
 
 

P a r t  1  
 
The Basics▬Including Some Nuts and Bolts 
 
 
Chapter 1 Let's Get Started—Preliminaries and a SAS Quick Start ...... 3 
Chapter 2 Reading, Combining, and Managing Data for  

Later Analysis ................................................................. 23 
Chapter 3 Using SAS Procedures ..................................................... 85 

Chapter 4 Complex Table Construction and Output Control ............ 121 
Chapter 5 Basic Models in SAS ...................................................... 155 
Chapter 6 Producing Statistical Graphics in SAS ............................ 197 

Chapter 7 Traditional SAS Graphics ............................................... 237 
 

 

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing


 

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing


 
 
 
 
 
 
Let’s Get Started— 
Preliminaries and a 
SAS Quick Start 
 
 
 

1.1 Statistical Computing versus Programming versus Managing  
Data ........................................................................................... 4 

1.2 Good Programming Practice ....................................................... 4 

1.3 SAS Program Structure ............................................................... 9 

1.4 What Is a SAS Data Set? ........................................................... 16 

1.5 Internally Documenting SAS Programs ...................................... 18 

1.6 Summary .................................................................................. 19 

1.7 References ............................................................................... 19 

1.8 Exercises ................................................................................. 19 
 

Let’s begin with a working definition for statistical programming, and then follow with a 
description of the structure and appearance of a good statistical program. A short 
overview of the DATA step and procedures is presented with simple, but realistic 
examples. This provides a quick start for getting up and running with SAS programming. 

 
 

1 
 

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing


1.1 Statistical Computing versus Programming versus  
 Managing Data 

The computer is the analytic instrument and experimental tool for data analysts and 
statisticians. Analogous to chemists needing proficiency with mass spectrometers, and 
geneticists needing competence with gene and protein expression technologies, 
statisticians need skills using the computer as a tool for structuring data sets, conducting 
analyses, fitting models, and simulating stochastic systems. In the chapters that follow, I 
hope that you develop an appreciation for some of the questions that can be answered 
with statistical programming, and how these questions can be answered using SAS. The 
emphasis of this book is statistical programming. There is some consideration of 
managing data, and to a lesser degree, statistical computing. Statistical programming can 
be viewed as the coding required to conduct an analysis of interest, which might include 
using existing procedures or customizing an analysis not possible in existing procedures. 
In contrast, statistical computing might be considered the efficient coding of statistical 
procedures (e.g., numerical methods, random number generation, etc.). Data management 
might be conceptualized as the structure, storage, and manipulation of data files. This 
book is intended as an introduction that could lead you to more computational books, 
such as Givens and Hoeting (2005). These statistical programming ideas are introduced 
using SAS. There are a number of books that provide excellent introductions to SAS 
(e.g., Cody and Pass 1995, Delwiche and Slaughter 2008). I hope this book complements 
those other books by emphasizing the use of SAS to address statistical programming 
problems. 

1.2 Good Programming Practice 
I believe that good programming practice can go beyond “I know it when I see it.” In this 
section, some guidelines for good practice are suggested. These guidelines are influenced 
by recommendations that I received in many programming classes over the years, and by 
regrets that I experienced when I looked at my own inadequately documented code years 
after it was constructed. As a final disclaimer, I usually follow these guidelines. 
However, in cases when I generate a quick program for a simple, single-use application, I 
might not follow these guidelines as closely. So, let’s start. 

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing


1.2.1  Document your programs! 
I believe that every program should start with the following header information: 

file location and name 
The name of the program and the full directory path should be provided for a 
program. With programs being written on office desktops and laptops, and being 
stored on servers, etc., this is key information when you try to locate a program 
years or months or days after its initial construction. 

date 
When did you write this program? This is great information when you need to do 
a date-restricted search to find your program. 

author 
Who wrote this program? Are you using someone else’s macro? This information 
helps identify contacts when clarifying program code. 

revision (Was it based on a previous program?) 
I rarely complete complicated programs at one sitting. Revision tracking is 
helpful when developing code. In addition, I often do this with file naming 
conventions (e.g., chapter1-statprog-20may09.doc might be a useful name for 
tracking a version of this chapter). 

purpose of the program 
A description of what a program does in a sentence or two is never wasted 
documentation. 

input variables and output variables 
What input is required to run a program? What output does the program produce? 

The following example provides an illustration of header documentation in an analysis 
program. 

