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1.1   Types of Models That Produce Data 
Data sets presented in this book come from three types of sources: (1) designed experiments,  

(2) sample surveys, and (3) observational studies. Virtually all data sets are produced by one of 

these three sources.  

In designed experiments, some form of treatment is applied to experimental units and responses 

are observed. For example, a researcher might want to compare two or more drug formulations 

to control high blood pressure. In a human clinical trial, the experimental units are volunteer 

patients who meet the criteria for participating in the study. The various drug formulations are 

randomly assigned to patients and their responses are subsequently observed and compared. In 

sample surveys, data are collected according to a plan, called a survey design, but treatments are 
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not applied to units. Instead, the units, typically people, already possess certain attributes such 

as age or occupation. It is often of interest to measure the effect of the attributes on, or their 

association with, other attributes. In observational studies, data are collected on units that are 

available, rather than on units chosen according to a plan. An example is a study at a veterinary 

clinic in which dogs entering the clinic are diagnosed according to their skin condition and 

blood samples are drawn for measurement of trace elements. 

The objectives of a project, the types of resources that are available, and the constraints on what 

kind of data collection is possible all dictate your choice of whether to run a designed 

experiment, a sample survey, or an observational study. Even though the three have striking 

differences in the way they are carried out, they all have common features leading to a common 

terminology. For example, the terms factor, level, and effect are used alike in design 

experiments, sample surveys, and observational studies. In designed experiments, the treatment 

condition under study (e.g., from examples we decide to use) is the factor and the specific 

treatments are the levels. In the observational study, the dogs’ diagnosis is the factor and the 

specific skin conditions are the levels. In all three types of studies, each level has an effect; that 

is, applying a different treatment in a designed experiment has an effect on the mean response, 

or the different skin conditions show differences in their respective mean blood trace amounts. 

These concepts are defined more precisely in subsequent sections. 

In this book, the term study refers to whatever type of project is relevant: designed experiment, 

sample survey, or observational study.  

1.2   Statistical Models  
Statistical models for data are mathematical descriptions of how the data conceivably can be 

produced. Models consist of at least two parts: (1) a formula relating the response to all 

explanatory variables (e.g., effects), and (2) a description of the probability distribution assumed 

to characterize random variation affecting the observed response.  

Consider the experiment with five drugs (say, A, B, C, D, and E) applied to subjects to control 

blood pressure. Let μA denote the mean blood pressure for subjects treated with drug A, and 

define μB, μC, μD, and μE similarly for the other drugs. The simplest model to describe how 

observations from this experiment were produced for drug A is YA = μA+ e. That is, a blood 

pressure observation (YA) on a given subject treated with drug A is equal to the mean of drug A 

plus random variation resulting from whatever is particular to a given subject other than drug A. 

The random variation, denoted by the term e, is called the error in Y. It follows that e is a 

random variable with a mean of zero and a variance of σ2. This is the simplest version of a 

linear statistical model—that is, a model where the observation is the sum of terms on the 

right-hand side of the model that arise from treatment or other explanatory factors plus random 

error.   

The model YA = μA + e is called a means model because the only term on the right-hand side of 

the model other than random variation is a treatment mean. Note that the mean is also the 

expected value of YA . The mean can be further modeled in various ways. The first approach 

leads to an effects model. You can define the effect of drug A as αA such that μA = μ + αA, 

where μ is defined as the intercept. This leads to the one-way analysis of variance (ANOVA) 

model YA = μ + aA + e, the simplest form of an effects model. Note that the effects model has 

more parameters (in this case 6, μ and the αi) than factor levels (in this case 5). Such models are 

said to be over-parameterized because there are more parameters to estimate than there are 

unique items of information. Such models require some constraint on the solution to estimate 
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the parameters. Often, in this kind of model, the constraint involves defining μ as the overall 

mean implying αA = μA – μ and thus 

0

E

i

i A

α

=

=∑  

 

This is called a sum-to-zero constraint. Its advantage is that if the number of observations per 

treatment is equal, it is easy to interpret. However, for complex designs with unequal 

observations per treatment, the sum-to-zero constraint becomes intractable, whereas alternative 

constraints are more generally applicable. SAS procedures use the constraint that the last factor 

level, in this case αE, is set to zero. In general, for effects models, the estimate of the mean μA = 

μ + αA  is unique and interpretable, but the individual components μ and the αi may not be. 

