Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Programs</td>
<td>ix</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xv</td>
</tr>
<tr>
<td>Chapter 1 An Introduction to SAS</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>What is SAS</td>
<td>2</td>
</tr>
<tr>
<td>Statistical Tasks Performed by SAS</td>
<td>3</td>
</tr>
<tr>
<td>The Structure of SAS Programs</td>
<td>3</td>
</tr>
<tr>
<td>SAS Data Sets</td>
<td>3</td>
</tr>
<tr>
<td>SAS Display Manager</td>
<td>4</td>
</tr>
<tr>
<td>Excel Workbooks</td>
<td>5</td>
</tr>
<tr>
<td>Variable Types in SAS Data Sets</td>
<td>11</td>
</tr>
<tr>
<td>Temporary versus Permanent SAS Data Sets</td>
<td>11</td>
</tr>
<tr>
<td>Creating a SAS Data Set from Raw Data</td>
<td>12</td>
</tr>
<tr>
<td>Data Values Separated by Delimiters</td>
<td>12</td>
</tr>
<tr>
<td>Reading CSV Files</td>
<td>14</td>
</tr>
<tr>
<td>Data Values in Fixed Columns</td>
<td>15</td>
</tr>
<tr>
<td>Excel Files with Invalid SAS Variable Names</td>
<td>16</td>
</tr>
<tr>
<td>Other Sources of Data</td>
<td>17</td>
</tr>
<tr>
<td>Conclusions</td>
<td>17</td>
</tr>
<tr>
<td>Chapter 2 Descriptive Statistics – Continuous Variables</td>
<td>19</td>
</tr>
<tr>
<td>Introduction</td>
<td>19</td>
</tr>
<tr>
<td>Computing Descriptive Statistics Using PROC MEANS</td>
<td>21</td>
</tr>
<tr>
<td>Descriptive Statistics Broken Down by a Classification Variable</td>
<td>23</td>
</tr>
<tr>
<td>Computing a 95% Confidence Interval and the Standard Error</td>
<td>25</td>
</tr>
<tr>
<td>Producing Descriptive Statistics, Histograms, and Probability Plots</td>
<td>26</td>
</tr>
</tbody>
</table>
Chapter 3 Descriptive Statistics – Categorical Variables

Introduction................................. 41
Computing Frequency Counts and Percentages... 42
Computing Frequencies on a Continuous Variable 44
Using Formats to Group Observations .. 45
Histograms and Bar Charts ... 48
Creating a Bar Chart Using PROC SGPLOT 49
Using ODS to Send Output to Alternate Destinations 50
Creating a Cross-Tabulation Table .. 52
Changing the Order of Values in a Frequency Table 53
Conclusions.. 55

Chapter 4 Descriptive Statistics – Bivariate Associations

Introduction... 57
Producing a Simple Scatter Plot Using PROG GPLOT 58
Producing a Scatter Plot Using PROC SGPLOT 61
Creating Multiple Scatter Plots on a Single Page Using PROC SGSCATTER .. 63
Conclusions.. 68

Chapter 5 Inferential Statistics – One-Sample Tests

Introduction... 69
Conducting a One-Sample t-test Using PROC TTEST 70
Running PROC TTEST with ODS Graphics Turned On 71
Conducting a One-Sample t-test Using PROC UNIVARIATE 74
Testing Whether a Distribution is Normally Distributed 76
Tests for Other Distributions .. 78
Conclusions .. 78

Chapter 6 Inferential Statistics – Two-Sample Tests 79
 Introduction .. 79
 Conducting a Two-Sample t-test .. 79
 Testing the Assumptions for a t-test ... 81
 Customizing the Output from ODS Statistical Graphics 83
 Conducting a Paired t-test ... 85
 Assumption Violations .. 87
 Conclusions .. 89

Chapter 7 Inferential Statistics – Comparing More than Two Means ... 91
 Introduction .. 91
 A Simple One-way Design ... 92
 Conducting Multiple Comparison Tests 98
 Using ODS Graphics to Produce a Difffogram 101
 Two-way Factorial Designs .. 102
 Analyzing Factorial Models with Significant Interactions 106
 Analyzing a Randomized Block Design 108
 Conclusions .. 109

Chapter 8 Correlation and Regression .. 111
 Introduction .. 111
 Producing Pearson Correlations .. 112
 Generating a Correlation Matrix .. 115
 Creating HTML Output with Data Tips 117
 Generating Spearman Nonparametric Correlations 119
 Running a Simple Linear Regression Model 120
 Using ODS Statistical Graphics to Investigate Influential
 Observations .. 125
Using the Regression Equation to Do Prediction 129
A More Efficient Way to Compute Predicted Values 132
Conclusions .. 134

Chapter 9 Multiple Regression .. 135

Introduction... 135
Fitting Multiple Regression Models.. 136
Running All Possible Regressions with n Variables................. 137
Producing Separate Plots Instead of a Panel 141
Choosing the Best Model (C_p and Hocking’s Criteria)............. 142
Forward, Backward, and Stepwise Selection Methods............. 145
Forcing Selected Variables into a Model 152
Creating Dummy (Design) Variables for Regression............. 153
Detecting Collinearity .. 155
Influential Observations in Multiple Regression Models.......... 157
Conclusions .. 161

Chapter 10 Categorical Data ... 163

Introduction... 163
Comparing Proportions .. 164
Rearranging Rows and Columns in a Table 166
Tables with Expected Values Less Than 5 (Fisher’s Exact Test) .. 169
Computing Chi-Square from Frequency Data 172
Using a Chi-Square Macro ... 173
A Short-Cut Method for Requesting Multiple Tables 175
Computing Coefficient Kappa—A Test of Agreement 175
Computing Tests for Trends... 178
Computing Chi-Square for One-Way Tables 180
Conclusions .. 182
Chapter 11 Binary Logistic Regression ... 183

Introduction .. 183
Running a Logistic Regression Model with One Categorical
Predictor Variable ... 184
Running a Logistic Regression Model with One Continuous
Predictor Variable ... 189
Using a Format to Create a Categorical Variable from a
Continuous Variable .. 191
Using a Combination of Categorical and Continuous Variables
in a Logistic Regression Model .. 193
Running a Logistic Regression with Interactions 197
Conclusions ... 203