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing


Display 1.1  A SAS program that fits a multiple regression 
/*     mreg-country-20may09.sas 
 
Directory:  C:\baileraj\Classes\Spring09\programs\regression-examples 
            [Laptop] 
Author:   John Bailer 
Purpose:  multiple regression example where average life expectancy  
          of women is modeled as a function of country characteristics 
 
Input data file ------------------------------------- 
   country.data 
 
Directories: 
   \\Casnov5\MST\MSTLab\Baileraj 
   C:\Users\baileraj\BAILERAJ\Classes\Web-Classes\sta402\data 
 
Input variables ------------------------------------- 
   Name = country name (Character variable) 
   Area = country area 
   Popnsize = population size 
   Pcturban = % residents in urban setting 
   Lang = primary language 
   Liter = % literate 
   Lifemen = average life expectancy men 
   Lifewom = average life expectancy women 
   PcGNP = per capita gross national product 
 
Created Variables ----------------------------------- 
   logarea = log10(area); 
   logpopn = log10(popnsize); 
   loggnp  = log10(pcGNP); 
   ienglish = (lang="English"); 
 
Data Source:  Extracted from World Almanac 
*/ 
* setting up macro variables for directories;   
%let DIR1 = C:\Users\baileraj\BAILERAJ\Classes\Web-Classes\sta402\data; 
%let DIR2 = \\Casnov5\MST\MSTLab\Baileraj; 
 
data country;  
  title "country data analysis"; 
  infile "&DIR1\country.data"; 
 
  input  name $ area popnsize pcturban lang $ liter lifemen 
         lifewom pcGNP; 
  logarea = log10(area); 
  logpopn = log10(popnsize); 
  loggnp  = log10(pcGNP); 
  ienglish = (lang="English"); 
  drop area popnsize pcgnp; 
run; 
 
proc print data=country; 
run; 
 
proc reg data=country; 
  title "LITER and LOGGNP as predictors of Life expectancy of women"; 
  model lifewom = liter loggnp/ tol vif collinoint;       
  output out=new p=yhat r=resid; 
run; 
 

                                                                                                                                                (continued) 

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing


Display 1.1  (continued) 
/* plot life expectancy of women vs. log(GNP) with a linear regression 
   fit and LOESS fit superimposed 
*/ 
ods rtf bodytitle  
        file="C:\Users\baileraj\Desktop\ch1-display-1.1-fig.rtf"; 
title ""; 
proc sgplot data=country; 
  reg y=lifewom x=loggnp; 
  loess y=lifewom x=loggnp; 
run; 
ods rtf close; 
 

 
In the example, a block of comments is found at the beginning of this program (all text 
between the /* and */ symbols). The name of the program is the first line of the comment 
block. I use a convention where I build in the date as part of the filename. This is a habit 
that I find useful. The directory and author information follow in the next lines. I often 
use multiple machines, and it is helpful to identify this information here. Next, the 
purpose of the program is explained. After that, the name of the input data file is 
provided. The directories of the external data files and the input variables that they 
contain are identified next. The last two sections in the block describe other variables that 
are created and the original source of the data. The actual program statements follow. In 
this example, the comment block is longer than the program. While some people might 
think this is overkill, I have never regretted having too many comments, but I have 
regretted having too few. By the way, a second comment style was used in this code—a 
statement beginning with an asterisk and ending with a semicolon is a comment (in the 
code, see * setting up macro variables for directories;). A more useful 
version of this code might assign labels to variables in the data set. For example, the 
following statement would enhance the output of many statistical procedures: 

Label ienglish ="Indicator that English is primary language"; 
 

In addition, labels are attached to the variables in a SAS data set. This is discussed in 
more detail in upcoming chapters. 

1.2.2  Use meaningful variable names 
My first programming experience was with a version of FORTRAN that had an upper 
limit on variable names. You could use any variable name that included up to four 
characters. Variable names like BW and X27 were common. Even SAS, earlier in its 
evolution, had a maximum of eight characters in variable names. Now, variable names 
can be up to 32 characters long and can include a mix of uppercase and lowercase letters 
and underscores. (This makes for easier reading of programs, although SAS is not case 
sensitive.) Variable names can begin with letters (a−z, A−Z) or an underscore ( _ ) with 

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing


letters, numbers, or underscores following. Beware when you transfer data sets between 
applications (e.g., SAS to and from Excel, or to and from R). Variable names in one 
system might be invalid in another system and can lead to odd names when importing 
data. Use a naming convention that is meaningful but not a nuisance to type. For 
example, I believe that body_weight or BodyWeight is preferred over X34, but I don’t 
think I would use body_weight_in_kilograms. In Display 1.1, loggnp and pcturban are 
clear in meaning and relatively simple to type. The key idea is that using sensible variable 
names can help make your programs self-documenting. 