Another approach to modeling μA, which would be appropriate if levels A through E 

represented doses, or amounts, of a drug given to patients, is to use linear regression. 

Specifically, let XA be the drug dose corresponding to treatment A, XB be the drug dose 

corresponding to treatment B, and so forth. Then the regression model, μA = β0 + β1XA, could be 

used to describe a linear increase (or decrease) in the mean blood pressure as a function of 

changing dose. This gives rise to the statistical linear regression model YA = β0 + β1XA + e. 

Now suppose that each drug (or drug dose) is applied to several subjects, say, n of them for each 

drug. Also, assume that the subjects are assigned to each drug completely at random. Then the 

experiment is a completely randomized design. The blood pressures are determined for each 

subject. Then YA1 stands for the blood pressure observed on the first subject treated with drug A. 

In general, Yij stands for the observation on the jth subject treated with drug i. Then you can 

write the model equation Yij = μ + eij, where eij is a random variable with mean zero and 

variance σ2. This means that the blood pressures for different subjects receiving the same 

treatment are not all the same. The error, eij, represents this variation. Notice that this model 

uses the simplifying assumption that the variance of eij is the same, σ2, for each drug. This 

assumption may or may not be valid in a given situation; more complex models allow for 

unequal variances among observations within different treatments. Also, note that the model can 

be elaborated by additional description of μi—e.g., as an effects model μi = μ + αi or as a 

regression model μi = β0 + β1Xi. Later in this section, more complicated versions of modeling μi 

are considered. 

An alternative way of representing the models above describes them through an assumed 

probability distribution. For example, the usual linear statistical model for data arising from 

completely randomized designs assumes that the errors have a normal distribution. Thus, you 

can write the model Yij = μi + eij equivalently as Yij ~ N(μi ,σ
2) if the eij are assumed iid N(0,σ2). 

Similarly, the one-way ANOVA model can be written as Yij ~ N(μ +αi ,σ
2) and the linear 

regression model as Yij ~ N(β0 +β1Xi ,σ
2). This is important because it allows you to move easily 

to models other than linear statistical models, which are becoming increasingly important in a 

variety of studies.  

One important extension beyond linear statistical models involves cases in which the response 

variable does not have a normal distribution. For example, suppose in the drug experiment that 

ci clinics are assigned at random to each drug, nij subjects are observed at the jth clinic assigned 

to drug i, and each subject is classified according to whether a medical event such as a stroke or 

heart attack has occurred or not. The resulting response variable Yij can be defined as the 

number of subjects having the event of interest at the ijth  clinic, and Yij ~ Binomial(πi, nij), 

where πi is the probability of a subject showing improvement when treated with drug i. While it 
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is possible to fit a linear model such as pij = μi + eij, where pij = yij/nij is the sample proportion 

and μi =πi, a better model might be ( )1 1 i

i
e

μ
π

−

= + and μi = μ + αi or μi = β0 + β1Xi depending 

on whether the effects-model or regression framework discussed above is more appropriate. In 

other contexts, modeling πi = Φ(μi), where μi = μ + αi or μi= β0 + β1Xi, may be preferable, e.g., 

because interpretation is better connected to subject matter under investigation. The former are 

simple versions of logistic ANOVA and logistic regression models, and the latter are simple 

versions of probit ANOVA and regression. Both are important examples of generalized linear 

models. 

Generalized linear models use a general function of a linear model to describe the expected 

value of the observations. The linear model is suggested by the design and the nature of the 

explanatory variables, similar to the rationale for ANOVA or regression models. The general 

function (which can be linear or nonlinear) is suggested by the probability distribution of the 

response variable. Note that the general function can be the linear model itself and the 

distribution can be normal; thus, “standard” ANOVA and regression models are in fact special 

cases of generalized linear models. Chapter 14 discusses mixed model forms of generalized 

linear models.   