Chapter 12 Nonparametric Tests .. 205

Introduction .. 205
Performing a Wilcoxon Rank-Sum Test ... 206
Performing a Wilcoxon Signed-Rank Test (for Paired Data) 209
Performing a Kruskal-Wallis One-Way ANOVA 210
Comparing Spread: The Ansari-Bradley Test 211
Converting Data Values into Ranks ... 213
Using PROC RANK to Group Your Data Values 216
Conclusions ... 217

Chapter 13 Power and Sample Size ... 219

Introduction .. 219
Computing the Sample Size for an Unpaired t-Test 220
Computing the Power of an Unpaired t-Test 222
Computing Sample Size for an ANOVA Design 225
Computing Sample Sizes (or Power) for a Difference in
Two Proportions ... 227
Using the SAS Power and Sample Size Interactive Application 229
Conclusions ... 234
Chapter 14 Selecting Random Samples ... 235

Introduction ... 235
Taking a Simple Random Sample .. 236
Taking a Random Sample with Replacement 237
Creating Replicate Samples using PROC SURVEYSELECT 240
Conclusions .. 241

References ... 243
Index ... 245

Introduction

This chapter continues with methods of examining categorical variables. You will learn how to produce frequencies for single variables and then extend the process to create cross-tabulation tables. You will also learn several graphical approaches that are used with categorical variables. Finally, you will learn how to use SAS to group continuous variables into categories using a variety of techniques. Let’s get started.
Computing Frequency Counts and Percentages

You can use PROC FREQ to count frequencies and calculate percentages for categorical variables. This procedure can count unique values for either character or numeric variables. Let’s start by computing frequencies for Gender and Drug in the Blood_Pressure data set used in the previous chapter.

Program 3.1: Computing Frequencies and Percentages Using PROC FREQ

```
title "Computing Frequencies and Percentages Using PROC FREQ";
proc freq data=example.Blood_Pressure;
    tables Gender Drug;
run;
```

PROC FREQ uses a TABLES statement to identify which variables you want to process. This program selects Gender and Drug. Here is the output:

Computing Frequencies and Percentages Using PROC FREQ

The FREQ Procedure

<table>
<thead>
<tr>
<th>Gender</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Frequency</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>28</td>
<td>48.28%</td>
<td>28</td>
<td>48.28%</td>
</tr>
<tr>
<td>M</td>
<td>30</td>
<td>51.72%</td>
<td>58</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Frequency Missing = 2

<table>
<thead>
<tr>
<th>Drug</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Frequency</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug A</td>
<td>20</td>
<td>33.33%</td>
<td>20</td>
<td>33.33%</td>
</tr>
<tr>
<td>Drug B</td>
<td>20</td>
<td>33.33%</td>
<td>40</td>
<td>66.67%</td>
</tr>
<tr>
<td>Placebo</td>
<td>20</td>
<td>33.33%</td>
<td>60</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

By default, PROC FREQ computes frequencies, percentages, cumulative frequencies, and cumulative percentages. In addition, it reports the frequency of missing values. If you do not want all of these values, you can add options to the TABLES statement and specify what statistics you want or do not want. For example, if you want only frequencies and percentages, you can use the TABLES option NOCUM (no cumulative statistics) to remove them from the output, like this:
Program 3.2: Demonstrating the NOCUM Tables Option

```sas
title "Demonstrating the NOCUM Tables Option";
proc freq data=example.Blood_Pressure;
    tables Gender Drug / nocum;
run;
```

Because NOCUM is a statement option, it follows the usual SAS rule: it follows a slash. The following output shows the effect of the NOCUM option:

<table>
<thead>
<tr>
<th>Gender</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>28</td>
<td>48.28</td>
</tr>
<tr>
<td>M</td>
<td>30</td>
<td>51.72</td>
</tr>
</tbody>
</table>

Frequency Missing = 2

<table>
<thead>
<tr>
<th>Drug</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug A</td>
<td>20</td>
<td>33.33</td>
</tr>
<tr>
<td>Drug B</td>
<td>20</td>
<td>33.33</td>
</tr>
<tr>
<td>Placebo</td>
<td>20</td>
<td>33.33</td>
</tr>
</tbody>
</table>

As you can see, the output now contains only frequencies and percents.

One TABLES option, MISSING, deserves special attention. This option tells PROC FREQ to treat missing values as a valid category and to include them in the body of the table. Program 3.3 shows the effect of including the MISSING option:

Program 3.3: Demonstrating the Effect of the MISSING Option with PROC FREQ

```sas
title "Demonstrating the effect of the MISSING Option";
proc freq data=example.Blood_Pressure;
    tables Gender Drug / nocum missing;
run;
```
Here is the output:

<table>
<thead>
<tr>
<th>Gender</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>3.33</td>
</tr>
<tr>
<td>F</td>
<td>28</td>
<td>46.67</td>
</tr>
<tr>
<td>M</td>
<td>30</td>
<td>50.00</td>
</tr>
</tbody>
</table>

Notice that the two subjects with missing values for Gender are now included in the body of the table. Even more important, the percentages for females and males have changed. When you use the MISSING option, SAS treats missing values as a valid category and includes the missing values when it computes percentages. To summarize, without the MISSING option, percentages are computed as the percent of all nonmissing values; with the MISSING option, percentages are computed as the percent of all observations, missing and nonmissing.

Computing Frequencies on a Continuous Variable

What happens if you compute frequencies on a continuous numeric variable such as SBP (systolic blood pressure)? Program 3.4 shows what happens when you try to compute frequencies on a continuous numeric variable:

```sas
Program 3.4: Computing Frequencies on a Continuous Variable

title "Computing Frequencies on a Continuous Variable";
proc freq data=example.Blood_Pressure;
   tables SBP / nocum;
run;
```
Each unique value of SBP is considered a category. Now let’s see how to group continuous values into categories.

Using Formats to Group Observations

SAS can apply formats to character or numeric variables. What is a format? Suppose you have been using M for males and F for females but you want to see the labels Male and Female in your output. You can create a format that associates any text (Male, for
example) to one or more values. To demonstrate, let’s start by making a format for Gender, SBP, and DBP, and using these formats with PROC FREQ.

