine when the statistical properties of the pseudo-
random numbers are important or when you intend to generate millions of variates.

For more information about the numerical properties of SAS routines that generate pseudorandom
numbers, see the section “Using Random-Number Functions and CALL Routines” in the SAS Lan-
guage Reference: Dictionary.

2.4 Transposing a Matrix

The vectors created by the DO function and the index creation operators are row vectors. To get a
column vector, you can use the T function, which transposes a matrix. The syntax is T(matrix).

The transpose of a row vector is a column vector, and the transpose of a column vector is a row
vector. The transpose of a two-dimensional matrix is obtained by flipping the matrix about its main
diagonal. Specifically, if aij is the element in the i th row and j th column of a matrix A, then
aj i is the element in the i th row and j th column of the transpose of A. The following statements
demonstrate the transpose function:

/* transpose a matrix */
s = {1 2 3, 4 5 6, 7 8 9, 10 11 12}; /* 4 x 3 matrix */
transpose = t(s); /* 3 x 4 matrix */
print transpose;

Figure 2.15 A Transposed Matrix

transpose

1 4 7 10
2 5 8 11
3 6 9 12

2.5. Changing the Shape of Matrices 29

A mathematical notation for the transpose of a matrixA isA0. The SAS/IML language also supports
this syntax:

sPrime = s`; /* alternative notation to transpose a matrix */

The transpose operator is described in Section 2.12.

2.5 Changing the Shape of Matrices

Sometimes it is convenient to reshape the data in a matrix. Suppose you have a 1 � 12 matrix. This
same data can fit into many other matrices: for example, a 2 � 6 matrix, a 3 � 4 matrix, a 4 � 3
matrix, and so on. The SHAPE function enables you to specify the number of rows and columns
for a new matrix. The values for the new matrix come from an existing matrix, as shown in the
following statements:

/* reshape a matrix */
x = 1:12; /* 1 x 12 matrix */
s = shape(x, 4, 3); /* reshape data into 4 x 3 matrix */

The matrix s is identical to the one specified manually in the example in the preceding section.

The data in SAS/IML matrices are stored in row-major order and this ordering of the elements is
used in reshaping the data. The SHAPE function does not change the order of the data elements in
memory; it merely changes how those data are interpreted as a matrix.

Programming Tip: Data in SAS/IML matrices are stored in row-major order.

The previous example specifies both the number of rows and the number of columns to the SHAPE
function. You can also specify only the number of rows or only the number of columns. The
dimension that is not specified is determined automatically by dividing the number of elements in
the matrix by the number of specified rows or columns. To specify only the number of rows, omit
the third argument or use 0 for the number of columns. To specify only the number of columns,
specify 0 for the number of rows, as shown in the following statements:

/* omit dimension; automatically determined */
s1 = shape(x, 4); /* 4 rows ==> 3 columns */
s2 = shape(x, 0, 3); /* 3 columns ==> 4 rows */

You can also reshape data into dimensions that are not congruent to the original data by specifying
a value to use when the original data “runs out,” as shown in the following statements:

/* pad data with a specified value (missing) */
s = shape(1:10, 4, 3, .); /* 4 x 3, pad with missing value */
print s;

30 Chapter 2: Getting Started with the SAS/IML Matrix Programming Language

Figure 2.16 Result of the SHAPE Function

s

1 2 3
4 5 6
7 8 9

10 . .

2.6 Extracting Data from Matrices

This section describes various techniques for extracting or modifying the subsets of a matrix. The
subsets include, rows, columns, submatrices, and diagonal elements.

You can specify elements of a matrix with one index or with two. For example, x[3] is the third
element of the matrix x, specified in row-major order. Similarly, y[1,2] specifies the element in the
first row and the second column of the matrix y. You can use indices on either side of an assignment
statement, as the following statements indicate:

/* use indices on either side of assignment statements */
x = {1 2 3, 4 5 6};
y = x[2, 3]; /* value of 2nd row, 3rd column */
x[2, 3] = 7; /* changes the value of x[2,3]; y is unchanged */
print x, y;

Figure 2.17 Result of Assignment Statements

x

1 2 3
4 5 7

y

6

If m is an n � p matrix, it is an error to refer to m[i,j] when i > n or j > p. It is also an error to
use nonpositive indices.

It is an error to refer to a subscript of an undefined matrix. For example, the following statements
show that you cannot assign elements of a vector if the vector has not been created:

/* ERROR: subscripting a matrix that has not been created */
z[1] = 0; /* z is undefined */

The error message for this mistake is displayed in the SAS log, which is shown in Figure 2.18.

Extracting Rows and Columns 31

Figure 2.18 Error Message for Undefined Matrix

ERROR: (execution) Matrix has not been set to a value.

operation : [at line 1520 column 2
operands : z, *LIT1001, *LIT1002

z 0 row 0 col (type ?, size 0)

*LIT1001 1 row 1 col (numeric)

1

*LIT1002 1 row 1 col (numeric)

0

statement : ASSIGN at line 1520 column 1

Each line of the error message gives information about the error:

� The error is that you are trying to access an element of a matrix that has not been assigned a
value.

� The error occurred in the left-bracket (subset) operation.

� The operation involved three operands: the matrix z and two unnamed literals.

– The matrix z has zero rows and zero columns. It is an undefined matrix.

– The first unnamed literal has the value 1.

– The second has the value 0.

� The error occurred during the assignment statement.

Programming Tip: It is an error to refer to a subscript of an undefined matrix.

2.6.1 Extracting Rows and Columns

You can specify submatrices of a matrix by specifying vectors of indices. For example, the follow-
ing statements assign the matrix w to the values in the odd rows and even columns of the matrix
z:

/* extract submatrix */
z = {1 2 3 4, 5 6 7 8, 9 10 11 12};
rows = {1 3};
cols = {2 4};
w = z[rows, cols];
print w;

32 Chapter 2: Getting Started with the SAS/IML Matrix Programming Language

Figure 2.19 A Submatrix

w

2 4
10 12

You can specify all rows of a matrix by omitting the row index. Columns are handled similarly. The
following statements use the previous definitions of rows and columns to show this syntax:

/* extract only rows or columns */
oddRows = z[rows,]; /* specified rows; all columns */
evenCols = z[, cols]; /* all rows; specified columns */

Programming Tip: You can specify all rows of a matrix by omitting the row index. Columns are
handled similarly.

When you extract a subset of a matrix by specifying a single set of indices, the resulting matrix is
always a column vector. At times, this is a surprising result, as shown in the following statements.

/* different ways to specify elements of a matrix */
z = {1 3 5 7 9 11 13}; /* row vector */
w = z[{2 4 6}]; /* column vector with values {3,7,11} */
t = z[, {2 4 6}]; /* row vector with values {3 7 11} */
print w t;

Figure 2.20 Results of Two Indexing Schemes

w t

3 3 7 11
7

11

Note that w is a column vector even though z is a row vector! To get a row vector, you must explicitly
omit the row index, as for the vector t (or use the SHAPE function).

Programming Tip: If you extract a subset of a matrix by specifying a single set of indices, the
resulting vector is a column vector.

You can also extract all rows except those that you enumerate. The SETDIF function (described in
Section 2.11) is useful for this. The following statements extract all rows except those contained in
the vector v:

Matrix Diagonals 33

/* extract all rows except those specified in a vector v */
q = {1 2, . 3, 4 5, 6 7, 8 .};
v = {2 5}; /* specify rows to exclude */
idx = setdif(1:nrow(q), v); /* start with 1:5, exclude values in v */
r = q[idx,]; /* extract submatrix */
print idx, r;

Figure 2.21 Rows That Are Not Excluded

idx

1 3 4

r

1 2
4 5
6 7

In the previous statements, the second and fifth rows of the qmatrix contain missing values. Suppose
you want to exclude these rows from a computation. You can define v to be the vector that contains
the rows to exclude and use the SETDIF function to remove those rows from the vector of all row
numbers in q. The vector idx contains the rows that are retained, as shown in Figure 2.21.

2.6.2 Matrix Diagonals

An important subset of a matrix is the diagonal of the matrix. For an n�p matrix A, the diagonal is
the set of elements Ai i for i D 1; : : : ;min.n; p/. You can extract the diagonal of a matrix by using
the VECDIAG function, as shown in the following example:

/* extract matrix diagonal */
m = {1 2 3,

2 5 6,
3 6 10};

d = vecdiag(m);
print d;

Figure 2.22 The Diagonal of a Matrix

d

1
5

10

The VECDIAG function returns a vector of diagonal elements from a matrix, whereas the DIAG
function returns a diagonal matrix created from a specified vector of values, as shown in the follow-
ing example:

34 Chapter 2: Getting Started with the SAS/IML Matrix Programming Language

/* create a diagonal matrix from a vector */
vals = {5, 2, -1};
s = diag(vals);
print s;

Figure 2.23 A Diagonal Matrix

s

5 0 0
0 2 0
0 0 -1

The I function returns a square matrix that contains ones on the diagonal. This is called the identity
matrix. You need to specify the dimension of the matrix, as shown in the following example:

/* create an identity matrix */
ident = I(3); /* 3 x 3 identity matrix */
print ident;

Figure 2.24 An Identity Matrix

ident

1 0 0
0 1 0
0 0 1

If you want to extract or modify the diagonal values of a general n � p matrix, you can directly
index the elements of the diagonal by using the following statements:

/* index the diagonal elements of a matrix */
n = nrow(m);
p = ncol(m);
diagIdx = do(1, n*p, p+1); /* indices of the diagonal */
print diagIdx;
d2 = m[diagIdx]; /* extract the diagonal */
print d2;

Figure 2.25 Indices and Values of a Matrix Diagonal

diagIdx

1 5 9

d2

1
5

10

Printing a Submatrix or Expression 35

In the example, the DO function constructs the indices of the diagonal for a general n � p matrix.
These are the correct indices because SAS/IML matrices are stored in row-major order. The indices
are stored in the diagIdx vector.