1.2.3  DON’T USE ONLY CAPITALS IN PROGRAM STATEMENTS  
          (although some judicious use is reasonable) 
The use of all uppercase in an e-mail is viewed as shouting. In a program, I believe that 
all uppercase makes it harder to read and, consequently, to debug. Many programmers 
like to see variable names, data set names, and specific SAS names such as formats, 
functions, etc. capitalized. Look at the following code: 

PROC REG DATA=COUNTRY; 
   TITLE "LITER AND LOGGNP AS PREDICTORS OF LIFE EXPECTANCY OF WOMEN"; 
   MODEL LIFEWOM = LITER LOGGNP/ TOL VIF COLLINOINT; 
   OUTPUT OUT=NEW P=YHAT R=RESID; 
RUN; 
 

Now, look at this code: 

proc reg data=COUNTRY; 
   title "LITER and LOGGNP as predictors of life expectancy of women"; 
   model LIFEWOM = LITER LOGGNP/ tol vif collinoint; 
   output out=new p=yhat r=resid; 
run; 
 

And, look at this code: 

proc reg data=country; 
   title "liter and loggnp as predictors of life expectancy of women"; 
   model lifewom = liter loggnp/ tol vif collinoint; 
   output out=new p=yhat r=resid; 
run; 
 

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing


I believe that the all uppercase version of the code is the least readable of these three 
samples. The preference between the other two samples with either a mix of case or all 
lowercase is a matter of personal taste. 

1.2.4  Indent program statements that naturally go together 
By indenting program statements, you highlight lines that accompany a procedure or 
statement. Or, you identify blocks of code that are executed together in the case of loops 
or conditionally executed statements. (There is more to come on this in the DO-END and 
IF-THEN constructs in later chapters.) Compare the following two sections of code 
excerpted from Display 1.1. In the first case, the code is written in all uppercase with no 
indention: 

PROC PRINT DATA=COUNTRY; RUN; 
PROC REG DATA=COUNTRY; 
TITLE "LITER AND LOGGNP AS PREDICTORS OF LIFE EXPECTANCY OF WOMEN"; 
MODEL LIFEWOM = LITER LOGGNP/ TOL VIF COLLINOINT;  
OUTPUT OUT=NEW P=YHAT R=RESID;  RUN; 
 

Here is the second case: 
 

proc print data=country; 
run; 
 
proc reg data=country; 
   title "LITER and LOGGNP as predictors of Life expectancy of women"; 
   model lifewom = liter loggnp/ tol vif collinoint; 
   output out=new p=yhat r=resid; 
run; 
 

It is clearer in the second case that two procedures have been invoked: PROC PRINT and 
PROC REG (with a series of statements and commands issued with PROC REG). I argue 
that the non-capitalized version is cleaner to read and that the indenting and inserted 
blank lines enable you to identify easily what accompanies each procedure. 

1.3 SAS Program Structure 
Now that I have spent a little time on the aesthetics of programming and teased you with 
an example SAS program, it is time to describe the basic components of a SAS program. 
A SAS program is typically stored as a file with a .sas extension. Running a SAS 
program in a batch environment generates two additional files—a .log file (containing  

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing


messages describing what happened during the execution of the SAS program) and a 
listing file (with a file extension of .listing, .lst, or .lis). If you run SAS interactively  
with a program editor (e.g., on Windows), then you have these corresponding  
windows—Editor (analogous to the .sas file), Log, and Output (analogous to the .listing 
file). 

A SAS program has a series of DATA steps and procedure steps (called PROCs). A 
DATA step begins with a DATA statement, followed by a collection of statements that 
define the source of the data, the variables to be read, formats that might be assigned, 
transformations, manipulations, etc. A procedure step begins with a PROC statement, 
followed by the procedure name. Procedures have statements and options, with the end of 
each statement punctuated with a semicolon. Each statement in the program ends with a 
semicolon. The semicolon is a reserved character in a SAS program, and the omission of 
a semicolon is probably the most common error committed in a SAS program that won’t 
run. 