Program 3.5: Writing a Format for Gender, SBP, and DBP

```sas
proc format;
  value $gender 'M' = 'Male'
                'F' = 'Female';
  value sbpgroup low-140 = 'Normal'
                         141-high    = 'High';
  value dbpgroup low-80  = 'Normal'
                        81-high     = 'High';
run;
proc freq data=example.Blood_Pressure;
  tables Gender SBP DBP / nocum;
  format Gender $gender.
     SBP sbpgroup.
     DBP dbpgroup.;
run;
```

You use PROC FORMAT to create formats—labels associated with values. If you are planning to create formats for character variables, the format names must start with a dollar sign. Formats to be used with numeric variables cannot start with a dollar sign. In addition, format names cannot end with a number. All format names are limited to a maximum of 32 characters, including the initial dollar sign for character format names. Finally, format names can contain letters, digits, and the underscore character. You name each format on a VALUE statement. This statement lets you specify unique values, groups of values, or ranges of values on the left side of the equal sign, and labels that you want to associate with these values on the right side of the equal sign.

The first format in Program 3.5 is $gender. This name is a good choice because this format will be used later with the variable Gender (a character variable). All the format names are, however, completely arbitrary: you could have called this format $xyz if you wanted to. The $gender format associates the text "Male" with M and "Female" with F. You can use either single or double quotation marks when you create formats—just be sure to use double quotation marks if the format that you are creating contains an apostrophe (which is rendered as a single quotation mark).

The next two formats are to be used with the two variables SBP and DBP. For the SBPGROUP format, the range of values associated with the text "Normal" is from the lowest nonmissing value to 190. You can use the keywords LOW and HIGH when you are defining format ranges.
PROC FORMAT creates formats, but it does not associate any of these formats with SAS variables (even if you are clever and name them so that it is clear which format will go with which variable). To associate a format with one or more SAS variables, you use a FORMAT statement. You can place this statement in either a DATA step or a PROC step. If you place a FORMAT statement in a PROC step (as in Program 3.5), the format will be associated with the variables only for the duration of that procedure. If you place a FORMAT statement in a DATA step, the formats will be permanently assigned to the variables.

In a FORMAT statement, you start with the keyword FORMAT, followed by one or more variables names, followed by the format you want to associate with the variables you listed. On a FORMAT statement, you must follow each format name with a period. If you omit the period, SAS will think that you are writing a variable name and not a format. It is slightly confusing—when you create the format with a VALUE statement, you do not end the name with a period (SAS knows this is a format name). When you write a FORMAT statement, you must end the format name with a period.

Let’s see what happens when you run Program 3.5—here is the output:

Computing Frequencies on a Continuous Variable

The FREQ Procedure

<table>
<thead>
<tr>
<th>Gender</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>28</td>
<td>48.28</td>
</tr>
<tr>
<td>Male</td>
<td>30</td>
<td>51.72</td>
</tr>
</tbody>
</table>

Frequency Missing = 2

<table>
<thead>
<tr>
<th>SBP</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>48</td>
<td>85.71</td>
</tr>
<tr>
<td>High</td>
<td>8</td>
<td>14.29</td>
</tr>
</tbody>
</table>

Frequency Missing = 4

<table>
<thead>
<tr>
<th>DBP</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>24</td>
<td>42.86</td>
</tr>
<tr>
<td>High</td>
<td>32</td>
<td>57.14</td>
</tr>
</tbody>
</table>

Frequency Missing = 4
Instead of F’s and M’s you now see Female and Male. Instead of frequencies for individual values of SBP and DBP, you see only two categories, Normal and High.

Histograms and Bar Charts

Sometimes it is useful to show frequencies in a graphical display. With SAS, you have several options: First, there is an older SAS procedure called GCHART, which is part of the SAS/GRAPH collection of procedures. A newer procedure, PROC SGPLOT, can produce a wide variety of plots and charts.

The first example of a bar chart uses PROC GCHART to display the frequencies of a variable called Region (region of the country) from a data set called store. You can skip this section and go right to the next section, which shows you how to create a bar chart using PROC SGPLOT. However, at some point you might need to run or modify an older SAS program that uses PROC GCHART. Here is the code:

Program 3.6: Generating a Bar Chart Using PROC GCHART

```sas
options reset=all;
pattern value = solid color = blue;
title "Generating a Bar Chart - Using PROC GCHART";
proc gchart data=store;
  vbar Region;
run;
quit;
```

The first statement (GOPTIONS, which stands for graphic options), is not mandatory, but if you have been using any SAS/GRAPH procedures during your SAS session, it is a good idea to reset all the options to their default values. Why? Because when you set any graphic option such as color or plotting symbol, these options remain in effect until you change them. This behavior is similar to TITLE statements, which persist unless you change them or omit the titles completely.

The PATTERN statement enables you to select the type of bar (SOLID in this case) and the color of the bars. A useful hint is to set VALUE=EMPTY if you are sending the output to a dot matrix printer. The EMPTY option displays only the outline of the box and keeps you from rushing out to the office supply store to buy more ink cartridges.

The VBAR (vertical bar) statement lets you list the variables for which you want to generate bar charts. If you prefer a horizontal bar chart, use the HBAR statement instead.

Notice the QUIT statement in this program. Certain procedures in SAS such as PROC GCHART have something called RUN-group processing. This kind of processing keeps
the procedure in memory, even after it encounters a RUN statement. Because the procedure is still in memory, you can request additional charts or, in the case of other procedures, new models, etc. The QUIT statement ends the procedure. If you omit a QUIT statement, the procedure ends when the next DATA or PROC step executes.

Here is the output from Program 3.6:

Generating a Bar Chart - Using PROC GCHART

![Bar Chart](image)

Creating a Bar Chart Using PROC SGPLOT

You can create a similar bar chart using PROC SGPLOT. A number of built-in styles make it very easy to customize your output. For example, a style called JOURNAL produces black and white output, suitable for publication in a journal. A style called STATISTICAL gives you output that is designed for statistical purposes.

Program 3.7 shows how to produce a chart similar to the one produced in Program 3.6:
Program 3.7: Generating a Bar Chart Using PROC SG PLOT

```
title "Generating a Bar Chart - Using PROC SG PLOT";
proc sgplot data=store;
   vbar Region;
run;
```

The syntax is almost identical to PROC GCHART. You enter the keyword VBAR, followed by one or more variables for which you want to create a bar chart. Here is the output:

![Bar Chart](image)

Using ODS to Send Output to Alternate Destinations

To demonstrate the flexibility of the SGPLOT procedure, the next example shows you how to use a built-in style to send the same chart to a PDF file.
Program 3.8: Using ODS to Create PDF Output

```sas
ods listing close;
ods pdf file='c:\books\statistics by example\bar.pdf'
   style=journal;
title "Generating a Bar Chart – Using PROC SGPLOT";
proc sgplot data=store;
   vbar Region;
run;
quit;
ods pdf close;
ods listing;
```

This program is identical to the previous one, except you place an ODS statement before the procedure that tells SAS two things: 1) you want to produce a PDF file and 2) you want to use the built-in style called JOURNAL. Following the procedure, you close the destination using another ODS statement.