You can use the indices in diagIdx to extract the diagonal, as shown in the previous example, or to
assign to the diagonal elements. For example, a common matrix operation is to subtract a constant
from the diagonal of a square matrix, as shown in the following statements:

/* compute B = (m - lambda*I) for lambda=1 */
/* First approach: use the formula */
B1 = m - I(n); /* I(n) gives n x n identity matrix */

/* Second approach: Do not physically create the identity matrix */
B = m;
B[diagIdx] = m[diagIdx] - 1; /* modify the diagonal */
print m B;

Figure 2.26 Matrix with Modified Diagonal

m B

1 2 3 0 2 3
2 5 6 2 4 6
3 6 10 3 6 9

The example creates the matrix m � I in two different ways. The first way is to use the I function
to explicitly create an identity matrix and then to subtract that matrix from m to form the matrix B .
This works, but is not as efficient as the alternative approach. The alternative approach initializes
the matrix B with the values of m and then subtracts 1 from each diagonal element.

2.6.3 Printing a Submatrix or Expression

There are times when it is convenient to print a submatrix of a matrix, or, in general, a temporary
result of some matrix expression. You can print submatrices and expressions by enclosing the term
that you want to print in parentheses.

For example, suppose that a data matrix contains hundreds of rows, but you want to print only
the first few rows. You can index the rows that you want to print, and enclose the expression in
parentheses, as shown in the following statements:

x = shape(1:1000, 0, 4); /* 4 columns, hundreds of rows */
print (x[1:3,]); /* print first three rows */

Figure 2.27 First Three Rows of a Matrix

1 2 3 4
5 6 7 8
9 10 11 12

36 Chapter 2: Getting Started with the SAS/IML Matrix Programming Language

The output is shown in Figure 2.27. Notice that the output does not contain any matrix names.
This is in contrast to printed output in previous examples in which the name of the matrix is printed
in the output. The explanation for this is that when SAS/IML encounters an expression enclosed
in parentheses, it creates a temporary matrix to hold the result and the PRINT statement does not
output a name for temporary matrices. However, as described in section “Printing a Matrix” on
page 19, you can use the LABEL= and COLNAME= options in the PRINT statement to make the
printed output easier to understand, as shown in the following statements:

varNames = 'Col1':'Col4';
print (x[1:3,])[label="My Data" colname=varNames];

Figure 2.28 Adding a Label and Column Names to Printed Output

My Data
Col1 Col2 Col3 Col4

1 2 3 4
5 6 7 8
9 10 11 12

In the same way, you can print matrix expressions by enclosing the expression in parentheses. For
example, the following statements print a linear transformation of a row vector:

x = 1:4;
print (3*x + 1); /* print expression */

Figure 2.29 Result of Printing an Expression

4 7 10 13

Programming Tip: To print a submatrix, you must enclose the submatrix in parentheses:

print (x[1:3]);

This is a peculiarity of the PRINT statement. You also need to enclose matrix expressions in paren-
theses:

print (3*x + 1);

2.7 Comparision Operators

In the SAS/IML language, the equal sign (=) plays two roles. The equal sign can be an assignment
operator or a comparison operator. The other comparison operators are less than (<), less than or
equals (<=), greater than (>), greater than or equals (>=), and the not equals operator (^=). Usually
you will compare a matrix with a scalar value or with another matrix of the same dimensions,
although it is also possible to compare a matrix with a vector. The result of the comparison is a

2.7. Comparision Operators 37

matrix of zeros and ones. The result matrix has the value one for locations where the comparison is
true and the value zero for locations where the comparison is false. This is shown in the following
statements:

/* comparison operators */
x = {1 2 3, 2 1 1};
s1 = (x=2);
print s1;

z = {1 2 3, 3 2 1};
s2 = (x<z);
print s2;

Figure 2.30 Results of Comparison Operators

s1

0 1 0
1 0 0

s2

0 0 0
1 1 0

The matrix s1 has the same dimensions as the matrix x. The element s1[i,j] has the value 1 when
x[i,j] equals 2. Similarly, the matrix s2 has the value 1 in locations where x[i,j] is less than
z[i,j], and has the value 0 otherwise.

The parentheses in the previous example are not necessary, but might help to remind you that the
first equal sign is an assignment, whereas the second is a comparison operator. The SAS/IML
language does not support the “multiple assignment” syntax found in some other languages. The
expression x=y=0 does not assign the value zero to the matrices x and y; instead, it compares the
matrix y with zero, and assigns the result to x.

Programming Tip: The comparison operators return a matrix of zeros and ones.

Programming Tip: Unlike the DATA step, the SAS/IML language does not support the mnemonic
keywords EQ, NE, GT, LT, GE, or LE as a replacement for the symbols =, ^=, >, <, >=, or <=.

The comparison operators treat a missing value as a value that is less than any valid nonmissing
value, as shown in the following example:

/* missing values compare as less than any nonmissing value */
m = .;
n = 0;
r = (m<n);
print r;

38 Chapter 2: Getting Started with the SAS/IML Matrix Programming Language

Figure 2.31 Result of Comparing a Missing Value

r

1

2.8 Control Statements

This section describes SAS/IML statements that control the flow of a program. This includes
the IF-THEN/ELSE statements, the iterative DO statement, the DO/WHILE statement, and the
DO/UNTIL statement.

2.8.1 The IF-THEN/ELSE Statement

The comparison operators are most often used in the conditional expression of an IF-THEN/ELSE
statement, as shown in the following statements:

/* an IF-THEN/ELSE statement */
x = {1 2 3, 2 1 1};
z = {1 2 3, 3 2 1};
if x <= z then

msg = "all(x <= z)";
else

msg = "some element of x is greater than the corresponding element of z";
print msg;

Figure 2.32 Result of an IF-THEN/ELSE Statement

msg

all(x <= z)

The syntax is identical to that used in the DATA step, except that the conditional expression in the
SAS/IML language can be a matrix. Recall that the expression x<=z resolves to a matrix of zeros
and ones. If every element of x<=z is nonzero (that is, the expression is true for all elements), then
the statement following the THEN keyword is executed. Otherwise, the statement following the
ELSE keyword is executed. The ELSE statement is optional.

Programming Tip: A matrix expression in an IF-THEN statement is true provided that all ele-
ments of the matrix expression are nonzero.

You can use the DO and END statements to group multiple statements that should be executed, as
shown in the following statements:

The Iterative DO Statement 39

/* a DO-END block of statements */
if x <= z then do;

msg = "all(x <= z)";
/* more statements ... */

end;
else do;

msg = "some element of x is greater than the corresponding element of z";
/* more statements ... */

end;

You can use the ALL function to emphasize the condition you are testing:

/* the ALL statement */
if all(x <= z) then do;

msg = "all(x <= z)";
/* more statements ... */

end;

The ALL function returns the value 1 if every element of its argument is nonzero; otherwise, it
returns the value 0. If you want to test whether any element in a matrix is nonzero, you can use the
ANY function, as shown in the following statements:

/* the ANY statement */
if any(x < z) then

msg = "some element of x is less than the corresponding element of z";
print msg;

Figure 2.33 Result of the ANY Function

msg

some element of x is less than the corresponding element of z

The ANY function returns 1 if any element of its argument is nonzero; otherwise, it returns 0.

2.8.2 The Iterative DO Statement

The iterative DO statement enables you to repeat a group of statements several times. For example,
you can loop over elements in a matrix or loop over variables in a data set. The syntax is identical
to that used in the DATA step, as shown in the following statements:

/* the iterative DO statement */
x = 1:5;
sum = 0;
do i = 1 to ncol(x);

sum = sum + x[i]; /* inefficient way to sum elements */
end;
print sum;

40 Chapter 2: Getting Started with the SAS/IML Matrix Programming Language

The statements loop over the columns of x and add up each entry. The partial sum at each step in
the iteration is accumulated in the variable sum. When the loop ends, sum contains the sum of the
elements in x, as shown in Figure 2.34.