In addition to generalized linear models, another important extension involves nonlinear 

statistical models. These occur when the relationship between the expected value of the random 

variable and the treatment, explanatory, or predictor variables is nonlinear. Generalized linear 

models are a special case, but they require a linear model embedded within a nonlinear function 

of the mean. Nonlinear models may use any function, and may occur when the response 

variable has a normal distribution. For example, increasing amounts of fertilizer nitrogen (N) 

are applied to a crop. The observed yield can be modeled using a normal distribution—that is, 

Yij ~ N(μi, σ
2). The expected value of Yij in turn is modeled by μi = αi exp{–exp(βi – γiXi)}, 

where Xi is the ith level or amount of fertilizer N, αi is the asymptote for the ith level of N, γi is 

the slope, and βi / γi is the inflection point. This is a Gompertz function that models a nonlinear 

increase in yield as a function of N: the response is small to low N, then increases rapidly at 

higher N, then reaches a point of diminishing returns and finally an asymptote at even higher N. 

Chapter 15 discusses mixed model forms of nonlinear models. 

1.3   Fixed and Random Effects 
The previous section considered models of the mean involving only an assumed distribution of 

the response variable and a function of the mean involving only factor effects that are treated as 

known constants. These are called fixed effects. An effect is called fixed if the levels in the 

study represent all possible levels of the factor, or at least all levels about which inference is to 

be made. Note that this includes regression models where the observed values of the 

explanatory variable cover the entire region of interest. In the blood pressure drug experiment, 

the effects of the drugs are fixed if the five specific drugs are the only candidates for use and if 

conclusions about the experiment are restricted to those five drugs. You can examine the 

differences among the drugs to see which are essentially equivalent and which are better or 

worse than others. In terms of the model Yij = μ + αi + eij, the effects αA through αE represent 

the effects of a particular drug relative to the intercept μ. The parameters αA, αB, ..., αE represent 

fixed, unknown quantities. 

Data from the study provide estimates about the five drug means and differences among them. 

For example, the sample mean from drug A, 
A

y
i

 is an estimate of the population mean μA.  
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Notation note: When data values are summed over a subscript, that subscript is replaced by a 

period. For example, 
A

y
i

 stands for 
1 2

...

A A An
y y y+ + + . A bar over the summed value denotes 

the sample average. For example, 1

A A
y n y

−

=
i i

. 

The difference between two sample means, such as 
A B

y y−

i i

, is an estimate of the difference 

between two population means μA – μB. The variance of the estimate 
A

y
i

 is 1 2
n σ
−  and the 

variance of the estimate 
A B

y y−

i i

 is 2σ2/n. In reality, σ2 is unknown and must be estimated. 

Denote the sample variance for drug A by 2

A
s , the sample variance for drug B by 2

,
B

s  and 

similarly for drugs C, D, and E. Each of these sample variances is an estimate of σ2 with n–1 

degrees of freedom. Therefore, the average of the sample variances, 2 2 2 2( ... ) 5,
A B E

s s s s= + + +  is 

also an estimate of σ2 with 5(n–1) degrees of freedom. You can use this estimate to calculate 

standard errors of the drug sample means, which can in turn be used to make inferences about 

the drug population means. For example, the standard error of the estimate 
A B

y y−

i i

 is 2
2s n . 

The confidence interval is 2( ) 2
A B

y y t s n
α

− ±
i i

, where tα is the α-level, two-sided critical value 

of the t-distribution with 5(n–1) degrees of freedom. 