You should close all your ODS destinations before you exit your SAS session. It is also a good idea to include the ODS LISTING CLOSE statement before the procedure so that you don’t get two outputs—one sent to the PDF file and the other sent to the normal SAS output location. Remember that you need to reopen the listing file using the ODS LISTING statement following the procedure.

The PDF file that was created by Program 3.8 looks like this:
Creating a Cross-Tabulation Table

You can use PROC FREQ to create a cross-tabulation table. You start out with the keyword TABLES. Following this, you specify the two variables of interest, separated by an asterisk. For example, the store data set contains the variables Region and Gender. If you want to see the distribution of Gender across all values of Region, you proceed with Program 3.9:

Program 3.9: Creating a Cross-Tabulation Table Using PROC FREQ

```sas
title "Demonstrating a Cross-Tabulation Table using PROC FREQ";
proc freq data=store;
   tables Gender * Region;
run;
```

This program requests a table of Gender by Region. In this example, Gender will form the rows of the table, and Region will form the columns.

The general form of a cross-tabulation request is:

```
tables row-variable * column-variable;
```

Here is the output from Program 3.9:
Each box in the table contains four values; the meaning of these values is found in the key in the upper-left corner of the table. As you can see, the top number in each box is the number of observations. For example, there are 22 females in the Eastern region. The next number is a percentage. In this example, 11% of all observations are females in the Eastern region. The third number in each box is a row percentage—20% of the females were in the Eastern region. Finally, the fourth number in each box is a column percentage; 61.11% of the observations from the Eastern region are female.

Notice the order of the rows and columns in the output. By default, SAS orders the rows and columns in a table (or for a single variable) by the internal value of the variable—alphabetically for character variables and numerically for numeric variables. This is why the rows in the previous table were ordered Female→Male and the order of the columns was East→North→South→West.

Changing the Order of Values in a Frequency Table

Whether you have a one-way or a two-way table, you might want to control the order that SAS uses for the rows, the columns, or both. In the previous example, maybe you want the regions to be ordered North→East→South→West. Or you might be computing an odds ratio in a 2x2 table and want the first column to be labeled Yes and the second column to be labeled No.

You can accomplish these goals in several ways. One is to create a new variable from the existing variable, where the internal values are in the desired order. Another, easier, method is to associate formats that are in the target order and associate that format with your variable. You can then use a PROC FREQ option called ORDER=FORMATTED to tell SAS to order the rows, columns, or both by their formatted values, rather than by their internal values.

The example that follows uses this method to force the order of the regions to be North, East, South, and West. First the program, then the explanation.
Program 3.10: Changing the Order of Values in a PROC FREQ Table By Using Formats

```
proc format;
  value $region 'North' = '1 North'
    'East'  = '2 East'
    'South' = '3 South'
    'West'  = '4 West';
run;

title "Change the Order in a PROC FREQ Output";
proc freq data=store order=formatted;
  tables Gender * Region;
  format Region region.;
run;
```

The four formatted values created by the $region format are in the desired order alphabetically. (Note that the digits 1, 2, 3, and 4 are part of the format labels, and 1 comes before 2 alphabetically, etc.) Including a FORMAT statement in PROC FREQ associates the $region format with the variable called Region. (Remember that the association is made by the FORMAT statement, not because the name of the format is similar to the name of the variable.) Finally, to tell SAS to order the table by the formatted values rather than by the internal values, you must include the PROC FREQ option ORDER=FORMATTED.
Here is the output from Program 3.10:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Row Pct</th>
<th>Col Pct</th>
<th>Table of Gender by Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>1 North</td>
<td>2 East</td>
<td>3 South</td>
<td>4 West</td>
</tr>
<tr>
<td>Female</td>
<td>39</td>
<td>22</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>19.50</td>
<td>11.00</td>
<td>11.50</td>
<td>13.00</td>
</tr>
<tr>
<td></td>
<td>35.45</td>
<td>20.00</td>
<td>20.91</td>
<td>23.64</td>
</tr>
<tr>
<td></td>
<td>56.52</td>
<td>61.11</td>
<td>51.11</td>
<td>52.00</td>
</tr>
<tr>
<td>Male</td>
<td>30</td>
<td>14</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>15.00</td>
<td>7.00</td>
<td>11.00</td>
<td>12.00</td>
</tr>
<tr>
<td></td>
<td>33.33</td>
<td>15.56</td>
<td>24.44</td>
<td>26.67</td>
</tr>
<tr>
<td></td>
<td>43.43</td>
<td>38.89</td>
<td>48.89</td>
<td>46.00</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td>38</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>34.50</td>
<td>18.00</td>
<td>22.50</td>
<td>25.00</td>
</tr>
</tbody>
</table>

The regions are now ordered 1 North, 2 East, 3 South, and 4 West. Because female comes before male alphabetically, the order is Female, then Male.

Conclusions

In this chapter, you learned how to display values of categorical variables, both in tabular and graphical form. Although you can use several methods to change the order of rows and columns in a table, using formats might be the simplest.

You also learned how to use the built-in styles to create attractive output with a minimum of effort. And you saw how to use ODS to send this output to a variety of destinations, such as HTML, PDF, and RTF.

The next chapter finishes up our discussion of descriptive statistics by showing you how to produce numerical and graphical displays for bivariate relationships.