Figure 2.34 Result of the Iterative DO Statement

sum

15

In general, you should try to avoid looping over every element in a vector. The SAS/IML language
has many functions and statements that enable you to avoid explicit loops. For example, you can
rewrite the previous example by using the SUM function to eliminate the loop:

x = 1:5;
sum = sum(x); /* efficient; eliminate DO loop */

The SUM function and other functions that act on matrices are described in Appendix C. The
section “Writing Efficient SAS/IML Programs” on page 79 discusses other ways to avoid loops.

The iterative DO statement supports an optional WHILE or UNTIL clause. You can use the WHILE
or UNTIL clauses when you want to exit the DO loop after a certain criterion is satisfied, as shown
in the following statements:

/* an UNTIL clause */
x = 1:5;
sum = 0;
do i = 1 to ncol(x) until(sum > 8);

sum = sum + x[i];
end;
print sum;

Figure 2.35 Result of the UNTIL Clause

sum

10

The WHILE clause is evaluated at the top of the loop, whereas the UNTIL clause is evaluated at
the bottom of the loop. Consequently, you can use the WHILE clause when you want to block the
execution of the body of the loop. For example, the following statements find the partial sum of a
vector until a missing value is encountered:

/* a WHILE clause */
x = {1 2 . 4 5};
sum = 0;
do i = 1 to ncol(x) while(x[i]^=.);

sum = sum + x[i];
end;
print sum;

2.9. Concatenation Operators 41

Figure 2.36 Result of the WHILE Clause

sum

3

The statements work correctly because the WHILE clause forces the loop to exit as soon as i is
incremented to 3. If you try to use an UNTIL clause (such as until(x[i]=.)), the body of the
loop executes and results in the missing value being added to the sum variable.

You can also use the WHILE and UNTIL clauses in conjunction with a noniterative DO statement.
In this case, you need to control the iteration yourself, and you need to avoid conditions that might
lead to infinite loops. For example, the following statements use a DO-UNTIL statement to approx-
imate the first local maximum of the sine function for x > 0:

/* a DO-UNTIL statement */
x = 0;
dx = 0.01;
do until(sin(x) > sin(x+dx));

x = x + dx;
end;
print x;

Figure 2.37 Result of the DO-UNTIL Statement

x

1.57

The true value of the local maximum is �=2 � 1:57. The loop adds a small increment to x at each
iteration. The condition in the UNTIL clause tests whether the sine function is increasing at the
current value of x. The loop continues until x attains a value at which the sine function is no longer
increasing.

2.9 Concatenation Operators

A previous section described ways to extract a subset of a matrix. This section describes how you
can concatenate matrices together to form a bigger matrix from smaller ones.

The SAS/IML language provides two concatenation operators. The horizontal concatenation oper-
ator (||) appends new columns to a matrix, or combines two matrices that have the same number
of rows. A typical usage is to create a data matrix consisting of columns from several vectors, as
shown in the following statements:

42 Chapter 2: Getting Started with the SAS/IML Matrix Programming Language

/* horizontal concatenation */
a = {1,2,3,4,5}; /* 5 x 1 column vectors */
b = {3,5,4,1,3};
c = {0,1,0,0,1};
x = a || b || c; /* 5 x 3 matrix */
print x;

Figure 2.38 Result of Horizontal Concatenation

x

1 3 0
2 5 1
3 4 0
4 1 0
5 3 1

The vertical concatenation operator (//) appends new rows or combines matrices that have the same
number of columns. A typical usage is that you want to combine several subsets of data, where each
subset is contained in its own matrix. For example, the following statements combine a subset of
the data (say, for males) with another subset (say, for females):

/* vertical concatenation */
males = {1 3 0, 2 5 1, 3 4 0}; /* 3 x 3 matrix */
females = {4 1 0, 5 3 1}; /* 2 x 3 matrix */
x = males // females; /* 5 x 3 matrix */

Because the concatenation operators allocate a new matrix and copy data into it, you should try to
avoid using concatenation operators inside of a loop. For example, suppose you want to construct
a vector of even integers {2 4 6 8 10}. The following statements show an inefficient way to
construct this vector:

/* construct vector of even integers */
free x; /* make sure x is empty */
do i = 1 to 5;

x = x || 2*i; /* inefficient! 5 allocations */
end;

The program first uses the FREE statement to ensure that x is an empty matrix. Inside the DO loop,
the program allocates a new matrix for each iteration of the loop. The first iteration concatenates
the empty matrix with the scalar that contains 2. At the end of the first iteration, the matrix x is
1 � 1. At the end of the second iteration, the matrix x is 1 � 2, and so on.

It is not merely the allocation of memory that is inefficient. The algorithm is also inefficient because
of the way it copies elements multiple times. During the five iterations, the value 2 is copied into
a new matrix five times. The value 4 is copied four times, and so on. In total, the five values are
copied 15 times before the loop ends. If the same algorithm is used to create a vector of length n,
the values are copied a total of n.n � 1/=2 times!

If the purpose of the loop is to compute values for a matrix with a given number of rows and
columns, it is usually more efficient to allocate space for the matrix prior to the loop. You can
assign the values to the preallocated matrix inside the loop, as shown in the following statements:

2.10. Logical Operators 43

/* Improved algorithm: allocate the matrix to hold the
even integers. Assign values into the vector. */

x = j(1, 5, .); /* allocate; fill with missing */
do i = 1 to ncol(x);

x[i] = 2*i; /* assign value */
end;

This algorithm requires a single allocation of a vector, and no values are copied unnecessarily. Of
course, for this simple example, you can avoid the DO loop altogether:

x = 2*(1:5);

Programming Tip: Whenever possible, avoid using concatenation operators to construct a matrix
row-by-row (or column-by-column) inside a loop.

You cannot always avoid concatenation within a DO loop because there are situations in which you
do not know in advance how many iterations are required. Nevertheless, even in those situations
you can often obtain an upper bound on the number of iterations and preallocate the results matrix.
An example is a root-finding algorithm that iterates until convergence. You do not know in advance
how many iterations are required, but you can decide to limit the algorithm to no more than 50
iterations before stopping the algorithm. In this case, you can preallocate space for up to 50 results.

The concatenation operators enable you to append one matrix to the end of another. If you need to
insert rows or columns into the middle of a matrix, you can use the INSERT function. If you need
to remove rows or columns from the middle of a matrix, you can use the REMOVE function. For
example, the following statements remove the first, third, and sixth elements of a vector, which has
the effect of removing all missing values from the vector:

y = {., 1, ., 2, 3, .};
v = remove(y, {1 3 6});

See the SAS/IML User’s Guide for details of the INSERT and REMOVE statements.

2.10 Logical Operators

The IF-THEN/ELSE, DO-UNTIL, and DO-WHILE statements all test whether a condition is true.
When the condition involves a matrix, the condition is considered “true” provided that it is true for
each element of the matrix.

You can also test whether multiple conditions are true and combine two or more conditions into a
single logical expression. The three logical operators are the AND operator (&), the OR operator
(|), and the NOT operator (ˆ). The operators perform logical operations on the elements of matrices,
as shown in the following statements:

44 Chapter 2: Getting Started with the SAS/IML Matrix Programming Language

/* logical operators */
r = {0 0 1 1};
s = {0 1 0 1};
and = (r & s);
or = (r | s);
not = ^r;
print and, or, not;

Figure 2.39 Results of Logical Operators

and

0 0 0 1

or

0 1 1 1

not

1 1 0 0

As the example indicates, the matrix and contains a nonzero value only where the corresponding
elements of r and s are nonzero. Similarly, the matrix or contains a nonzero value if either of the
corresponding elements of r and s are both nonzero. Lastly, the matrix not is nonzero only where
the matrix r is zero.

Programming Tip: Unlike the DATA step, the SAS/IML language does not support the mnemonic
keywords AND, OR, or NOT as a replacement for the symbols &, |, and ^.

You can use the logical operators to combine multiple criteria into a single criterion. For example,
the following statements use the logical AND operator to test whether the values of a vector are all
in the domain of a function:

/* logical combination of criteria */
x = do(-1, 1, 0.5);
if (x>= -1) & (x<=1) then

y = sqrt(1-x##2); /* the ## operator squares each element of x */
else

y = "Unable to compute the function.";
print y;

Figure 2.40 Result of the Logical AND (&) Operator

y

0 0.8660254 1 0.8660254 0

2.10. Logical Operators 45

There are two conditions in the IF-THEN statement. The first tests whether all of the elements of
x are greater than or equal to -1. The second tests whether all of the elements of x are less than
or equal to 1. The logical AND operator ensures that the SQRT function is called only if both of
the conditions are satisfied. The parentheses are not necessary, but are included for clarity. For this
example, both conditions are satisfied, so the SQRT function is called. The argument to the SQRT
function uses the elementwise power operator (##) to square each element of x. Consequently, the

i th element of y is equal to
q
1 � x2i , where xi is the i th element of x.

