
C H A P T E R 1C H A P T E R 1
AA NN II N T R O D U C T I O NN T R O D U C T I O N TT OO RR E A D I N GE A D I N G RR AA WW DD AA TT AA
W I T HW I T H S A SS A S

Overview .1

Methods of Reading Raw Data .2

Understanding Data Sources .3

Understanding Data Values .4

Reading Raw Data with the INPUT Statement .5

A Checklist in Specifying Your External File .11

Overview
The goal when reading an external data file is to create a SAS data set
or data view that SAS can process to produce meaningful reports and
analyses.This book presents examples of reading external data files
and instream data that you can adapt to read your own data.This
chapter presents the concepts of reading these data sources with SAS.

Collectively, unprocessed data stored in an external data file or
included as part of the job stream are termed raw data. DATA steps
read raw data and create SAS data sets and views from the raw data.
With the features of the INFILE and INPUT SAS language
statements, you describe to SAS the structure of your raw data.You
can also specify attributes of an external data file in the FILENAME
statement.

As considered in this book, external files contain unprocessed data not
stored in a SAS data set.These files can transfer information between
software applications and the structures of these files can vary.
External files are managed by your operating system, not by SAS.
Depending on your operating system, you may refer to your external
files as flat files, text files, sequential files, DAT files, or ASCII files.

There is an endless variety of ways in which to store raw data. For
example, an external file from a clinical study could contain one data
line for one patient for one set of lab tests.Another way of
representing the same information is to write a series of data lines for
one patient: the first data line contains the patient identifiers and is
followed by several data lines, each data line containing the patient's
results from a lab test.A third way to create this clinical study file is to
place information for multiple patients in each data line.A patient
identifier is followed by the lab test results.The information for the
next patient continues on the same data line.

Reading External Data Files Using SAS: Examples Handbook

2

Most examples in this book show how to read raw data stored in
external files.Another way to read raw data is to include the data as
part of the job stream.A few examples of reading instream data are
presented in this chapter.

Methods of Reading Raw Data
SAS has several ways of reading raw data.These include

❐ SAS language statements in the DATA step

❐ SAS functions

❐ the Import Wizard and the External File Interface (EFI)

❐ the SAS procedure IMPORT.

The INFILE statement describes the attributes of the external file
containing the raw data that you want the DATA step to read.The
INFILE statement can either directly name the external file or it can
indirectly point to the external file with a fileref defined with the
FILENAME statement or window.Typical attributes that you might
specify in the INFILE statement are the delimiter between fields and
the record length.

With the INPUT statement, you describe to SAS the structure of your
data. An INPUT statement that uses simple list input may be able to
read your external file by scanning the data lines for data values if
your data values are separated by at least one delimiter such as a
space. On the other hand, your external file may not have delimiters
between data values and the data values may have a specific structure.
To read that external file, you may need to use a different INPUT
style, such as column input or formatted input.

SAS functions can also read and write external files.These functions
either can be coded in a DATA step or can be used outside of the
DATA step in the SAS macro language.

If you are running SAS in an interactive windowing environment such
as Windows, UNIX, or OpenVMS, you can use the Import Wizard and
the EFI to read and write external files.These features use a point-
and-click interface that prompt you for information about your
external files.

Also available under the SAS windowing environments listed above is
the SAS procedure IMPORT.This PROC reads external files as well
as tables in database management systems. PROC IMPORT can run in
SAS interactive mode as well as in batch mode.

Chapter 1: An Introduction to Reading Raw Data with SAS

3

Understanding Data Sources
The way you write your DATA step depends on where your data are
stored.Your raw data may be in one of two locations:

❐ part of the job stream

❐ stored in an external file.

Most examples in this book show how to read data stored in external
files.

Raw data that is part of the job stream follows the DATA step code
that reads it.You would typically select this style of programming only
if you were processing small amounts of data. Either a DATALINES
or DATALINES4 statement precedes the raw data.

If you maintain older SAS programs, you may see the CARDS or
CARDS4 statement instead of DATALINES or DATALINES4.

In the example that follows, a DATA step reads six variables from five
data lines.The data lines are part of the job stream.

Example 1.1 Reading Instream Data Lines
data runners;

input name $ age runtime1 runtime2 runtime3 runtime4;
datalines;
Scott 15 23.3 21.5 22.0 21.9
Mark 13 25.2 24.1 23.5 22.0
Jon 13 25.1 25.7 24.3 25.0
Michael 14 24.6 24.1 24.3 24.6
Matt 14 22.0 21.5 21.4 21.6
;;;;

An external file is managed by your operating system and not by SAS.
SAS can read and write many types of external files.Your DATA step
code manages the processing of these external files.

If the program above was submitted under Windows and the raw data
were stored in the file c:\readdata\runnersapril.dat, the DATA step to
read the external file could be written as follows.The INFILE
statement identifies the external file containing the raw data.