Index

A

AB option, NPAR1WAY procedure 212
ADJUST= option, LSMEANS statement (GLM) 98, 100
adjusted R-square, generating plots of 142, 144
AGREE option, TABLES statement (FREQ) 166, 175–177
AIC (Akaike Information Criterion) 187, 199–200
Akaike Information Criterion (AIC) 187, 199–200
ALL option, TABLES statement (FREQ) 166
ALPHA= option, TTEST procedure 70–71
analysis of variance
See ANOVA (analysis of variance)
ANOVA (analysis of variance)
analyzing randomized block designs 108–109
computing sample size for 225–227
Kruskal-Wallis ANOVA 210–211
multiple comparison tests 97–101
one-way design 92–97, 210–211
producing diffograms 101–102
two-way factorial designs 102–108
Ansari-Bradley test 211–213
at sign (@) 15, 212
automatic selection methods 145, 198

B

backward selection method 145–152, 198
bar charts, creating 49–50
BEST= option, MODEL statement (REG) 139, 145
binary logistic regression
See logistic regression models
bivariate associations
producing scatter plots using GPLOT 58–60
producing scatter plots using SGPLOT 61–62
producing scatter plots using SGSCATTER 63–68
block designs, randomized 108–109
blood_pressure sample data set 20
box plots
displaying for categorical variables 38–39
displaying outliers 37
GLM procedure and 97
horizontal 35–36
labeling outliers on 38
producing 33
vertical 36

C

CALL MISSING routine 153–154
case sensitivity in variables 6
categorical variables
and continuous variables in regression models 193–196
bar charts and 48–50
chi-square macros 173–175
comparing proportions 164–166
computer percentages 42–44
computing chi-square for one-way tables 180–182
computing chi-square from frequency data 172–173
computing frequency counts 42–44
computing Kappa coefficient 175–177
computing tests for trends 178–180
creating dummy variables for 153–155
creating from continuous variables 191–193
cross-tabulation tables and 52–53
displaying box plots for 38–39
Fisher's exact test 169–171
frequency tables and 53–55
grouping observations with formats 45–48
categorical variables (continued)
 histograms and 48–49
 ODS considerations 50–52
 rearranging rows and columns in tables 166–169
 requesting multiple tables 175
 running logistic regression models with 184–189

CATEGORY= option
 HBOX statement (SGPLOT) 38–39
 VBOX statement (SGPLOT) 38–39

character variable types 11

chi-square
 Cochran-Mantel-Haenszel 178
 computing for one-way tables 180–182
 computing from frequency data 172–173
 computing tests for trends 178–180
 Pearson’s 228

chi-square macros 173–175

CHISQ option, TABLES statement (FREQ) 165–166

CLASS statement
 GLM procedure 92–93, 97
 LOGISTIC procedure 185, 194
 MEANS procedure 23–25
 NPAR1WAY procedure 207
 TTEST procedure 80

classification variables, breaking down descriptive statistics by 23–25

CLM option, MEANS procedure 22, 25

CLODDS= option, MODEL statement (LOGISTIC) 185, 189

CMH option, TABLES statement (FREQ) 166

Cochran-Armitage test for trends 178–180

Cochran-Mantel-Haenszel test for trends 178–180

coefficient of agreement 175–177

coefficient of variation (CV) 28

collinearity, detecting 155–156

colon (:) 176

column pointer (@ sign) 15

columns

See also variables

changing order of values in 53–55

rearranging in tables 166–169

COMPARE statement, SGSCATTER procedure 63–66

confidence intervals, computing 25–26

continuous variables
 and categorical variables in regression models 193–196

 breaking down descriptive statistics 23–25

 computing confidence intervals 25–26

 computing descriptive statistics 21–23

 computing frequencies on 44–45

 computing standard error 25–26

 creating categorical variables from 191–193

 generating graphical displays 33–39

 producing descriptive statistics 26–32

 producing histograms 26–33

 producing probability plots 26–32

 running logistic regression models with 189–191

converting
 data values into ranks 213–216

 Excel files into data sets 6–9

Cook’s D statistics 126–128, 157

CORR procedure
 ID statement 118, 125
 NOPRINT option 133
 NOSIMPLEx option 112
 OUTEST= option 133
 Pearson correlations 112
 PEARSON option 119
 PLOTS= option 113–115, 118, 125, 128
 RANK option 112
 SPEARMAN option 119
 Spearman rank correlations 119–120
 VAR statement 112, 115
 WITH statement 112

 correlation matrix, generating 115–117

 cross-tabulation tables 52–53

 CSV files
 about 5
 converting into data sets 6–9
reading 14–15
CV (coefficient of variation) 28
CV option, MEANS procedure 22

D
data descriptors, displaying 9
DATA= option
 MEANS procedure 22
 SURVEYSELECT procedure 236
data sets
See also specific sample data sets
 about 3
 converting Excel files into 6–9
 creating from raw data 12–16
 data descriptors and 3, 9
 data values in fixed columns 15–16
 data values separated by delimiters 12–14
 metadata and 3
 observations and 6
 permanent 11–12, 21
 reading CSV files 14–15
 taking random sample from 236
 temporary 11–12, 21
 variable types in 11
DATA step
 about 13
 Ansari-Bradley test 211–212
 creating categorical variable from continuous variable 191
 DATALINES statement 130
 DO loops 212
 ELSE-IF statement 37
 Fisher's exact test example 170
 FORMAT statement 47, 176
 IF-THEN statement 37
 INFILE statement 13–14, 130
 INFORMAT statement 176
 INPUT statement 13, 15–16, 130, 170, 176
 LENGTH statement 13
 OUTPUT statement 212
 RUN statement 13
 SET statement 37
Data Tips 117–119
data values
 converting into ranks 213–216
 grouping with RANK procedure 216–217
 in fixed columns 15–16
 separated by delimiters 12–14
database systems 17
DATALABEL= option, HBOX statement (SGPLOT) 38
DATALINES statement 130
delimiters, data values separated by 12–14
descriptive statistics
 about 19–21
 bar charts and 48–50
 broken down by classification variables 23–25
 computer percentages 42–44
 computing confidence intervals 25–26
 computing frequency counts 42–44
 computing standard error 25–26
 computing with MEANS procedure 21–23
 cross-tabulation tables and 52–53
 frequency tables and 53–55
 generating graphical displays 33–38
 grouping observations with formats 45–48
 histograms and 26–33, 48–49
 ODS considerations 50–52
 probability plots and 26–32
 producing 26–32
 scatter plots and 58–68
design variables 153–155
DIAGONAL= option, MATRIX statement (SGSCATTER) 67
diffograms 101–102
Display Manager
 about 4
 Log window 4
 Output window 4
 Program Editor 4
 Submit icon 8
DO loops 212
dollar sign ($) 176
DSD option, INFILE statement 14
dummy variables 153–155
ELSE-IF statement 37
EST keyword 27
EVENT= option, MODEL statement (LOGISTIC) 185
EXACT statement, NPAR1WAY procedure 208–209, 211–212, 216
Excel files
about 5
converting into data sets 6–9
with invalid variable names 16
exercise sample data set 70, 112, 136

factorial designs
GLM procedure and 93
two-way 102–108
false-positive rates 197
FILE= option, ODS HTML statement 118
FISHER option, TABLES statement (FREQ) 166
Fisher's exact test 169–171, 228
fixed columns, data values in 15–16
folded F-test 211
FORMAT procedure
about 46–48
VALUE statement 46–48
FORMAT statement
about 47, 176
FREQ procedure 167
LOGISTIC procedure 192
formats
associating variables with 176
creating 46–47
creating categorical variables from continuous variables 191–193
grouping observations with 45–48
forward selection method 145–152
FREQ procedure
See also TABLES statement, FREQ procedure
about 42–44
Fisher's exact test example 169