You can often write a logical condition in multiple ways. For example, the following IF-THEN
statements are logically equivalent to the previous IF-THEN statement:

/* different ways to compute the same logical condition */
if (x< -1) | (x>1) then

y = "Unable to compute the function.";
else

y = sqrt(1-x##2);

if ^(x< -1) & ^(x>1) then
y = sqrt(1-x##2);

else
y = "Unable to compute the function.";

Some programming languages support a feature known as minimal evaluation or short-circuit eval-
uation. In these languages, the second argument of a logical AND or OR expression is evaluated
only if the first evaluation does not already determine the truth of the expression. For example, in
the expression r & s, if r contains a zero, then the entire expression is false, regardless of the value
of s. Similarly, in the expression r | s, if r contains all nonzero values, then the entire expression
is true. The SAS/IML language does not support short-circuit evaluation.

Programming Tip: The SAS/IML language does not support short-circuit evaluation.

Why does this matter? Some programmers write logical expressions that assume short-circuiting
will occur. For example, in some languages you can write the following logical expression:

/* incorrect: second condition evaluated even if first is false */
if (x>0) & (log(x)>1) then do; /* ERROR if x<=0 */

/* more statements */
end;

This is a valid expression in a language that short-circuits operations because the expression that
contains log(x) is executed only if x is positive, as ensured by the first condition. However, in
the SAS/IML language, both expressions are evaluated, and then the AND operator combines the
results. This means that the LOG function is always called and that the program will stop with an
error if some element of x is nonpositive.

Instead, you need to write the previous statements by using nested IF-THEN statements, as shown
in the following example:

46 Chapter 2: Getting Started with the SAS/IML Matrix Programming Language

/* correct: second condition not evaluated if first is false */
if x>0 then

if log(x)>1 then do;
/* more statements */

end;

2.11 Operations on Sets

There are three SAS/IML functions that perform operations on sets. The UNION function returns
the union of the values in one or more matrices. The XSECT function returns the intersection of
the values in two or more matrices. (The intersection is the set of values common to all matrices.)
The SETDIF function accepts two arguments, say A and B, and returns the values in matrix A that
are not found in matrix B.

These set functions are shown in the following statements:

/* union, intersection, and difference of sets */
A = 1:4;
B = do(2.5, 4.5, 0.5);
u = union(A, B); /* union */
inter = xsect(A, B); /* intersection */
dif = setdif(A, B); /* difference between sets */
print u, inter, dif;

As shown in Figure 2.41, each of these functions returns a row vector. The vector u contains the
union of the values in A and B, the vector inter contains the itersection of the values, and dif

contains the difference between the sets determined by A and B.

Figure 2.41 Results of Operations on Sets

u

1 2 2.5 3 3.5 4 4.5

inter

3 4

dif

1 2

In this example, the intersection and the difference between sets were both nonempty, but this is
not always the case. The XSECT function returns an empty matrix if there are no elements in the
intersection of the matrices. Similarly, the SETDIF function returns an empty matrix if the elements
of A are a proper subset of the elements of B. Consequently, you need to check that the matrix
returned by XSECT or SETDIF is nonempty before you print it or use it in further computations.

2.12. Matrix Operators 47

The following statements show an example in which the intersection is empty:

/* check whether intersection and set difference are empty */
A = 1:4;
B = do(5, 8, 0.5);
inter = xsect(A, B);
if ncol(inter)>0 then

print inter;

dif = setdif(A, B);
if ncol(dif)>0 then

print dif;

Figure 2.42 A Nonempty Set Difference

dif

1 2 3 4

The matrix inter is created by the XSECT function, but it has zero rows and zero columns. You
can therefore use the NCOL function to detect the empty intersection. (You could also check to
see if type(inter) has the value 'U'.) The program avoids run-time errors by only executing the
PRINT statement for nonempty matrices.

Programming Tip: The intersection of sets can be empty, so always check the matrix returned by
XSECT and handle the possibility that the matrix is empty. Do the same for set differences found
by using the SETDIF function.

2.12 Matrix Operators

The fundamental unit in the SAS/IML language is the matrix. This section describes how to perform
arithmetic operations that involve scalars, vectors, and matrices.

2.12.1 Elementwise Operators

The elementwise operators in the SAS/IML language consist of one unary operator and several
binary operators. The unary operator is the negation operator (-), which is equivalent to multi-
plication by -1. The elementwise binary operators are the addition operator (+), the subtraction
operator (-), the elementwise multiplication operator (#), the division operator (/), and the power
or exponentiation operator (##).

In most cases, the SAS/IML language enables you to write concise, high-level expressions that
combine scalars, vectors, and matrices. The SAS/IML software determines if it can make sense

48 Chapter 2: Getting Started with the SAS/IML Matrix Programming Language

of an arithmetic expression in which the matrices have different dimensions. For example, the
following statements show how you can write an arithmetic expression that contains a matrix and
also a scalar or a vector:

/* elementwise matrix operations with scalar or vector */
x = {7 7, 8 9, 7 9, 5 7, 8 8};
grandmean = 7.5; /* mean of all elements */
y = x - grandmean; /* subtract 7.5 from each element */
mean = {7 8}; /* mean of each column */
xc = x - mean; /* subtract (7 8) from each row */
print y xc;

The assignment statement for y contains an expression that subtracts a scalar value from a 5 � 2
matrix, x. The SAS/IML language assumes that this is shorthand notation for subtracting the scalar
7.5 from every element of x. On the assignment statement for xc, the program subtracts a 1 �
2 vector from x. Since SAS 9.2, the SAS/IML language has assumed that this is shorthand for
subtracting the vector {7 8} from every row of x. The resulting matrices are shown in Figure 2.43.

Figure 2.43 Results of Elementwise Operations

y xc

-0.5 -0.5 0 -1
0.5 1.5 1 1
-0.5 1.5 0 1
-2.5 -0.5 -2 -1
0.5 0.5 1 0

In general, if m is an n � p matrix, you can perform elementwise operations with a second matrix
v provided that v has one of the following dimensions: 1 � 1, n � 1, 1 � p, or n � p. The result
of the elementwise operation is shown in Table 2.1, which describes the behavior of elementwise
operations for the +, -, #, /, and ## operators.

Table 2.1 Behavior of Elementwise Operators (SAS/IML 9.2)

Size of v Result of m op v

1 � 1 v applied to each element of m
n � 1 v[i] applied to row m[i,]

1 � p v[j] applied to column m[,j]

n � p v[i,j] applied to element m[i,j]

Programming Tip: If you follow the rules presented in Table 2.1, you can perform elementwise
operations on rows or columns of a matrix by specifying an appropriate column vector or row vector.

The following statements (which continue from the previous example) give concrete examples for
the remaining rules presented in Table 2.1:

Matrix Computations 49

/* elementwise matrix operations with vector or matrix */
/* r is row vector */
r = {1.225 1}; /* std dev of each col */
std_x = xc / r; /* divide each column (normalize) */
/* c is column vector */
c = x[,1]; /* first column of x */
y = x - c; /* subtract from each column */
/* m is matrix */
m = {6.5 7.5, 7.9 9.1, 7.5 8.5, 5.6 6.4, 7.5 8.5};
deviations = x - m; /* difference between matrices */
print std_x y deviations;

The program shows that you can multiply or divide every row (or column) of a matrix by a scalar
or a vector in a natural way. For example, the statement that assigns the matrix std_x divides each
column of x by its standard deviation, thus normalizing the scale of each column. The results of
this and the other computations are shown in Figure 2.44.

Figure 2.44 More Results of Elementwise Operations

std_x y deviations

0 -1 0 0 0.5 -0.5
0.8163265 1 0 1 0.1 -0.1

0 1 0 2 -0.5 0.5
-1.632653 -1 0 2 -0.6 0.6
0.8163265 0 0 0 0.5 -0.5

2.12.2 Matrix Computations

The SAS/IML language supports operators for specifying high-level matrix operations such as ma-
trix multiplication. The matrix multiplication operator is *. If A is an n�p matrix and B is a p�m
matrix, the product A�B is an n�mmatrix. The ij th entry of the product is the sum†

p

kD1
AikBkj .

If B is a column vector, then set j D 1 in the previous formula.

For example, the following statements multiply a matrix and a vector:

/* matrix multiplication */
A = {7 7, 8 9, 7 9, 5 7, 8 8}; /* 5 x 2 matrix */
v = {1, -1}; /* 2 x 1 vector */
y = A*v; /* result is 5 x 1 vector */
print y;

Figure 2.45 Result of Matrix Multiplication

y

0
-1
-2
-2
0

50 Chapter 2: Getting Started with the SAS/IML Matrix Programming Language

As a convenience, you can also use the * operator to multiply a matrix by a scalar quantity, such as
3*A. This performs elementwise multiplication and is equivalent to 3#A.

Another matrix operator is the transpose operator (`). This operator is typed by using the GRAVE
ACCENT key. (The GRAVE ACCENT key is located in the upper left corner on US and UK
QWERTY keyboards.) The operator transposes the matrix that follows it. This notation mimics the
notation often seen in statistical textbooks that discuss matrix equations.