Example 1.2 Reading Data Lines from an External File
data runners;

infile 'c:\readdata\runnersapril.dat';
input name $ age runtime1 runtime2 runtime3 runtime4;

run;

Reading Data That is
Part of the Job Stream

Reading Data from
External Files

Reading External Data Files Using SAS: Examples Handbook

4

Understanding Data Values
Once you know the structure of the data value that you want to read
or write, you must define to SAS whether your data value is numeric
or character and you must determine the method that you want SAS
to use to process that value.The coding of your DATA step statements
requires that you understand the type of data you are processing.
Instructions may also be needed to tell SAS how your data values are
represented. Informats and formats provide this information.

A numeric data value represents a number.This value may be simply
numbers or it may include characters such as a decimal point or a
minus sign.A value written in scientific notation is also considered a
numeric data value.

A character data value contains a character or sequence of characters.
These characters can be letters, numbers, or symbols.

Guidelines for defining numeric data and character data are fully
described in SAS Language Reference: Concepts, and SAS Language
Reference: Dictionary.

SAS defines two styles of representing raw data: standard and
nonstandard.

Standard data are character or numeric data values that can be read
with list, column, formatted, or named input.A number with a decimal
point or a preceding minus sign is considered a standard numeric data
value as is a value represented in scientific notation.

Nonstandard data include numeric data values that contain nonumeric
characters. Examples include

❐ numbers with dollar signs or commas or both

❐ dates and times

❐ packed decimal and integer binary numbers.

Character data that is considered nonstandard would include data that
was stored in EBCDIC but is being read on an ASCII system.

These values can be read only with informats or written only with
formats. Informats translate the nonstandard data into a form that can
be processed within SAS. Formats write out data values in a specific
form that may be different than the SAS internal representation of the
data value.

A date in the form mm/dd/yyyy is a nonstandard data value.To have
SAS understand this as a date, you must read the value with an
informat. SAS then translates this nonstandard data value to a
numeric valuethe number of days before or since January 1, 1960.
When writing it out, if a format was not used, the date would be
represented simply as the number of days before or since January 1,
1960.You need to apply a format to that data value to write it out in a
form that is easily understood as a date.

Output 1.3 PROC
PRINT of PAYMENTS
Data Set

This next example reads payment information.The three variables are
payer id and two payment dates.The payment dates are read with
formatted input with the MMDDYY10. informat.The PROC PRINT
report that follows shows a format applied to PAYDATE1 and not to
PAYDATE2.Therefore, the values of PAYDATE2 are presented the
way SAS stores themthe number of days since January 1, 1960.

Example 1.3 Working with Dates
data payments;

input id $4. @6 paydate1 mmddyy10.
@17 paydate2 mmddyy10.;

datalines;
QDSW 04/15/2002 06/15/2002
JDHA 5-2-02 8-1-2002
MPWZ 12012002 03042003
;;;;
proc print data=payments;

title 'Payment Dates';
format paydate1 mmddyy10.;

run;

Payment Dates
Obs id paydate1 paydate2
1 QDSW 04/15/2002 15506
2 JDHA 05/02/2002 15553
3 MPWZ 12/01/2002 15768

SAS language includes many informats and formats that can process
different kinds of data. Refer to SAS Language Reference: Dictionary
for complete specifications.

Reading Raw Data with the INPUT Statement
Your INPUT statement tells SAS how your raw data are structured.
There are several different styles of input and you must determine the
style that would best read your raw data.Your INPUT statement can
be written in a combination of styles.

The four styles of input in SAS are

❐ list input and a hybrid of list and formatted input called modified
list input

❐ column input

❐ formatted input

❐ named input.

Chapter 1: An Introduction to Reading Raw Data with SAS

5

Reading External Data Files Using SAS: Examples Handbook

6

Following are brief descriptions of the input styles. Complete
information on coding your INPUT statements is covered in SAS
Language Reference: Dictionary.The examples in this book use these
input styles to read raw data.

List input scans your input data lines for data values. Data values do
not have to be aligned in columns, but they do have to be separated
from one another by a space or other delimiter such as a comma (,).
List input requires only that you specify the variable names to be
assigned to the data values in your input data line. Unless defined
elsewhere in your DATA step, such as in a LENGTH or an ATTRIB
statement, a dollar sign ($) must follow the name of a character
variable.

The type of data that list input can read is restricted to specific
structures.The restrictions are as follows:

❐ Data values must be separated by at least one blank or by another
delimiter.

❐ A real placeholder, not a blank, must represent a missing value.A
single period (.) denotes the presence of a missing numeric value in
your raw data. For data values separated by a delimiter other than
a blank, the delimiter serves as a placeholder for the missing value.