FORMAT statement 167
ORDER=FORMATTED option 53–54, 167
TEST statement 177
WEIGHT statement 173, 181
frequency tables
changing order of values 53–55
computing chi-square from 172–173

GCHART procedure
about 48–49
HBAR statement 48
VBAR statement 48
GLM procedure
CLASS statement 92–93, 97
LSMEANS statement 98, 100, 107
MEANS statement 93, 95, 97–98
MODEL statement 92–93, 102, 108
multiple comparison tests 97–101
one-way ANOVA and 92–97
pairwise differences and 101
PLOTS= option 92, 96, 101
RUN-group processing and 120
GLMPower procedure 225
global statements 9
See also specific statements
GOPTIONS statement 48, 59
GPATH= option, ODS HTML statement 118
GPLOT procedure
about 58–60
PLOT statement 58
g graphical output 33–38
See also ODS Graphics
See also SAS/GRAPH software
GROUP= option
COMPARE statement (SGSCATTER) 65–66
SCATTER statement (SGPLOT) 62
grouping observations with formats 45–48
GROUPMEANS= option, POWER procedure 220, 223
GROUPS= option, RANK procedure 216
H

HBAR statement, GCHART procedure 48
HBOX statement, SGPlot procedure
 about 35–36
 CATEGORY= option 38–39
 DATALABEL= option 38
HIGH keyword 46
HISTOGRAM statement
 SGPlot procedure 33–35
 UNIVARIATE procedure 27, 30–33
histograms
 changing midpoint values 32–33
 distribution of income example 206
 ODS Graphics example 73, 82, 123
 producing with CORR procedure 115
 producing with GCHART procedure 48–49
 producing with SGPlot procedure 34–35
 producing with SGScatter procedure 67
 producing with UNIVARIATE procedure 26–32
Hocking's criteria 142–145
horizontal box plots 35–36
HOVTEST option, MEANS statement (GLM) 93
HTML output, creating with Data Tips 117–119

I

ID statement
 CORR procedure 118, 125
 UNIVARIATE procedure 26, 30
IF-THEN statement 37
IMAGEMAP= option, ODS GRAPHICS statement 118
Import Wizard
 converting Excel files into data sets 6
 CSV file and 15
 sources supported 17
IN operator 153
INCLUDE= option, MODEL statement (REG) 152
inferential statistics
 comparing more than two means 91–109
 one-sample t-tests 69–78
 two-sample tests 79–89
INFILE statement
 about 13
 DSD option 14
 regression equation example 130
INFLUENCE option, MODEL statement (REG) 125–126, 157
influential observations
 in multiple regression models 157–161
 investigating 120–125
INFORMAT statement 176
informs
 associating variables with 176
 defined 15
INPUT statement
 @ symbol and 212
 @@ symbol and 130, 170
 about 13
 colon in 176
 data values in fixed columns 15–16
J

JOURNAL style 49, 51
K

Kappa coefficient 175–177
KEEP= data set option 37
Kruskal-Wallis one-way ANOVA 210–211
kurtosis 28
L

labeling outliers on box plots 38
least squares regression equation 129–132
LENGTH statement 13
leptokurtic distribution 28
LIBNAME statement 21
likelihood ratio chi-square test 228
linear regression, running with REG procedure 120–125
Log window (Display Manager) 4
LOGISTIC procedure
 CLASS statement 185, 192, 194
 FORMAT statement 192
 logistic regression models example 187
 MODEL statement 184–185, 189, 198
 ODDSRATIO statement 198
 PLOTS= option 198
 running logistic regression with interactions 197–203
 UNITS statement 190–191, 194
logistic regression models
 creating categorical variables from continuous variables 191–193
 running with interactions 197–203
 running with one categorical variable 184–189
 running with one continuous variable 189–191
 selection methods and 198
 using categorical and continuous variable combinations in 193–196
LOW keyword 46
LSMEANS statement, GLM procedure
 ADJUST= option 98, 100
 PDIFF option 98, 100
 SLICE option 107
MEANS statement, GLM procedure
 HOVTEST option 93
 multiple comparison tests and 97–98
 WELCH option 95
MEASURES option, TABLES statement (FREQ) 166
METADATA option, TABLES statement (FREQ) 166
M
macros, chi-square 173–175
Mallows' Cp 138, 142–145
Mann-Whitney U test 207
MATRIX statement, SGSCATTER procedure 63, 67–68
MAX option, MEANS procedure 22
MAXDEC= option, MEANS procedure 22
MEAN option, MEANS procedure 22
means-means plot 101–102
MEANS procedure
 CLASS statement 23–25
 CLM option 22, 25
 computing descriptive statistics 21–23
 CV option 22
 DATA= option 22
MODEL statement, REG procedure
 BEST= option 139, 145
 INCLUDE= option 152
INFLUENCE option 125–126, 157
P option 131
R option 125–126
SELECTION= option 138, 145
SLENTRY= option 145–152
SLSTAY= option 145–152
VIF option 156
MU= keyword 27
multiple comparison tests
conducting 97–101
diffograms and 101–102
multiple regression models
automatic selection methods 145–152
creating dummy variables for 153–155
detecting collinearity 155–156
fitting 136–137
forcing selected variables into 152
Hocking's criteria 142–145
influential observations in 157–161
Mallows' Cₚ 142–145
producing separate plots instead of panels 141–142
running all possible regressions 137–141
running with REG procedure 120
multiple tables, requesting 175

normal distribution
skewness and kurtosis 28
testing for 76–78
NORMAL option
PROBPLOT statement (UNIVARIATE) 27
UNIVARIATE procedure 76
NOSIMPLE option, CORR procedure 112
NPARIWAY procedure
AB option 212
CLASS statement 207
EXACT statement 208–209, 211–212, 216
VAR statement 207
WILCOXON option 207
NPERGROUP= option, POWER procedure 221, 225, 228
numerical variable types 11

observations
defined 6
groups with formats 45–48
in multiple regression models 157–161
investigating 120–125
odds ratios 188, 201
ODDSRATIO statement, LOGISTIC procedure 198