For example, given an n � p data matrix X and a vector of n observed responses, y, a goal of
ordinary least squares (OLS) regression is to find the linear combination of the columns of X that
best approximates y. The so-called normal equations provide a computational solution to this
problem. The normal equations are written as .X 0X/b D X 0y. Solving this equation means solving
for the unknown p � 1 parameter vector b.

The following statements use the matrix transpose operator to compute theX 0X matrix and theX 0y
vector for example data:

/* Set up the normal equations (X`X)b = X`y */
x = (1:8)`; /* X data: 8 x 1 vector */
y = {5 9 10 15 16 20 22 27}`; /* corresponding Y data */

/* Step 1: Compute X`X and X`y */
x = j(nrow(x), 1, 1) || x; /* add intercept column */
xpx = x` * x; /* cross-products */
xpy = x` * y;

The vector x is initially defined as the column vector that results from transposing the row vector
1:8. The vector y is also defined by transposing a row vector. (You can equivalently define y={5,
9, ..., 27} by typing commas between each pair of values, but it is easier to type one grave
accent than to type seven commas.) The statements next append a vector of ones to the x data; this
column is used to compute an intercept term in an OLS regression model. The matrix xpx and the
vector xpy are computed by using a natural notional that mimics the mathematics of the problem.

Because the transpose operator can be difficult to see, some programmers prefer to use the T func-
tion to indicate transposition. However, the SAS/IML language optimizes certain computations
such as the computation of xpx. For that reason, using the transpose operator can sometimes result
in better performance than using the T function.

Programming Tip: The SAS/IML language optimizes certain computations that involve the trans-
pose operator (`). Consequently, you should use the transpose operator instead of the T function
when you are concerned about the speed of matrix computations.

The SAS/IML language also provides functions that enable you to numerically solve the normal
equations for the unknown parameter b. Textbooks often write the solution of the normal equations
as b D .X 0X/�1X 0y, where A�1 indicates the inverse of the matrix A. The SAS/IML language
provides the INV function for computing the inverse of a function, so many SAS/IML programmers
use the following statements to numerically solve the normal equations:

2.13. Managing the SAS/IML Workspace 51

/* solve linear system */
/* Solution 1: compute inverse with INV (inefficient) */
xpxi = inv(xpx); /* form inverse crossproducts */
b = xpxi * xpy; /* solve for parameter estimates */

A better technique is to use the SOLVE function to numerically solve the normal equations:

/* Solution 2: compute solution with SOLVE. More efficient */
b = solve(xpx, xpy); /* solve for parameter estimates */

Explicitly solving for the inverse matrix is inefficient if you are only interested in solving a linear
equation. Not only does the INV function need to allocate memory, but the INV function (which
solves for a general solution) is often less accurate than the SOLVE function (which solves for
a particular solution). There might occasionally be situations in which you need to compute the
inverse matrix, but you should avoid it when you have the option.

Programming Tip: If you need to solve the linear equation Ab D z, use the SOLVE function
(b=solve(A,z)) unless there is a compelling reason to explicitly compute the inverse matrix A�1.

2.13 Managing the SAS/IML Workspace

The SAS/IML language enables you to view and manage the matrices that are kept in memory.
At any point in your program, you can see the matrices that are defined, free the memory that is
associated with matrices, and store matrices to a SAS catalog.

You can use the SHOW statement to display the names, dimensions, and type of matrices that are
defined and are in scope. You can specify a list of matrices or you can use the SHOW NAMES
statement to display information about all matrices. Both of these techniques are shown in the
following statements:

/* display the names, dimensions, and type of matrices */
proc iml;
x = 1:3; /* define some matrices */
y = j(1e5, 100); /* large matrix: 10 million elements */
animals = {"Cat" "Dog" "Mouse",

"Cow" "Pig" "Horse"};
show names; /* show information about all matrices */
show y animals; /* show information about specified matrices */

52 Chapter 2: Getting Started with the SAS/IML Matrix Programming Language

Figure 2.46 Information about Defined Matrices

SYMBOL ROWS COLS TYPE SIZE
------ ------ ------ ---- ------
animals 2 3 char 5
x 1 3 num 8
y 100000 100 num 8
Number of symbols = 3 (includes those without values)

y 100000 rows 100 cols (numeric)
animals 2 rows 3 cols (character, size 5)

If you no longer need certain matrices, you can use the FREE statement to free the associated
memory. For example, the following statements free the memory that is associated with a large
matrix:

/* delete one or more matrices by listing their names */
free y;
show names;

Figure 2.47 Deleting a Matrix

SYMBOL ROWS COLS TYPE SIZE
------ ------ ------ ---- ------
animals 2 3 char 5
x 1 3 num 8
Number of symbols = 3 (includes those without values)

You can free all matrices by placing a slash (/) on the FREE statement, as shown in the following
example. Figure 2.48 shows that three matrix names (symbols) have been used in this session, but
none of the matrices have values after the FREE statement is executed.

/* delete all matrices */
free /;
show names;

Figure 2.48 Deleting All Matrices

SYMBOL ROWS COLS TYPE SIZE
------ ------ ------ ---- ------
Number of symbols = 3 (includes those without values)

If you need to shut down your computer or exit the SAS System, but you want to save the state of
your program so that you can resume work at a later time, you can save some or all of the matrices
that are currently defined. This is especially important if some matrices are the result of a lengthy
computation. You can use the STORE statement to save matrices. By default, the STORE statement
saves the matrices to a SAS catalog in the Work library. However, the Work library vanishes at the

2.13. Managing the SAS/IML Workspace 53

end of a SAS session, so it is best to use the RESET STORAGE statement to store the matrices
to a permanent storage location, as shown in the following example. Figure 2.49 shows that the
animals and x matrices are saved in the MyStorage catalog.

/* store all matrices to a permanent location */
x = 1:3;
animals = {"Cat" "Dog" "Mouse", "Cow" "Pig" "Horse"};

libname MyLib "C:\My Data"; /* set directory for storage */
reset storage=MyLib.MyStorage; /* set the storage catalog */
store _all_; /* store all matrices */
show storage; /* display catalog contents */

Figure 2.49 Stored Matrices

Contents of storage library = MYLIB.MYSTORAGE

Matrices:
ANIMALS X

Modules:

When you are ready to resume your work, you can start a new SAS/IML session and use the LOAD
statement to restore the matrices, as shown in the following statements:

/* load matrices from a storage catalog */
proc iml;
reset storage=MyLib.MyStorage;
load _all_;
show names;

Figure 2.50 Loading Matrices from Storage

SYMBOL ROWS COLS TYPE SIZE
------ ------ ------ ---- ------
ANIMALS 2 3 char 5
X 1 3 num 8
Number of symbols = 3 (includes those without values)

When you no longer need the matrices that are stored in the SAS catalog, you can remove them by
using the REMOVE statement, as shown in the following statements:

/* remove all contents from a storage catalog */
remove _all_;
show storage; /* show the contents of the catalog */

54 Chapter 2: Getting Started with the SAS/IML Matrix Programming Language

Figure 2.51 Removing Matrices from Storage

Contents of storage library = MYLIB.MYSTORAGE

Matrices:

Modules:

As an alternative to using the _ALL_ keyword, you can specify a list of names on the STORE and
LOAD statements to indicate which matrices you want to store and load. Similarly, you can remove
a specified list of matrices from storage.

From Statistical Programming with SAS/IML® Software by Rick Wicklin. Copyright © 2010, SAS Institute
Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

From Statistical Programming with SAS/IML® Software. Full book
available for purchase here.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19623
http://www.sas.com/apps/sim/redirect.jsp?detail=TR19623

Index

Symbols

() (parentheses), 117
* (matrix multiplication), 49
+ (plus sign)

as addition operator, 47
as string concatenation operator, 24
as subscript reduction operator, 66, 81

- (minus sign)
as subtraction operator, 47

- (negation operator), 47
/ (slash)

as division operator, 47
in FREE statement, 52

// (vertical concatenation operator), 42
: (index creation operator), 25
: (subscript reduction operator), 67, 81
; (semicolon) in statements, 5
< (less than operator), 36
<= (less than or equals operator), 36
= (equal sign), 36
> (greater than operator), 36
>= (greater than or equals operator), 36
@ symbol, 100
(multiplication operator), 47
(exponentiation operator), 47
$ (dollar sign), 254
& (ampersand)

as AND operator, 43, 62
in vector name, 93
variables and, 103, 271

` (transpose operator), 50, 73
O(NOT operator), 43
OD (not equals operator), 36
jj (horizontal concatenation operator), 41
| (OR operator), 43

A

abstract classes, 134
action menu

attaching to graphs, 386
methods supporting, 139, 429

addition operator (+), 47
AICC (Akaike’s information criterion), 217, 267,

390
aicc function (R), 271
algorithm performance

comparing, 375
timing algorithms, 383

ALIAS statement, 118
aliases

creating for modules, 117
defined, 114

ALL function, 422
ALL option, READ statement, 56
ampersand (&)

as AND operator, 43, 62
in vector name, 93
variables and, 103, 271

AND operator (&), 43, 62
ANY function, 422
APPEND statement

description, 425
timing algorithms, 383
transferring data, 92
writing data sets, 58

arguments
evaluating, 75
functions requiring, 103
optional, 207
passing by reference, 74
to modules, 331