❐ Processing character data values greater than the default character
length of 8 bytes requires additional specifications. One way to do
this is to define the length of the character variable prior to the
INPUT statement by using a LENGTH, INFORMAT, or
ATTRIB statement.Another way is by using modified list input
where a colon and informat follow the character variable name.
Modified list input is described later in this chapter.

❐ Specific options must be included if character data values can
contain the delimiter.

❐ Fields must be read in the order they appear in the data line, but
they do not have to occupy specific columns.

❐ Only standard data values can be read with list input. Use
modified list input to read nonstandard data values.

Example 1.1 presents a DATA step that reads data with list input.

Column input reads standard data values that are aligned in specific
columns in the data lines.The range in columns for a variable follows
the variable name. If the variable is character, place a dollar sign
between the variable name and the column range.Additional features
of column input include the following:

❐ Placeholders for missing values are not required.

❐ Data values can be read in the order you specify; it is not necessary
to specify in the INPUT statement the variables in the order they
appear in the data lines.

Reading Data Lines
with List Input

Reading Data Lines with
Column Input

Output 1.4 PROC
PRINT of STORES Data
Set

Chapter 1: An Introduction to Reading Raw Data with SAS

7

❐ Data values must be in the same columns in all the data lines.

❐ Data values or parts of data values can be reread.

❐ Leading blanks within the field are removed.

❐ Values do not have to be separated by blanks or other delimiters.

❐ Column input can read only standard character and numeric data
values.

❐ Character data values can contain embedded delimiters. For
example, SAS can read multiple words as one data value.

An example of column input follows.This example demonstrates that
columns can be reread.

Example 1.4 Reading Data Lines with Column Input
data stores;

input storeid $ 1-6 state $ 1-2
phone 7-16 areacode 7-9
zipcode 17-25 zip1 17-21 zip2 22-25;

datalines;
WI03819205553945549101234
WI62356085553823537007362
WI72007155554820550017654
WI54124145550087532003221
;;;;

PROC PRINT displays the STORES data set.

Stores in Wisconsin

Obs storeid state phone areacode zipcode zip1 zip2

1 WI0381 WI 9205553945 920 549101234 54910 1234
2 WI6235 WI 6085553823 608 537007362 53700 7362
3 WI7200 WI 7155554820 715 550017654 55001 7654
4 WI5412 WI 4145550087 414 532003221 53200 3221

Formatted input provides you with the most flexibility when reading
data lines.You can read both standard and nonstandard data with
formatted input. Pointer controls in the INPUT statement can direct
where SAS should read data for a specific variable and informats can
specify the structure of the data value.Additional features of
formatted input include the following:

❐ Character data values can contain embedded delimiters.

❐ Placeholders for missing values are not required.

Reading Data Lines
with Formatted Input

Reading External Data Files Using SAS: Examples Handbook

8

Output 1.5 PROC
PRINT of PATIENTS
Data Set

❐ Data values can be read in the order you specify; it is not necessary
to specify the variables in the order they appear in the data lines.
Pointer controls can direct where SAS should read data values.

❐ Data values or parts of data values can be reread.

An example of formatted input follows.The column pointer controls,
the at sign (@) and the plus sign (+), specify the position of the column
pointer as SAS reads a data line.The number following the @ tells
SAS to move to that column.The number following the + tells SAS to
move the pointer that number of columns.

Example 1.5 Reading Data Lines with Formatted Input
data patients;

input @1 id $5.

@1 initials $3. +3 ssn comma11.

@19 (test1-test3) (4. +1) ;
datalines;
AFG03 999-99-0393 381 1.3 5
TEY01 999-99-7362 3
REW17 999-99-4313 25 3 0
;;;;

PROC PRINT displays the PATIENTS data set.

Patients in Study
Obs id initials ssn test1 test2 test3
1 AFG03 AFG 999990393 381 1.3 5
2 TEY01 TEY 999997362 . . 3
3 REW17 REW 999994313 25 3.0 0

Modified list input is a hybrid between list input and formatted input.
As with simple list input, this style is restricted to reading variables in
order.The data values do not have to be aligned in columns, but they
do have to be separated from one another by a space or other
delimiter such as a comma.Additionally, you can include informats
that allow you to read more complex data values than you can read
with simple list input. For example, modified list input can read
nonstandard numeric data and character data values larger than 8
bytes.

8

Starting in column 1, read a
character variable that is five
bytes in length. After reading
the variable, the pointer is
positioned at column 6.

Move the pointer back to
column 1 and reread the data in
columns 1-3. Move the pointer
to the right three columns and
read the next variable.

Move the line pointer to
column 19. Read the three test
values with the 4. informat. Skip
one space between each of the
test values.