Factor effects are random if they are used in the study to represent only a sample (ideally, a 

random sample) of a larger set of potential levels. The factor effects corresponding to the larger 

set of levels constitute a population with a probability distribution. The last statement bears 

repeating because it goes to the heart of a great deal of confusion about the difference between 

fixed and random effects: a factor is considered random if its levels plausibly represent a larger 

population with a probability distribution. In the blood pressure drug experiment, the drugs 

would be considered random if there are actually a large number of such drugs and only five 

were sampled to represent the population for the study. Note that this is different from a 

regression or response surface design, where doses or amounts are selected deliberately to 

optimize estimation of fixed regression parameters of the experimental region. Random effects 

represent true sampling and are assumed to have probability distributions.  

Deciding whether a factor is random or fixed is not always easy and can be controversial. 

Blocking factors and locations illustrate this point. In agricultural experiments blocking often 

reflects variation in a field, such as on a slope with one block in a strip at the top of the slope, 

one block on a strip below it, and so forth, to the bottom of the slope. One might argue that 

there is nothing random about these blocks. However, an additional feature of random effects is 

exchangeability. Are the blocks used in this experiment the only blocks that could have been 

used, or could any set of blocks from the target population be substituted? Treatment levels are 

not exchangeable: you cannot estimate the effects of drugs A through E unless you observe 

drugs A though E. But you could observe them on any valid subset of the target population. 

Similar arguments can be made with respect to locations. Chapter 2 considers the issue of 

random versus fixed blocks in greater detail. Chapter 6 considers the multi-location problem.  

When the effect is random, we typically assume that the distribution of the random effect has 

mean zero and variance σa
2, where the subscript a refers to the variance of the treatment effects; 

if the drugs were random, it would denote the variance among drug effects in the population of 

drugs. The linear statistical model can be written Yij = μ + ai + eij, where μ represents the mean 

of all drugs in the population, not just those observed in the study. Note that the drug effect is 

denoted ai rather than αi as in the previous model. A frequently used convention, which this 

book follows, is to denote fixed effects with Greek letters and random effects with Latin letters. 

Because the drugs in this study are a sample, the effects ai are random variables with mean 0 

and variance σa
2. The variance of Yij is Var[Yij] = Var[μ + ai + eij] = σa

2 + σ2.  
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1.4   Mixed Models 
Fixed and random effects were described in the preceding section. A mixed model contains 

both fixed and random effects. Consider the blood pressure drug experiment from the previous 

sections, but suppose that we are given new information about how the experiment was 

conducted. The n subjects assigned to each drug treatment were actually identified for the study 

in carefully matched groups of five. They were matched for criteria such that they would be 

expected to have similar blood pressure history and response. Within each group of five, drugs 

were assigned so that each of the drugs A, B, C, D, and E was assigned to exactly one subject. 

Further assume that the n groups of five matched subjects each was drawn from a larger 

population of subjects who potentially could have been selected for the experiment. The design 

is a randomized blocks with fixed treatment effects and random block effects. 

The model is Yij = μ + αi + bj + eij, where μ, αA, ..., αE represent unknown fixed parameters—

intercept and the five drug treatment effects, respectively—and the bj and eij are random 

variables representing blocks (matched groups of five) and error, respectively. Assume that the 

random variables bj and eij have mean zero and variances σb
2 and σ2, respectively. The variance 

of Yij of the randomly chosen matched set j assigned to drug treatment i is Var[Yij] = σa
2 + σ2. 

The difference between two drug treatment means (say, drugs A and B) within the same 

matched group is YAj – YBj. It is noteworthy that the difference expressed in terms of the model 

equation is YAj – YBj = αA – αB + eAj – eBj, which contains no matched group effect. The term bj 

drops out of the equation. Thus, the variance of this difference is 2σ2/n. The difference between 

drug treatments can be estimated free from matched group effects. On the other hand, the mean 

of a single drug treatment, 
A

y
i

 has variance (σb
2 + σ2)/n, which does involve the variance 

among matched groups. 

The randomized block design is just the beginning with mixed models. Numerous other 

experimental and survey designs and observational study protocols produce data for which 

mixed models are appropriate. Some examples are nested (or hierarchical) designs, split-plot 

designs, clustered designs, and repeated measures designs. Each of these designs has its own 

model structure depending on how treatments or explanatory factors are associated with 

experimental or observational units and how the data are recorded. In nested and split-plot 

designs there are typically two or more sizes of experimental units. Variances and differences 

between means must be correctly assessed in order to make valid inferences.  