Auto Hide property, 294
Auxiliary Input window, 124

B

bar charts
creating, 135
creating from data objects, 146
creating from vectors, 145
defined, 145
modifying graphs, 146

BarChart class
creating graphs, 135, 145
frequently used methods, 147, 432
modifying graphs, 146

base classes, 134, 141
birthday matching problem

case study, 338
overview, 332
simulating, 335

BlendColors module, 120, 236
bootstrap distributions

computing estimates, 353

442 F Index

creating, 351
defined, 349
for the mean, 350
plotting, 368

bootstrap methods
case study, 363
comparing two groups, 356
defined, 349
overview, 349

box plots
categorical data and, 193
creating, 162
creating from data objects, 163
creating from vectors, 163
creating grouped, 164
defined, 161

BoxPlot class
creating graphs, 161
frequently used methods, 165, 432

break points, 232
BY group processing, 71
BY statement, 362, 365

C

C functions, 346
C= option, HISTOGRAM statement

(UNIVARIATE), 95
case sensitivity, 5, 130, 254
categorical variables

changing display order of, 236
displaying on graphs, 193
indicating values via marker shapes, 226

CDF function, 421
CEIL function, 312, 397
central limit theorem, 355
CHAR function, 71, 424
character matrix

length of, 22
overview, 18, 21

CHOOSE function, 65, 319, 422
CLASS statement, 289
classes, see IMLPlus classes
classification variables

creating line plots with, 158
regression diagnostics and, 289

client data sets, 174
CLOSE statement, 425
CMISS function, 77
coin-tossing simulation, 312
COLNAME= option

FROM clause, CREATE statement, 58
PRINT statement, 19, 36, 57, 71, 426

colon operator (:), 25

color interpolation, 234
color ramp, 119, 232
ColorCodeObs module, 120, 236
ColorCodeObsByGroups module, 120, 236
column vectors

extracting data from matrices, 32
overview, 18, 28

columns, standardizing in matrix, 83
COLVEC module, 331
comparison operators, 36
CONCAT function, 24, 97, 100
concatenation operators

overview, 41, 97
padding strings and, 24

concrete classes, 134
conditioning plot, 274
confidence intervals, plotting, 366
constant matrices, 24
continuous variables

coloring by values, 232
marker colors to indicate values, 229

ContourPlot class, 168
control statements, see also DO statement, see

also IF-THEN/ELSE statement
overview, 38, 425
syntax for, 5

Cook’s D statistic, 284, 292
coordinate systems

drawing on graphs, 191
practical differences, 202

CopyServerDataToDataObject module, 119, 184,
299

CORR procedure, 406, 408
correlation analysis, 408
COUNTMISS function, 422
COUNTN function, 67, 422
COV option, CORR procedure, 406, 408
craps (game) simulation, 322
CREATE statement

description, 425
timing algorithms, 383
transferring data, 92
writing data sets, 58, 113

CUSUM function, 422
cutoff values, 232

D

data attributes
changing category display order, 236
changing marker properties, 226
getting/setting, 244
R functions, 256
selecting observations, 241

Index F 443

data frames
creating, 256
defined, 254
passing data to R, 254
R objects and, 260

data objects
adding variables to, 180
creating, 132, 174
creating bar charts from, 146
creating box plots from, 163
creating data sets from, 177
creating from data sets, 174
creating from matrices, 177
creating histograms from, 150
creating line plots from, 156, 160
creating linked graphs from, 175
creating matrices from, 179
creating scatter plots from, 154
defined, 144

data sets
adding variables from, 184
Birthdays2002, 417
creating data objects from, 174
creating from data objects, 177
creating from matrices, 58
creating from tables, 439
creating matrices from, 56
linking related data, 390
Movies, 416
reading/writing, 56, 113, 425
server/client, 174
transferring data from R, 257
transferring to R functions, 254
Vehicles, 415

DataObject class
adding variables to data objects, 180
categorical variable display order, 236
changing marker properties, 226
class hierarchy, 135
creating data objects, 174, 177
creating data sets, 177
creating graphs, 144
creating linked graphs, 175
creating matrices, 179
creating R data frames, 256
frequently used methods, 243, 259, 428
getting/setting attributes, 244
overview, 112, 131, 173, 185, 428
schematic description of roles, 132
selecting observations, 241
transferring data from R, 257

DATASETS procedure, 102
DataTable class, 138
DataView class

class hierarchy, 134
creating graphs, 136
displaying action menu items, 387
frequently used methods, 429
linking related data, 391
overview, 139, 429

DATE7. format, 156, 170
DATETIMEw. format, 256
DATEw. format, 256
debugging programs

Auxiliary Input window and, 124
jumping to error location, 121
jumping to errors in modules, 123
PAUSE statement and, 125

declare keyword, 130, 144
default module storage directory (DMSD), 114
derived classes, defined, 134
descriptive statistical functions, 421
DET function, 423
DIAG function, 33, 423
diagonal of a matrix, 33
dialog boxes

creating with Java, 402
creating with R, 404
displaying lists in, 399
displaying simple, 396
in SAS/IML Studio, 126, 396
modal, 405

division operator (/), 47
DMSD (default module storage directory), 114
DO function, 25, 377, 423
DO statement, 5, 38, 39, 425
DO/UNTIL statement, 40, 425
DO/WHILE statement, 40, 425
DoDialogGetDouble module, 120
DoDialogGetListItem module, 120, 399
DoDialogGetListItems module, 120, 399, 401
DoDialogGetString module, 120
DoDialogModifyDouble module, 120, 397
DoErrorMessageBoxOK module, 120
dollar sign ($), 254
DoMessageBoxOK module, 120, 399
DoMessageBoxYesNo module, 120, 397
DrawContinuousLegend module, 120
drawing regions

drawing on graphs, 191
foreground/background, 197
predication band case study, 198

drawing subsystem, 187
DrawInset module, 120, 206
DrawLegend module

adjusting graph margins, 208
comparing regression models, 300
description, 120

444 F Index

overview, 204
DrawPolygonsByGroups module, 120
dynamically linked graphs, 136

E

ECDF (empirical cumulative distribution
function), 287

EIGEN subroutine, 423
elementwise operators, 47
empirical cumulative distribution function

(ECDF), 287
empty matrix, 64, 207
ENDSUBMIT statement, see SUBMIT statement
equal sign (=), 36
error handling when calling procedures, 101
error messages, interpretting, 31
EXECUTE subroutine, 104
ExecuteOSProgram module, 308
exponentiation operator (##), 47
ExportDataSetToR module, 254, 256
ExportMatrixToR module, 255
ExportToR module, 256

F

FINISH statement, 72, 424
fitted function (R), 262
FLOOR function, 312
FORMAT procedure, 247
FORMAT= option, PRINT statement, 19, 426
formatting functions, 424
FREE statement, 42, 52
Freedman-Diaconis bandwidth, 151
FREQ procedure, 71
FROM clause, APPEND statement, 58
FROM clause, CREATE statement, 58
function modules, 72, 270
functions

as methods, 130, 144
built-in, 435
calling in R packages, 264
creating matrices, 24
descriptive statistical, 421
finding minimum of, 84
formatting, 424
linear algebra, 423
mathematical, 420
matrix query, 422
matrix reshaping, 422
probability, 421
requiring list arguments, 103
set, 46, 423
unimodal, 84

G

GAM procedure, 382
GCV (generalized cross validation), 217
generic functions, 260
GENMOD procedure, 358
GetPersonalFilesDirectory module, 119
GINV function, 423
GLM procedure

comparing models, 297
MODEL statement, 98, 290
naming output variables, 96
OUTPUT statement, 96, 189, 232
regression curves on scatter plot, 188
running regression analysis, 280
variables for predicted/residual values, 182

GLOBAL clause, START statement, 74, 117
global symbols, 74
golden section search, 84
graphs, see IMLPlus graphs, see statistical graphs
greater than operator (>), 36
greater than or equals operator (>=), 36
grouped box plots, 164
GTK2 toolkit, 404
gWidgets package (R), 404

H

HARMEAN function, 103
high-leverage observations, 286
hist function (R), 273
Histogram class

creating graphs, 149
frequently used methods, 150, 432

HISTOGRAM statement, UNIVARIATE
procedure, 95

histograms
adding rug plots, 212
creating from data objects, 150
creating from vectors, 149
defined, 149
KDE case study, 215

horizontal concatenation operator (jj), 41

I

I function, 34, 423
identity matrix, 34
IF-THEN/ELSE statement

description, 38, 425
handling errors, 102
logical operators and, 45
syntax for, 5

IML procedure

Index F 445

calling R functions, 252
drawing comparison, 224
global scope and, 74
overview, 6
RUN statement and, 6
running, 7
timing algorithms, 383