ODS Graphics
analyzing factorial models 107
CORR procedure and 112–113
creating HTML output with Data Tips 117–119
customizing output from 83–85
investigating influential observations 125–129
odds ratios 197
one-way ANOVA and 92
producing diffograms 101–102
REG procedure and 121
ROC curve 197
TTEST procedure and 71–74, 81–83

ODS GRAPHICS statement
IMAGEMAP= option 118
ODS GRAPHICS statement (continued)
 OFF option 71, 81
 ON option 71, 81, 115

ODS HTML statement
 FILE= option 118
 GPATH= option 118
 PATH= option 118

ODS LISTING statement
 about 51
 CLOSE option 51

ODS SELECT statement 209

ODS Statistical Graphics
 See ODS Graphics

ODS Graphics example 72

one-sample t-tests
 conducting with TTEST procedure 70–74
 conducting with UNIVARIATE procedure 74–78
 examples 29

one-way ANOVA 92–97, 210–211
one-way tables 180–182

ONEWAYANOVA option, POWER procedure 225

ONLY keyword 142

ORDER=FORMATTED option, FREQ
 procedure 53–54, 167

OUT= option
 SCORE procedure 134
 SURVEYSELECT procedure 236

OUTTEST= option, CORR procedure 133

OUTHITS option, SURVEYSELECT procedure
 237–239

outliers
 displaying in box plots 37
 labeling on box plots 38

OUTPUT statement 212

Output window (Display Manager) 4

P

P option, MODEL statement (REG) 131

PAIRED statement, TTEST procedure 85–87

pairwise comparisons
 conducting 98–101
 diffograms and 101–102

PARAM= option, CLASS statement
 (LOGISTIC) 194

PATH= option, ODS HTML statement 118

PATTERN statement
 about 48
 VALUE=EMPTY option 48

PDF files 50–52

PDIFF option, LSMEANS statement (GLM)
 98, 100

Pearson correlations 112–116

PEARSON option, CORR procedure 119

Pearson's chi-square 228

period (.) 11

permanent data sets 11–12, 21

platykurtic distribution 28

PLOT statement
 GPLOT procedure 58
 POWER procedure 221–223
 SGSCATTER procedure 63–64

PLOT statement, POWER procedure 221

PLOTS= option
 CORR procedure 113–115, 118, 125, 128
 GLM procedure 92, 96, 101
 LOGISTIC procedure 198
 REG procedure 141–142, 157
 TTEST procedure 81, 83–84

plus sign (+) 58

power
 computing for difference in proportions 227–229
 computing for unpaired t-test 222–224

SAS Power and Sample Size program 229–234

Power and Sample Size program 229–234

POWER= option, POWER procedure 223

POWER procedure
 GROUPMEANS= option 220, 223
 NPERGROUP= option 221, 225, 228
 ONEWAYANOVA option 225
PLOT statement 221–223
POWER= option 223
STDDEV= option 220
TEST= option 228
TWOSAMPLEMEANS option 220
predicting values
 efficiently 132–134
 with least squares regression equation 129–132
PRINT procedure 13
PRINTALLTYPES option, MEANS procedure 24
probability plots
 distribution of income example 206
 producing 26–32
PROBPLOT statement, UNIVARIATE procedure
 about 27, 30–31
 NORMAL option 27
 testing distribution with 78
Program Editor (Display Manager) 4
proportions
 comparing 164–166
 computing power for difference in 227–229
 computing sample size for difference in 227–229

Q
Q-Q plots
 linear regression example 123
 ODS Graphics example 74, 82
 one-way designs 97
 testing t-test assumptions 87–88
QQPLOT statement, UNIVARIATE procedure 78
quantiles
 commonly used 30
 ODS Graphics example 74
QUIT statement 48–49, 93, 120
quotation marks 21

R
R option, MODEL statement (REG) 125–126
R-square
 computing 156
 generating plots of 142–143
random samples
 creating replicate samples 240–241
 selecting 235–241
 taking 236–237
 taking with replacement 237–240
randomized block designs 108–109
RANK option, CORR procedure 112
RANK procedure
 about 213–214
 grouping data values with 216–217
 GROUPS= option 216
 RANKS statement 214
 VAR statement 214–215
ranks, converting data values into 213–216
RANKS statement, RANK procedure 214
reading CSV files 14–15
REG procedure
 See also MODEL statement, REG procedure
 PLOTS= option 141–142, 157
 predicting values 131–134
 running regression models 120–125, 136, 154
relative kurtosis 28
RELRISK option, TABLES statement (FREQ) 166–167
REPS= option, SURVEYSELECT procedure 240
risk sample data set 164, 184
ROC curve 189, 197–198, 203
root MSE 122
rows
 See also observations
 changing order of values in 53–55
 rearranging in tables 166–169
RSQUARE selection method 137–138
Index

RUN-group processing
 about 120
 GCHART procedure and 48–49
 GLM procedure and 93, 120
 REG procedure and 120
RUN statement 13