Modeling the variance structure is arguably the most powerful and important single feature of 

mixed models, and what sets it apart from conventional linear models. This extends beyond 

variance structure to include correlation among observations. In repeated measures designs, 

discussed in Chapter 5, measurements taken on the same unit close together in time are often 

more highly correlated than measurements taken further apart in time. The same principle 

occurs in two dimensions with spatial data (Chapter 11). Care must be taken to build an 

appropriate covariance structure into the model. Otherwise, tests of hypotheses, confidence 

intervals, and possibly even the estimates of treatment means themselves may not be valid. The 

next section surveys typical mixed model issues that are addressed in this book. 
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1.5   Typical Studies and the Modeling Issues They Raise 
Mixed model issues are best illustrated by way of examples of studies in which they arise. This 

section previews six examples of studies that call for increasingly complex models.   

1.5.1  Random Effects Model 
In the first example, 20 packages of ground beef are sampled from a larger population. Three 

samples are taken at random from within each package. From each sample, two microbial 

counts are taken. Suppose you can reasonably assume that the log microbial counts follow a 

normal distribution. Then you can describe the data with the following linear statistical model: 

Yijk = μ + pi + s(p)ij + eijk 

 
where Yijk denotes the kth log microbial count for the jth sample of the ith package. Because 

packages represent a larger population with a plausible probability distribution, you can 

reasonably assume that package effects, pi, are random. Similarly, sample within package 

effects, s(p)ij, and count, or error, effects, eijk, are assumed random. Thus, the pi, s(p)ij, and eijk 

effects are all random variables with mean zero and variances σp
2, σs

2, and σ2, respectively. This 

is an example of a random effects model. Note that only the overall mean is a fixed effects 

parameter; all other model effects are random. 

The modeling issues are as follows: 

1.  How should you estimate the variance components σp
2, σs

2, and σ2? 

2.  How should you estimate the standard error of the estimated overall mean, μ̂ ? 

3.  How should you estimate random model effects pi, or s(p)ij if these are needed? 

 

Mixed model methods primarily use three approaches to variance component estimation: (1) 

procedures based on expected mean squares from the analysis of variance (ANOVA); (2) 

maximum likelihood (ML); and (3) restricted maximum likelihood (REML), also known as 

residual maximum likelihood. Of these, ML is usually discouraged, because the variance 

component estimates are biased downward, and hence so are the standard errors computed from 

them. This results in excessively narrow confidence intervals whose coverage rates are below 

the nominal 1–α level, and upwardly biased test statistics whose Type I error rates tend to be 

well above the nominal α level. The REML procedure is the most versatile, but there are 

situations for which ANOVA procedures are preferable. PROC MIXED in SAS uses the REML 

approach by default, but provides optional use of ANOVA and other methods when needed. 

Chapter 4 presents examples where you would want to use ANOVA rather than REML 

estimation.  

The estimate of the overall mean in the random effects model for packages, samples, and counts 

is ˆ

ijky y IJKμ = =∑iii

, where I denotes the number of packages (20), J is the number of 

samples per package (3), and K is the number of counts per sample (2). Substituting the model 

equations yields ( ( ) )i ij ijkp s p e IJKμ + + +∑ , and taking the variance yields 

( ) ( )2 2 2 2ˆVar[ ] Var ( ) ( )
i ij ijk p sp s p e IJK JK K IJKμ σ σ σ⎡ ⎤= + + = + +⎣ ⎦∑  
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If you write out the ANOVA table for this model, you can show that you can estimate Var[ μ̂ ] 

byMS(package) ( ).IJK  Using this, you can compute the standard error of μ̂  by 

MS(package) ( ),IJK  and hence the confidence interval for μ becomes  

, ( ) MS(package) ( )df packagey t IJK
α

±
iii

  

 

where α is the two-sided critical value from the t distribution and df(package) are the degrees of 

freedom associated with the package source of variation in the ANOVA table.  