IMLMLIB module library, 73, 78, 119
IMLPlus

calling R functions, 112, 252, 434
calling SAS procedures, 90, 111, 433
color representation in, 229
debugging programs, 121
drawing comparison, 224
managing data, 112, 173
object-oriented programming, 130
overview, 109, 427
processing requirements, 8
SAS/IML comparison, 126

IMLPlus classes
base classes, 134
creating graphs, 135
DataObject class, 131, 428
DataView class, 429
defined, 144
derived classes, 134
in modules, 141
overview, 129
Plot class, 429
viewing documentation, 133

IMLPlus graphs
adding lines to, 210
adjusting margins, 208
attaching menus to, 386
changing axis tick positions, 220
characteristics, 112
coordinate systems, 191
creating, 135
creating dynamically linked, 136
drawing figures/diagrams, 222
drawing in background, 197
drawing in foreground, 197
drawing legends, 204
drawing regions, 191
drawing rug plots, 212
drawing subsystem, 187
KDE case study, 214
methods for creating/modifying, 431
methods for drawing, 430
plotting loess curve, 216
R functions and, 273
scatter plot case study, 198

IMLPlus modules
base classes in, 141

debugging, 123
frequently used, 119
local variables in, 117
overview, 114
passing objects to, 139
storing/loading, 114

import keyword, 402
ImportDataSetFromR module, 258
ImportMatrixFromR module, 258
index creation operator (:), 26
index of occurrence, 338
INFLUENCE option, MODEL statement (REG),

284
influential observations, 284
INSERT function, 43, 423
insets, drawing on graphs, 203
interactive techniques

attaching menus to graphs, 386
dialog boxes and, 396
linking related data, 390
pausing programs, 385

INTERP= option, MODEL statement (LOESS),
268

INTO clause, READ statement, 57
IntToRGB module, 120, 230, 236
INV function, 50, 372, 423
IRR function, 104

J

J function, 24, 70, 423
Java language, 130, 402
javax.swing classes, 402
JOptionPane class (Java), 402

K

kernel density estimate case study, 94, 214
KERNEL option, HISTOGRAM statement

(UNIVARIATE), 95
KernSmooth package (R), 264

L

LABEL= option, PRINT statement, 19, 36, 426
LCLM= option, OUTPUT statement (GLM), 96
least squares regression model, 296
LEFT function, 424
legends, drawing on graphs, 203
LENGTH function, 22, 422
less than operator (<), 36
less than or equals operator (<=), 36
LIBNAME statement, 59
library function (R), 264

446 F Index

line plots
creating for several variables, 156
creating for single variable, 155
creating from data objects, 156, 160
creating from vectors, 155
creating with classification variables, 158
defined, 155

line segments, drawing, 191
linear algebra functions, 423
LinePlot class, 155, 433

frequently used methods, 161
lines function (R), 273
linked graphs, 136, 175
lists, displaying in dialog boxes, 399
lm function (R), 259
LOAD statement

description, 424
loading matrices, 53
loading modules, 114
storing modules, 76

LOC function
analyzing observations by categories, 68
assigning values to observations, 65
description, 422
efficient programs and, 79
handling missing values, 67
locating observations, 60

local variables, 73, 117
loess curve case study, 216
loess function (R), 267
LOESS procedure

calling, 382
linking related data, 392
MODEL statement, 268, 392
plotting loess curve, 216
SCORE statement, 217
SELECT= option, 267

logical operators, 43
LOGISTIC procedure, 304
logistic regression diagnostics, 303
ls function (R), 255

M

macro variables, 99
MAD (median absolute deviation), 4
MAD function, 4
margins, graph, 208
marker properties, changing, 226
mathematical functions, 420
matrix multiplication operator (*), 49
matrix operators, 47
matrix query functions, 422
matrix reshaping functions, 422

matrix transpose operator (`), 50, 73
matrix/matrices

changing shape of, 29
combining, 47
computing, 49
creating, 18
creating data objects from, 177
creating data sets from, 58
creating from data objects, 179
creating from data sets, 56
creating macro variables from, 99
defined, 4
diagonals of, 33
dimensions of, 20
empty, 64, 207
extracting data from, 30
length of, 22
options for printing, 425
passing data to R functions, 254
printing, 19
standardizing columns in, 83
transferring data, 91
transposing, 28
types of, 21
using functions to create, 24

MATTRIB statement, 57
MAX function, 422
MEAN function

description, 84, 422
subscript reduction operators and, 67, 82

mean function (R), 261
Mean module, 435
MEANS procedure, 361, 363
median absolute deviation (MAD), 4
Median module, 4
menus, attaching to graphs, 386
Mersenne-Twister random number generator, 27
methods

action menu and, 139, 429
calling syntax, 130
defined, 130, 144
for creating/modifying graphs, 431
for drawing graphs, 430
related to action menu, 429

MI procedure, 66
MIANALYZE procedure, 66
MIN function, 422
minimal evaluation, 45
minus sign (-)

as subtraction operator, 47
missing values

algorithms that delete, 375
comparison operators and, 37
handling, 65

Index F 447

passing, 207
R functions and, 261
standardizing data with, 84

modal dialog boxes
defined, 405
for correlation analysis, 408
with checkboxes, 406

MODEL statement
GLM procedure, 98, 290
LOESS procedure, 268, 392
REG procedure, 284

modules, see also IMLPlus modules, see also
specific modules

aliases for, 114, 117
arguments to, 331
defined, 424
dialog boxes and, 126
drawing rug plots on graphs, 212
encapsulating R statements, 270
evaluating arguments, 75
finding minimum of functions, 84
function, 72
global symbols, 74
IMLMLIB library, 73, 78
local variables, 73
overview, 435
passing arguments by reference, 74
storing, 76
subroutine, 72

MONNAMEw. format, 236
MosaicPlot class, 168
multiplication operator (#), 47

N

names function (R), 254, 263
NCOL function

analyzing observations by categories, 68
AND operator and, 62
description, 422
determining matrix dimensions, 20
empty matrix and, 64
operations on sets, 47

negation operator (-), 47
NLENG function, 22, 422
NOMISS option, CORR procedure, 409
NORMAL function, 27, 421
NOSIMPLE option, CORR procedure, 408, 410
not equals operator (OD), 36
NOT operator (O), 43
NROW function, 20, 64, 422
NUM function, 424
numeric matrix, 21

O

object-oriented programming, 130
objects

defined, 144
passing to modules, 139

observations
analyzing by categories, 68
assigning values to, 65
attributes of, 246
identifying high-leverage, 286
identifying influential, 284
locating, 60
selecting, 241

ODS EXCLUDE statement, 438
ODS GRAPHICS statement, 440
ODS HTML statement, 307
ODS OUTPUT statement, 92, 439
ODS SELECT statement, 438
ODS statements

creating statistical graphics, 440
finding table names, 437
overview, 437
selecting/excluding tables, 438

ODS statistical graphics, 307, 440
ODS tables, see tables
ODS TRACE statement, 437
OK= option, SUBMIT statement, 101, 111
onCancel function (R), 408
onOK function (R), 408
operators

comparison, 36
concatenation, 24, 41, 97
elementwise, 47
frequently used, 420
logical, 43
matrix, 47
subscript reduction, 66, 81

Options dialog box, 114
options function (R), 263
OR operator (|), 43
OUTHITS option, SURVEYSELECT procedure,

360, 362
outliers

defined, 231
identifying, 286
influential observations and, 284
LOC function and, 63
marking via color, 231

OUTPUT statement
GLM procedure, 96, 189, 232
UNIVARIATE procedure, 94, 101

OutputDocument class, 277, 295

448 F Index

P

packages (R)
calling functions in, 264
defined, 252
installing, 264

parameters
optimizing smoothing, 267
passing to procedures, 93, 111

parentheses (), 117
passing arguments by reference, 74
PAUSE statement, 125, 385
PBSPLINE statement, SGPLOT procedure, 383
PCTLPTS= option, OUTPUT statement

(UNIVARIATE), 94, 101
PDF function, 157, 421
Pearson correlation coefficient, 72
PERCENT6.1 format, 245
performance considerations

avoiding program loops, 79
comparing algorithm performance, 375
subscript reduction operators, 80

Plot class
adjusting graph margins, 208
creating graphs, 135
drawing legends, 204
drawing line segments, 191
drawing subsystem, 187
frequently used methods, 430
graph coordinate systems, 191
overview, 138, 429

plot function (R), 273
Plot2D class, 135, 431
plus sign (+)

as addition operator, 47
as string concatenation operator, 24
as subscript reduction operator, 66, 81

points function (R), 273
PolygonPlot class, 168
power operator (##), 47
prediction bands, scatter plots, 198
PRINCOMP procedure, 363
PRINT statement