A DATA step is used to name a data set, name the variables in the data set, identify 
variables as numeric or character, identify the source for the data input to SAS, and 
provide direction to the program for reading the input data file. As with variable names, 
data set names can be up to 32 characters in length with similar naming restrictions. Data 
might be input in the program using DATALINES, or input from an external file using an 
INFILE statement, or input from a permanently saved SAS data set (using the LIBNAME 
or SET statement). 

In Display 1.1, I defined a SAS data set named country that includes variables read from 
an external data file named country.data that is stored in one of two directories defined by 
macro variables. (For more information about macro variables, see Chapter 10.) This data 
set has the following variables—NAME, AREA, POPNSIZE, PCTURBAN, LANG, 
LITER, LIFEMEN, LIFEWOM, and PCGNP. Values of these variables are separated by 
space in the input data file. Two of the variables—NAME and LANG—are character 
variables denoted by a $ following their names in the INPUT statement. Variables can be 
transformed or new variables can be created in a DATA step. The assignment statement 
logarea=log10(area); creates a new variable that is the log base 10 of the AREA 
variable in the country data set. Chapter 2 discusses importing data in more detail. 
Chapter 8 discusses creating new variables or recoding variables as part of DATA step 
programming. 

Procedure steps are easily recognized by the PROC statement that precedes the name of 
the procedure. (If you are interested in the history of computing, look back at the PL/I 
programming structure. At one time, SAS was a product with internal programs in PL/I  

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing


and FORTRAN. Now it has C code at its core.) SAS procedures can be used to generate 
descriptive statistics (e.g., UNIVARIATE, MEANS, FREQ), or fit models (e.g., REG, 
GLM, GENMOD, PHREG), or generate graphical displays (e.g., SGPLOT, GMAP), or 
manipulate and process data sets (e.g., IMPORT, CONTENTS). 

The general syntax for a SAS procedure is: 

PROC name DATA=dsn; 
   statement 1;  /* often like a subcommand */ 
   statement 2; 
run; 
 

Recommendation: Explicitly name the SAS data set to be used in a PROC step. 

You should explicitly name the SAS data set that is being analyzed in a PROC step using 
the DATA=DSN option. SAS uses the last created data set as a default when a PROC is 
invoked. If you have long programs with data sets being input, created, merged, output 
from PROCs, etc., then you will be glad you followed this recommendation. 

Recommendation: Insert a RUN statement after each DATA step and PROC step. 

The habit of always ending a DATA or PROC step with a RUN statement makes a SAS 
log that is easier to read and facilitates debugging. It is helpful to indent the RUN 
statement so that it aligns with the DATA or PROC step that it closes. (A colleague, 
Kathy Roggenkamp, asserts that following these recommendations makes you a careful 
and knowledgeable programmer, and I agree.) Some companies require a quality 
assurance review of programming code that involves an analyst checking your code. 
Careful compliance with these recommendations, along with commenting, result in code 
that is more likely to meet review standards. 

The example in Display 1.1 includes three PROC steps. The first procedure, PROC 
PRINT, lists the information in the country data set, including the values of the variables 
that were imported from the external data file and the new variables. The second 
procedure, PROC REG, fits a multiple regression model. The third procedure, PROC 
SGPLOT, produces a scatter plot with two fits superimposed. 

Additional statements are required in some procedures. For example, the SGPLOT 
procedure needs to be accompanied by at least one plot statement (e.g., SCATTER, REG, 
LOESS, HBAR): 

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing


ods rtf bodytitle 
    file="C:\Users\baileraj\Desktop\ch1-display-1.1-fig.rtf"; 
proc sgplot data=country; 
  reg y=lifewom x=loggnp; 
  loess y=lifewom x=loggnp; 
run; 
ods rtf close; 
 

In addition, the PROC SGPLOT block is wrapped with a specified ODS output type or 
destination. The SGPLOT procedure and related ODS graphics procedures require that an 
ODS destination be specified to produce the requested statistical graphics. (For more 
information, see Chapter 6.) For many other procedures, the default LISTING destination 
(which is an output window in an interactive session in SAS) is sufficient for displaying 
the output produced by a procedure. ODS destinations include Web pages (HTML 
destination), rich text formatted documents (RTF destination), and the PDF destination, 
to name a few. For more information, see Chapter 4. 