Reading Data Lines
with Modified List Input

Format modifiers and informats added to the INPUT statement
enable you to read more complex data values than you can read with
simple list input.The three format modifiers are:

❐ The ampersand (&) format modifier following the variable name
tells SAS to read character data values that contain embedded
delimiters. SAS stops reading the character data value when it
encounters more than one consecutive delimiter.

❐ The colon (:) format modifier and an informat following the
variable name tell SAS to read the data value with the informat
and to read until it encounters the specified delimiter or reaches
the width specified by the informat, whichever comes first.

❐ The tilde (~) format modifier following the variable name tells
SAS to treat single quotation marks, double quotation marks, and
delimiters within the data value as part of the data value.

An example of a DATA step that uses modified list input follows.

Example 1.6. Reading Data Lines with Modified List Input
data survey;

infile datalines

delimiter=',';

input name : $15.

comments ~ $50.;
datalines;
Mary Ann,More restrictions on emails
Scott,Did not like slogan "Our Team is Tops"
Luke,Would like to have comp time
Rosa,Would like manager's input on reports
;;;;

PROC PRINT displays the SURVEY data set.

Survey Results
Obs name comments
1 Mary Ann More restrictions on emails
2 Scott Did not like slogan "Our Team is Tops"
3 Luke Would like to have comp time
4 Rosa Would like manager's input on reports

Output 1.6 PROC
PRINT of SURVEY
SAS Data Set

Chapter 1: An Introduction to Reading Raw Data with SAS

9

Indicate that raw data is part of
the job stream and follows the
DATALINES statement.

Specify that commas separate
the two fields in the data lines.

Read to the delimiter or read 15
bytes, whichever occurs first.

Read up to 50 bytes. Treat
single quotation marks, double
quotation marks, and delimiters
within the data value as part of
the data value.

Reading External Data Files Using SAS: Examples Handbook

10

Output 1.7 PROC
PRINT of GRADES
Data Set

Named input requires that the variable name be part of the data line.
The variable name followed by an equal sign precedes the data value.
Features of named input include:

❐ Named input can be used in combination with other input styles.
Once you start named input, you must stay in that style to read the
remaining variables.

❐ Only the variables named in the INPUT statement are read.The
named variables that exist in data lines but not in the INPUT
statement are not included in the output data set.They are,
however, identified in the SAS log as not being defined. SAS sets
the automatic error variable, _ERROR_, to 1 when named
variables appear in the data lines but SAS does not find them in
the INPUT statement.

❐ Named input can read only standard data values.

❐ As with simple list input, SAS defaults to assigning the lengths of
character variables to 8 bytes. If your character data value is
longer than 8 bytes, specify a LENGTH or ATTRIB statement
before the INPUT statement.

An example of reading data lines with named input follows.This
example demonstrates that only the variables specified in the INPUT
statement are written to the output data set.

Example 1.7 Reading Data Lines with Named Input
data grades;

length name $ 15;

input name=$ math=;
datalines;
name=Linda english=95 math=94 science=90
name=Susan math=88 english=91 science=90
name=Mary Louise math=90 english=84 science=81
;;;;

PROC PRINT displays the GRADES data set.

Math Grades
Obs name math
1 Linda 94
2 Susan 88
3 Mary Louise 90

Since the length of NAME is 15
and greater than the default of
8, place a LENGTH statement
before the INPUT statement.

For named input, follow each
variable name with an equal
sign (=). If the variable is
character, follow the equal sign
with a dollar sign ($). Read two
of the four variables.

Reading Data Lines
with Named Input

A Checklist for Specifying Your External File
SAS follows the instructions you specify in your statements when
reading external files.With so much flexibility in the SAS language,
you may have to specify several items to successfully read your
external file.

The following list presents some of the items you may need to consider
when coding your program.

How are the data values arranged in the data lines?

✔ Not column aligned, with delimiters separating the values

✔ Column aligned

What types of data values are you reading?

✔ Character

✔ Numeric

✔ Nonstandard numeric data

How are missing values represented?

✔ Blanks

✔ A character such as a period (.)

✔ A delimiter, if delimiters separate data values

Are the data values fixed or variable in length? If variable, what is the
maximum length? If no delimiters separate data values, how do you
determine the length of your data value that is variable in length?

How many data lines contain the information for one observation?

✔ One data line per observation

✔ Multiple data lines per observation

✔ Multiple observations per data line

What are the attributes of your external file?

✔ Variable-length records

✔ Fixed-length records

✔ Record length and block size

Are all your data lines structured the same way? Do you need to
examine the data line to determine what type of data line it is before
you completely read it?

Are all your data lines in one file? Are they in multiple files?

Is your external file on your local system or do you need to connect to
a remote system to read the file?

Chapter 1: An Introduction to Reading Raw Data with SAS

11

Reading External Data Files Using SAS: Examples Handbook

12