S
sample size
 computing for ANOVA design 225–227
 computing for difference in proportions 227–229
 computing for unpaired t-test 220–222
SAS Power and Sample Size program 229–234
SAMPRATE option, SURVEYSELECT procedure 236, 240
SAMPSSIZE= option, SURVEYSELECT procedure 236, 240
SAS
 about 2
 sources of data 17
 statistical tasks performed by 3
SAS/GRAPH software
 GOPTIONS statement and 48
 graphical output and 26
 producing scatter plots 58–62
SAS macros 173–175
SAS Power and Sample Size program 229–234
SAS programs, structure of 3
SAS/STAT software 219, 235
SC (Schwartz Criteria) 187, 199
scatter plots
 producing with CORR procedure 112
 producing with GLOT procedure 58–60
 producing with SGPLOT procedure 33
SCATTER statement, SGPLOT procedure 61–62
Schwartz Criteria (SC) 187, 199
SCORE= option, SCORE procedure 134
SCORE procedure
 computing predicted values 132–134
 OUT= option 134
SCORE= option 134
VAR statement 134
SEED= option, SURVEYSELECT procedure 236
selection methods 145–152, 198
SELECTION= option
 MODEL statement (LOGISTIC) 198
 MODEL statement (REG) 138, 145
semicolon (;) 8
sensitivity of models 197
SET statement 37
SGPLOT procedure
 about 33
 creating bar charts 49–50
 HBOX statement 35–36, 38–39
 HISTOGRAM statement 33–35
 producing scatter plots 61–62
 SCATTER statement 61–62
 VBOX statement 36, 38–39
SGSCATTER procedure
 about 33, 63, 114
 COMPARE statement 63–66
 MATRIX statement 63, 67–68
 PLOT statement 63–64
SIDES= option, TTEST procedure 70
SIGMA= keyword 27
sign test 29
skewness 28
SLENTRY= option, MODEL statement (REG) 145–152
SLSTAY= option, LSMEANS statement (GLM) 107
SLSTAY= option
 MODEL statement (LOGISTIC) 198–199
 MODEL statement (REG) 145–152
SNK (Student-Newman-Keuls) test 98–99
Spearman nonparametric correlations 119–120
SPEARMAN option, CORR procedure 119
spread, comparing 211–213
SS (sum of squares) 93
standard error, computing 25–26
statistical analysis
 See descriptive statistics
STATISTICAL style 49
STD option, MEANS procedure 22
STDDEV= option, POWER procedure 220
STDERR option, MEANS procedure 22, 25
stepwise selection method 145–152
store sample data set 58, 92
Student-Newman-Keuls (SNK) test 98–99
Submit icon (Display Manager) 8
sum of squares (SS) 93
SURVEYSELECT procedure
about 235
DATA= option 236
METHOD= option 236
OUT= option 236
OUTHITS option 237–239
REPS= option 240
SAMPRATE option 236, 240
SAMPSIZE= option 236, 240
SEED= option 236
taking simple random sample 236–237
SYMBOL statement 58, 60–61
T
t-tests
See also one-sample t-tests
See also two-sample t-tests
computing power for 222–224
computing sample size for 220–222
tables
cross-tabulation 52–53
Fisher's exact test and 169–171
frequency 53–55, 172–173
generating 164
one-way 180–182
rearranging columns in 166–169
rearranging rows in 166–169
requesting multiple 175
two-way 164
TABLES statement, FREQ procedure
about 42, 52–53, 164
AGREE option 166, 175–177
ALL option 166
CHISQ option 165–166
CMH option 166
FISHER option 166
MEASURES option 166
MISSING option 43–44
NOCUM option 42–43
RELRISK option 166–167
requesting multiple tables 175
TESTF= option 180–181
TESTP= option 180–181
TREND option 166
temporary data sets 11–12, 21
TEST= option, POWER procedure 228
TEST statement, FREQ procedure 177
TESTF= option, TABLES statement (FREQ) 180–181
testing
for normal distribution 76–78
nonparametric tests 29, 205–217
sign test 29
t-test assumptions 87–89
tests for trends 178–180
TESTP= option, TABLES statement (FREQ) 180–181
TITLE statement
about 9, 21
scatter plots example 60
TREND option, TABLES statement (FREQ) 166
TTEST procedure
ALPHA= option 70–71
CLASS statement 80
conducting one-sample t-test 70–71
conducting two-sample t-test 80–81
NPAR1WAY procedure and 207
ODS Graphics and 71–74, 81–83
PAIRED statement 85–87
PLOTS= option 81, 83–84
running with ODS Graphics 71–74
SIDES= option 70
VAR statement 80
Tukey test 98–99
two-sample t-tests
 assumption violations 87–89
 conducting 79–81
 conducting paired t-test 85–87
 converting data values into ranks example 215
 testing assumptions for 81–83
two-way factorial designs
 about 102–105
 analyzing 106–108
two-way tables 164
TWOSAMPLEMEANS option, POWER procedure 220

U
 underscore (_) 5, 16
 UNITS statement, LOGISTIC procedure 190–191, 194
 UNIVARIATE procedure
 about 26–32
 computing quantiles 30
 conducting one-sample t-test 74–76
 HISTOGRAM statement 27, 30–31
 ID statement 26, 30
 NEXTROBS= option 30
 NORMAL option 76
 plotting distribution of income 206
 PROBPLOT statement 27, 30–31, 78
 QQPLOT statement 78
 VAR statement 27, 74
 WEIGHT option 29
 Wilcoxon signed-rank test 209
unpaired t-test
 computing power for 222–224
 computing sample size for 220–222
SAS Power and Sample Size program 229–234
 URS method 237
V
 VALIDVARNAMES system option 16
 VALUE statement, FORMAT procedure 46–48
 VALUE=EMPTY option, PATTERN statement 48
 VAR statement
 CORR procedure 112, 115
 MEANS procedure 22
 NPAR1WAY procedure 207
 RANK procedure 214–215
 SCORE procedure 134
 TTEST procedure 80
 UNIVARIATE procedure 27, 74
variables
 See also categorical variables
 See also continuous variables
 associating formats with 176
 associating informats with 176
 case sensitivity 6
 classification 23–25
 design 153–155
 dummy 153–155
 forcing into regression models 152
 invalid 16
variance inflation factor (VIF) 156
 VBAR statement, GCHART procedure 48
 VBOX statement, SGPLOT procedure
 about 36
 CATEGORY= option 38–39
 generating bar charts 50
 vertical box plots 36
VIF (variance inflation factor) 156
 VIF option, MODEL statement (REG) 156
W
 Wald test 188
 WEIGHT option, UNIVARIATE procedure 29
 WEIGHT statement, FREQ procedure 173, 181
 WELCH option, MEANS statement (GLM) 95
 WILCOXON option, NPAR1WAY procedure 207
 Wilcoxon rank-sum test 206–209
 Wilcoxon signed-rank test 29, 209–210
 WITH statement, CORR procedure 112
Y

Yates' corrected value 171

Symbols and Numbers

@ (at sign) 15, 212
$ (dollar sign) 176
+ (plus sign) 58
_ (underscore) 5, 16
: (colon) 176
. (period) 11
; (semicolon) 8
$1. informat 15
3. informat 15
$3. informat 15
95% confidence interval, computing 25–26
@@ symbol 130, 170

Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.