Some statements are optional. For example, in the PRINT procedure, the VAR statement 
is not required, but it enables you to specify which variables in the data set that you want 
to print. Compare the two PROC PRINT steps: 

proc print data=country; 
   var LIFEWOM LOGGNP;  * print 2 variables from country data set; 
run; 
 
proc print data=country; 
run;   * prints all variables in the country data set; 
 

Display 1.2 shows a small program that generates a linear regression data set, fits a 
simple linear regression model, and prints the observations in the data set. An X variable 
is defined to be an integer value between 1 and 10, with a corresponding Y variable 
produced by adding a pseudorandom normal deviate to the conditional mean, 3+2*X. 
(For more information, see the RAND function in Chapter 8.) In addition to these tasks 
(in the DATA step), the program includes PROC PRINT to print all of the observations 
in the DATA step, and PROC REG to request the fit of a simple linear regression model. 
(For more information about fitting models, see Chapter 5.) The REG procedure also 
produces a scatter plot with a superimposed fitted regression line. The data set is first 
printed using the standard output destination (not the ODS RTF destination). Finally, the 
RTF destination is specified in the ODS statement to generate output for PROC REG 
output that is more easily incorporated into a manuscript. In addition, an output file 
location is specified in the ODS statement. While this program layout is not required on 
all systems, it is viewed as a good programming practice. 

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing


Display 1.2  Generating a linear regression data set and fitting the model 
/* generate a data set of 10 (X,Y) pairs where 
   X = 1, 2, ..., 10 
   Y ~ N(mu= 3 + 2X, sigma=2) 
*/ 
 
data lin_reg_data; 
   call streaminit(32123); 
   do x = 1 to 10 by 1; 
      y = 3+2*x+2*RAND('NORMAL'); 
     output; 
   end; 
run; 
 
proc print data=lin_reg_data;  * check data generation; 
run; 
 
ods rtf bodytitle  
    file="C:\Users\baileraj.IT\Desktop\ch1-display-1.2-fig.rtf"; 
ods graphics on; 
proc reg data=lin_reg_data plots(only)=FitPlot(nolimits); 
   model y=x; 
run; 
ods graphics off; 
ods rtf close; 

 
The log information from running this program is shown in Display 1.3. The log contains 
information about the data set (named lin_reg_data and stored in the temporary WORK 
library). (There is more information about data sets and libraries in Chapter 2.) Two 
variables are in the data set—X and Y. Clock time that elapsed during the execution of 
the DATA or PROC step is provided, along with CPU time. The log notes that an RTF 
file named ch1-display-1.2-fig.rtf was produced by the ODS RTF statement. 

Display 1.3  SAS log from running the program in Display 1.2 
1    data lin_reg_data; 
2       call streaminit(32123); 
3       do x = 1 to 10 by 1; 
4          y = 3+2*x+2*RAND('NORMAL'); 
5         output; 
6       end; 
7    run; 
 
NOTE: The data set WORK.LIN_REG_DATA has 10 observations and 2 variables. 
NOTE: DATA statement used (Total process time): 
      real time           1.09 seconds 
      cpu time            0.07 seconds 
8 
9    proc print data=lin_reg_data;  * check data generation; 
10   run; 
 
NOTE: There were 10 observations read from the data set WORK.LIN_REG_DATA. 

                                                                                                                                                (continued) 

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing


Display 1.3  (continued) 
NOTE: PROCEDURE PRINT used (Total process time): 
      real time           2.27 seconds 
      cpu time            0.29 seconds 
 
11 
12   ods rtf bodytitle file="C:\Users\baileraj.IT\Desktop\ch1-display-1.2-fig.rtf"; 
NOTE: Writing RTF Body file: C:\Users\baileraj.IT\Desktop\ch1-display-1.2-fig.rtf 
13   ods graphics on; 
14   proc reg data=lin_reg_data plots(only)=FitPlot(nolimits); 
15      model y=x; 
16   run; 
 
17   ods graphics off; 
18   ods rtf close; 

 
The output from PROC PRINT is shown in Display 1.4, and the output from the ODS 
RTF statement and PROC REG is shown in Display 1.5. For more information about 
fitting regression models, see Chapter 5. 