COLNAME= option, 19, 36, 57, 71, 426
FORMAT= option, 19, 230, 426
LABEL= option, 19, 36, 426
ROWNAME= option, 19, 71, 426
syntax, 19

printing
expressions, 35
matrices, 19, 425
submatrices, 35

PRINTNOW statement, 297
probability functions, 421

procedures
bootstrap computations, 358
calling from IMLPlus, 90, 111, 433
checking return code, 111
creating macro variables from matrices, 99
functions requiring list arguments, 103
handling errors, 101
kernel density estimate case study, 94
passing parameters, 93, 111
transferring data, 91

PROD function, 82, 422
profiling programs, 372
programming techniques

analyzing observations by, 68
applying variable transformation, 59
assigning values to observations, 65
avoiding loops, 79
finding minimum of functions, 84
handling missing values, 65
locating observations that satisfy criteria, 60
reading/writing data, 56
standardizing columns in matrix, 83

properties, variable, 244
pseudorandom matrices, 27
%PUT statement, 99
PUTC function, 23, 424
PUTN function, 71, 221, 424

Q

Q-Q plots, 287
Qntl module, 436
QNTL subroutine, 354, 422
QR subroutine, 423
QUANTILE function, 421
QUARTILE module, 133, 152
QUIT statement, 102

R

R language
calling functions, 112, 252, 434
calling R packages, 264
creating dialog boxes, 404
creating graphics, 273
data attributes, 256
encapsulating in modules, 270
handling missing values, 261
importing R objects, 259
optimizing smoothing parameter, 267
overview, 252
passing data, 254

R, supported versions, 264
RANDGEN subroutine

Index F 449

arguments to, 403
coin-tossing simulation, 313
description, 421
dialog boxes and, 397
Mersenne-Twister random number

generator, 28
outcomes with specified probabilities, 322,

327
rolling-dice simulation, 321

random number generation, 27, 319
random sampling

bootstrap methods and, 350
defined, 312
with unequal probability, 327

RANDSEED subroutine, 28, 58, 312, 321, 421
RANK function, 239, 422
RANKTIE function, 422
READ statement, 56, 425
reading data sets, 56, 113, 425
reference lines, adding, 210
REG procedure, 102, 284
regression curves, overlaying, 188
regression diagnostics

case study, 296
classification variables and, 289
comparing models, 292
displaying lines, 210
examining residuals distribution, 287
fitting regression models, 280
identifying high-leverage observations, 286
identifying influential observations, 284
identifying outliers, 286
logistic, 303
overview, 279

REMOVE function, 43, 375, 423
REMOVE statement, 53
REPEAT function, 25, 423
resampling, 359
RESET STORAGE statement, 53, 77
return code, 111, 397
RETURN statement, 72
RGB coordinate system, 199, 229
RGBToInt module, 120, 230, 236
RIGHT function, 424
robust regression model, 296
ROBUSTREG procedure, 63, 297
rolling-dice simulation, 321
ROOT function, 423
RotatingPlot class, 168
row index, 32
row vectors

extracting data from matrices, 32
overview, 18, 28
standardizing columns in matrix, 83

ROWNAME= option, PRINT statement, 19, 71,
426

ROWVEC module, 330
RSTUDENT= option, OUTPUT statement

(GLM), 232
rug plots, 212
RUN statement, 6

S

sampling
overview, 311
with replacement, 329
with unequal probability, 327

SAS Foundation, 9
SAS Metadata Server Connection Wizard, 10
SAS procedures, see procedures
SAS/IML language, 3, see also IMLPlus, 18, 419
SAS/IML modules, see modules
SAS/IML software, see IML procedure, see

SAS/IML Studio
SAS/IML Studio, see also IMLPlus

calling C functions, 346
client-server architecture, 9
dialog boxes in, 126, 396
exploratory data analysis, 12
installing, 10
invoking, 10
online help, 432
overview, 8
pasting graphs, 277
running programs in, 11
workspace example, 8

scalars, 18, 47
scatter plots

adding rug plots, 212
categorical data and, 193
comparing analyses with, 295
creating, 427
creating from data objects, 154
creating from vectors, 154
defined, 153
marker shapes and, 226
modifying, 427
overlaying regression curves, 188
prediction band case study, 198

ScatterPlot class, 153, 427, 433
scree plot, 364, 366
seed value, 27
SELECT= option, LOESS procedure, 267
SEM (standard error of the mean), 353
semicolon (;), 5
server data sets, 174
set functions, 46, 423

450 F Index

SETDIF function, 32, 46, 424
SGPLOT procedure, 383
SHAPE function, 29, 423
short-circuit evaluation, 45
SHOW NAMES statement, 51, 73
SHOW statement, 51
signature, defined, 130
simulation

birthday matching problem, 335, 341
coin tossing, 312
defined, 312
efficiency considerations, 319
game of craps, 322
rolling dice, 321

slash (/)
as division operator, 47
in FREE statement, 52

SMOOTH= option, MODEL statement (LOESS),
392

smoothing parameter, optimizing, 267
SOLUTION option, MODEL statement (GLM),

290
SOLVE function, 373, 423
SORT procedure, 71
SPLINE subroutine, 382
SQRT function, 45
SSQ function, 422
standard error of the mean (SEM), 353
START statement

description, 72, 424
GLOBAL clause, 74, 117
parentheses on, 117

statements, see also ODS statements
@ symbol and, 100
control, 425
module, 424
reading/writing data sets, 425
semicolon in, 5

statistical graphs, see also bar charts, see also
box plots, see also histograms, see also
IMLPlus graphs, see also line plots, see
also scatter plots

changing graph axis format, 169
data sources for, 144
displaying underlying data, 168
drawbacks of creating from vectors, 172
ODS, 307, 440
overlaying reference lines, 210
summary of graph types, 167

STORE statement
description, 424
saving matrices, 53
storing modules, 76, 115

storing modules, 76, 114

str function (R), 260
string concatenation operator (+), 24
strings, removing blanks in, 98
STRIP function

description, 424
removing blanks, 24, 98, 100

submatrices, printing, 35
SUBMIT statement

calling procedures, 90, 111, 434
calling R functions, 252, 266
creating macro variables from matrices, 99
description, 425
OK= option, 101, 111
passing procedure parameters, 93
R option, 253

SUBPAD function, 98
subroutine modules, 72
subscript reduction operators, 66, 81
subtraction operator (-), 47
SUM function, 66, 422
summary function (R), 254
SURVEYSELECT procedure, 358
SVD subroutine, 423
SYMGET function, 102
SYMGETN function, 102
SYMPUT subroutine, 99
SYSERR macro variable, 102
SYSERRORTEXT macro variable, 102
SYSWARNINGTEXT macro variable, 102

T

T function, 28, 423
tables

creating data sets from, 439
finding names of, 437
listing destination, 307
regression diagnostics and, 291
selecting/excluding, 438

Tcl (Tool Command Language), 404
tcltk package (R), 404, 406
tclVar function (R), 407
tick marks, changing for date axis, 220
TIME function, 372
TIMEw. format, 256
timing computations

overview, 371
replicating timings, 379
timing algorithms, 383
tips for, 384

tkbutton function (R), 405
tkconfigure function (R), 407
tkfocus function (R), 406
tkgrid function (R), 405, 407

Index F 451

tktitle function (R), 405
tktoplevel function (R), 405
tkwait function (R), 406
Tool Command Language (Tcl), 404
TPSPLINE subroutine, 382
TRACE function, 423
transforming variables, 59, 181, 289
transpose operator (`), 50, 73
TRIM function, 24, 424
TYPE function, 21, 47, 64, 422

U

UCLM= option, OUTPUT statement (GLM), 96
UNIFORM function, 27, 421
unimodal functions, 84
UNION function, 46, 424
UNIQUE function, 68, 79, 424
UNIVARIATE procedure

calling, 90
comparing quantiles of data, 287
handling errors, 101
KDE case study, 95
transferring data, 93

USE statement, 56, 113, 425

V

VAR function, 84, 354, 422
Var module, 354, 436
variables, see also specific types of variables

adding for predicted/residual values, 182
adding from data sets, 184
adding to data objects, 180
categorical, 193
creating from matrices, 58
modules and, 73
output, 96
properties of, 244
reading from data sets, 56
transforming, 59, 181, 289

VECDIAG function, 33, 423
vectors

column, 18
combining, 47
creating, 18
creating bar charts from, 145
creating box plots from, 163
creating histograms from, 149
creating line plots from, 155
creating scatter plots from, 154
module arguments as, 331
row, 18

vertical concatenation operator (//), 42

W

WHERE clause, 113
Windows clipboard, 277
Work library, 8, 52
workspace bar, 9
workspaces

comparing analyses in, 293
defined, 8
example, 8
managing, 51
server connections, 10
Work library and, 8, 52

writing data sets, 56, 113, 425

X

XSECT function, 46, 424

From Statistical Programming with SAS/IML® Software by Rick Wicklin. Copyright © 2010, SAS Institute
Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19623

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies. © 2013 SAS Institute Inc. All rights reserved. S107969US.0613

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.

Gain Greater Insight into Your
SAS® Software with SAS Books.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR18308

	Contents
	Chapter 2: Getting Started with the SAS/IML Matrix Programming Language
	Index
	Additional Resources