Display 1.4  Output produced by PROC PRINT 
                 The SAS SystemObs     x       y 
                        1     1     6.1693 
                        2     2     5.8702 
                        3     3    10.5551 
                        4     4     6.9707 
                        5     5    12.0795 
                        6     6    14.8699 
                        7     7    17.9952 
                        8     8    19.1788 
                        9     9    17.7443 
                       10    10    24.5809 

 
Display 1.4 is the output from PROC PRINT that is copied from the output window in an 
interactive SAS session. This would be the contents of a .lst or .listing file that would be 
produced if batch SAS were used to execute the program in Display 1.2. 

Display 1.5 is the output from PROC REG and is structured as a series of tables in a rich 
text format. Each section of the output is an object that can be separately extracted. (This 
is discussed in Chapter 4.) ODS Graphics associated with the REG procedure produces 
the scatter plot with the fitted regression line in Display 1.5. 

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing


Display 1.5  Output produced by PROC REG and PROC SGPLOT and processed  
                     by the ODS RTF statement 

 
The SAS System 

The REG Procedure 
Model: MODEL1 
Dependent Variable: y 

 
Number of Observations Read 10 
Number of Observations Used 10 

 
Analysis of Variance 

Source DF 
Sum of 

Squares 
Mean 

Square F Value Pr > F 

Model 1 272.15168 272.15168 108.08 <.0001 

Error 8 20.14444 2.51806   

Corrected Total 9 292.29612    
 

Root MSE 1.58684 R-Square 0.9311 

Dependent Mean 15.32732 Adj R-Sq 0.9225 

Coeff Var 10.35301   
 

Parameter Estimates 

Variable DF 
Parameter 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1 5.33788 1.08402 4.92 0.0012 

x 1 1.81626 0.17471 10.40 <.0001 
 
                                                                                                                       (continued) 
 
 
 

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing


Display 1.5  (continued) 

 
 

Alternatively, you can use PROC SGPLOT with the REG statement or simply add a 
PLOT statement to PROC REG to produce this graphic. Frequently, there are multiple 
options for producing the same analysis or graphic. For more information about ODS 
graphics and the different graphs produced by statistical procedures, see Chapter 6. 

Both Display 1.4 and Display 1.5 include the default title The SAS System because no 
TITLE statement is included in the program. The ODS GRAPHICS statement produces a 
scatter plot that has a title associated with the FITPLOT option. 

1.4 What Is a SAS Data Set? 
A SAS data set can be thought of as a rectangular object (or data table) where rows are 
different observations and columns are different variables. In some cases, such as with 
longitudinal or repeated measures data, rows can be the same subject measured at 
different times. Data can be entered as part of a SAS program using DATALINES (or 
CARDS if you like using statements from ancient SAS history). 

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing


data test; 
  input X Y @@; 
  datalines; 
1 2 3 2 5 7 
; 
run; 
 

This method is useful for small data sets, but not for large data sets. SAS data can be 
entered from an external file using the INFILE statement shown in Display 1.1. 

A SAS library is a collection of SAS data sets (and possibly other SAS objects) in a 
common location such as a directory or folder. SAS data can be read from an existing 
SAS library using the LIBNAME or SET statement. In the following code, a permanent 
library is created in a directory on a D drive with the SUMMAR98 data set. This data set 
will be read and later analyzed. 

Libname insas "D:\baileraj\grants\odhs-oct98\Datasets"; 
 
data mdsmar98; set insas.summar98; 
 

In this case, the permanent SAS data set is a file named summar98.sas7bdat, located in 
the folder specified by the path D:\baileraj\grants\odhs-oct98\Datasets. (The 
file extension .sas7bdat is used in Windows and specifies a SAS data set.) This 
permanent SAS data set is copied to a temporary data set named MDSMAR98 and is 
located in the WORK library. The temporary data set will exist for the duration of this 
SAS session. 

As shown in Display 1.2, you can generate data in a DATA step for later use. This is a 
common task in simulation studies. In the following code, a linear regression data set is 
generated with Y ~ N(µ=3 + 2 X, σ=2): 

data lin_reg_data; 
   call streaminit(32123); 
   do X = 1 to 10 by 1; 
    Y = 3 + 2*X + 2*RAND('NORMAL'); 
      output; 
   end; 
run; 
 

Data can also be imported into SAS from other applications such as Microsoft Excel 
(using the Import Wizard or PROC IMPORT) or Oracle (using PROC SQL). Selecting 
Import Data from the File menu in Windows launches the Import Wizard. You can use 
the Import Wizard to import Microsoft Excel spreadsheets or other PC file formats if you 
have licensed SAS/ACCESS Interface to PC File Formats. If you do not have a license to 

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing


use this software, then the Import Wizard can still be used to import text files or comma-
separated, tab-delimited, or any type of delimited files. For more information about 
importing data from external sources and manipulating it to build an analysis data set, see 
Chapter 2. 

1.5 Internally Documenting SAS Programs 
Comments can be incorporated into SAS programs using several strategies. Commenting 
throughout a program makes it easier to read. 

1. Comments can be statements beginning with an asterisk and ending with a 
semicolon. For example: 
   proc glm data=health_data; 
   * fit ancova model with covariate x and 
                     classification variable SMOKE; 
       class SMOKE; 
       model SBP = x | SMOKE; 
   run; 
 

2. A block of comments is often enclosed within /* and */. For example: 
   /* fit ancova model 
      covariate: x 
      classification variable: SMOKE 
   */ 
   proc glm data=health_data; 
       class SMOKE; 
            model SBP = x | SMOKE; 
   run; 
 
I use both strategies, although the /* <comment> . . . */ strategy is nice for 
commenting out blocks of code and defining the header information for a program. 

3. You can use TITLE statements to annotate output and implicitly comment a program. 
For example: 
   proc glm; 
       title  "fit ancova model with covariate X"; 
       title2 "   and classification variable SMOKE"; 
       class SMOKE; 
       model SBP = x | SMOKE; 
   run; 

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing


1.6 Summary  
This chapter provides an introduction to SAS. But, more important, it suggests coding 
habits for structuring and documenting a program to make it easier to read, debug, 
maintain, and modify. In the chapters that follow, the use of SAS to address data analytic 
problems is discussed in detail. Chapter 2 discusses creating an analysis data set, which 
typically involves reading an external data source into SAS, and then processing the data 
set. Chapter 3 presents basic descriptive and graphical statistics, which is followed by 
creating fancier, more customized tables and output in Chapter 4. The first section of the 
book concludes with chapters addressing the specifications of statistical models in SAS, 
and the production of statistical graphics. 

1.7 References 
Allison, T., and D. Cicchetti “Sleep in Mammals: Ecological and Constitutional 

Correlates.” Science 194 (1976): No. 4266, pp. 732−734.  
Cody, Ronald, and Ray Pass. 1995. SAS Programming by Example. Cary, NC: SAS 

Institute Inc. 
Delwiche, Lora D., and Susan J. Slaughter. 2008. The Little SAS Book: A Primer, Fourth 

Edition. Cary, NC: SAS Institute Inc. 
Givens, Geof H., and Jennifer A. Hoeting. 2005. Computational Statistics. Hoboken, NJ: 

Wiley Interscience. 
Moore, David S., and George P. McCabe. 2003. Introduction to the Practice of Statistics. 

4th Ed. New York: NY: W. H. Freeman and Co. 

1.8 Exercises 
1. In the following code, Y=year, X=number of boats registered (in multiples of 1000), 

and Z=number of manatees killed.1

 

 Modify this program to make it more readable. 
Add an introductory comment block to describe this program. 

1 Manatee data set usage based on “Florida powerboats and manatee deaths, 1977–1990” data set from  
  Moore, David S., and George P. McCabe. 2003. Introduction to the Practice of Statistics. 4th Ed. New  
  York, NY: W. H. Freeman and Co. 

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing


   OPTIONS LS=75; 
   DATA EXAMPLE1; INPUT Y X Z; DATALINES; 
   77 447 13 
   78 460 21 
   79 481 24 
   80 498 16 
   81 513 24 
   82 512 20 
   83 526 15 
   84 559 34 
   85 585 33 
   86 614 33 
   87 645 39 
   88 675 43 
   89 711 50 
   90 719 47 
   ; 
   PROC REG; MODEL Z = X / P R CLI CLM; 
   PLOT Z*X P.*X / OVERLAY; 
   PLOT R.*X R.*P.; RUN; 
 

2. Download the data http://lib.stat.cmu.edu/datasets/sleep.2

3. Read the fitness data from SAS online Help (Help → Getting Started with 
SAS Software → Learning to Use SAS → Sample SAS Programs → 
SAS/STAT → Sample and select Example 2 for PROC REG). The description of 
this data set (reproduced from this sample page) follows: 

 Read the data into a SAS 
data set. Make sure you reassign the missing code from -999.0 to . (Hint: Use an IF 
statement in a DATA step.) Make sure that you identify animal name as a character 
variable (using $ after the variable declaration). 

These measurements were made on men involved in a physical fitness course at N.C. 
State University. The variables are Age (years), Weight (kg), Oxygen intake rate (ml 
per kg body weight per minute), time to run 1.5 miles (minutes), heart rate while 
resting, heart rate while running (same time Oxygen rate measured), and maximum 
heart rate recorded while running.  Note:  the data for two individuals are found on 
each line below. 

44 89.47 44.609 11.37 62 178 182  40 75.07 45.313 10.07 62 185 185  
44 85.84 54.297  8.65 45 156 168  42 68.15 59.571  8.17 40 166 172  
38 89.02 49.874  9.22 55 178 180  47 77.45 44.811 11.63 58 176 176  
40 75.98 45.681 11.95 70 176 180  43 81.19 49.091 10.85 64 162 170  
44 81.42 39.442 13.08 63 174 176  38 81.87 60.055  8.63 48 170 186  
44 73.03 50.541 10.13 45 168 168  45 87.66 37.388 14.03 56 186 192  

2 Allison, T., and D. Cicchetti. “Sleep in Mammals: Ecological and Constitutional Correlates.” Science 194  
  (1976): No. 4266, pp. 732−734. Reprinted with permission from AAAS. 

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://lib.stat.cmu.edu/datasets/sleep�
http://support.sas.com/publishing


45 66.45 44.754 11.12 51 176 176  47 79.15 47.273 10.60 47 162 164  
54 83.12 51.855 10.33 50 166 170  49 81.42 49.156  8.95 44 180 185  
51 69.63 40.836 10.95 57 168 172  51 77.91 46.672 10.00 48 162 168  
48 91.63 46.774 10.25 48 162 164  49 73.37 50.388 10.08 67 168 168  
57 73.37 39.407 12.63 58 174 176  54 79.38 46.080 11.17 62 156 165  
52 76.32 45.441  9.63 48 164 166  50 70.87 54.625  8.92 48 146 155  
51 67.25 45.118 11.08 48 172 172  54 91.63 39.203 12.88 44 168 172  
51 73.71 45.790 10.47 59 186 188  57 59.08 50.545  9.93 49 148 155  
49 76.32 48.673  9.40 56 186 188  48 61.24 47.920 11.50 52 170 176  
52 82.78 47.467 10.50 53 170 172  
 

a. Create a text file containing these data. 

b. Use the INFILE statement to input the data into SAS. For more information 
about this task, see Chapter 2. 

c. Produce summary statistics for each variable (using PROC UNIVARIATE). For 
more information about this task, see Chapter 3. 

d. Generate a plot of Time to run 1.5 miles as a function of Resting Pulse (using 
PROC SGPLOT). For more information about this task, see Chapter 6. 

4. Generate data from an equally replicated one-way ANOVA model with four groups 
and means (15, 15, 18, 15) with a standard deviation of 1.5. Assume that each group 
was replicated five times. Hint: SAS Help can suggest syntax. Remember that if Z ~ 
N(0,1), then µ+σ*Z ~ N(µ, σ2). Test the mean equality in the four groups by fitting 
an ANOVA model using PROC GLM. Report the results. Hint: You need to use a 
variable that identifies which group is being generated, and you need to generate a 
random response from the specified distributions. This group variable is part of the 
CLASS statement that is used with PROC GLM. For more information about linear 
models, see Chapter 5. 

5. Generate pairs of observations (X,Y), where Y ~ N(3 + X – 0.5*X2, σ=2), and X 
ranges from 0 to 10 by increments of 0.05. Produce a scatter plot of the data with a 
superimposed regression line and LOESS fit. Do you have evidence that a linear 
regression model would be inadequate here? Hint: The X2 term can be coded using 
either X*X or X**2. Hint: DO loops can be specified with noninteger increments. 
(See SAS Help about DO loops.) For more information about producing statistical 
graphics, see Chapters 6 and 7. 

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing


 

Bailer, A. John. Statistical Programming in SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS 
RESERVED. For additional SAS resources, visit support.sas.com/publishing. 

http://support.sas.com/publishing

	1.1 Statistical Computing versus Programming versus  Managing Data
	1.2.2  Use meaningful variable names
	1.2.3  DON’T USE ONLY CAPITALS IN PROGRAM STATEMENTS           (although some judicious use is reasonable)
	1.2.4  Indent program statements that naturally go together

	1.6 Summary 