If we regard package effects as fixed, you would estimate its effect as ˆ

i i
p y y= −

ii iii

. However, 

because the package effects are random variables, the best linear unbiased predictor (BLUP)  

[ ] [ ] [ ] [ ]( ) ( )
1

ˆE | Cov , Var
i i i i i i
p y E p p y y y y

−

= + −
ii ii ii iii

  

 

is more efficient. This leads to the “BLUP”  

( )

2

2 2 2
ˆ ( )

/

p

i i

p s

p y y
JK K JK

σ

σ σ σ

⎛ ⎞
⎜ ⎟= −
⎜ ⎟+ +⎝ ⎠

ii iii

 

 

When estimates of the variance components are used, the above is not a true BLUP, but an 

estimated BLUP, often called an EBLUP. Best linear unbiased predictors are used extensively 

in mixed models and are discussed in detail in Chapters 6 and 8.  

1.5.2  Multi-location Example 
The second example appeared in Output 3.7 of SAS System for Linear Models, Fourth Edition 

(Littell et al. 2002). The example is a designed experiment with three treatments observed at 

each of eight locations. At the various locations, each treatment is assigned to between three and 

12 randomized complete blocks. A possible linear statistical model is 

Yijk = μ + Li + b(L)ij + τk + (τL)ik + eijk 

 

where Li is the ith location effect, b(L)ij is the ijth block within location effect, τk is the kth  

treatment effect, and (τL)ik is the ikth location by treatment interaction effect. The modeling 

issues are as follows: 

1. Should location be a random or fixed effect? 

2. Depending on issue 1, the F-test for treatment depends on MS(error) if location effects 

are fixed or MS(location × treatment) if location effects are random. 

3. Also depending on issue 1, the standard error of treatment means and differences are 

affected. 

 

The primary issue is one of inference space—that is, the population to which the inference 

applies. If location effects are fixed, then inference applies only to those locations actually 

involved in the study. If location effects are random, then inference applies to the population 

represented by the observed locations. Another way to look at this is to consider issues 2 and 3. 

The expected mean square for error is σ2, whereas the expected mean square for location × 

treatment is σ2 + kσTL
2, where σTL

2 is the variance of the location × treatment effects and k is a 
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constant determined by a somewhat complicated function of the number of blocks at each 

location. The variance of a treatment mean is σ2 / (number of observations per treatment) if 

location effects are fixed, but it is [σ2 + K(σTL
2 + σL

2)] / (obs/trt) if location effects are random. 

The inference space question, then, depends on what sources you believe contribute to 

uncertainty. If you believe all uncertainty comes from variation among blocks and experimental 

units within locations, you believe locations are fixed. If, on the other hand, you believe that 

variation among locations contributes additional uncertainty, then you believe locations are 

random. Issues of this sort first appear in Chapter 2, and reappear in various forms throughout 

the rest of the book (e.g., Chapters 4 and 6).  

1.5.3  Repeated Measures and Split-Plot Experiments 
Because repeated measures and split-plot experiments share some characteristics, they have 

some modeling issues in common. Suppose that three drug treatments are randomly assigned to 

subjects, ni to the ith treatment. Each subject is observed at 1, 2, ..., 7, and 8 hours post-

treatment. A possible model for this study is 

Yijk = μ + αi + s(α)ij + τk + (aτ)ik + eijk 

 

where α represents treatment effects, τ represents time (or hour) effects, and s(α) represent the 

random subject within treatment effects. The main modeling issues here are as follows: 

1. The experimental unit for the treatment effect (subject) and for time and time ×  

treatment effects (subject ×  time) are different sizes, and hence these effects require 

different error terms for statistical inference. This is a feature common to split-plot and 

repeated measures experiments. 

2. The errors, eijk, are correlated within each subject. How best to model correlation and 

estimate the relevant variance and covariance parameters? This is usually a question 

specific to repeated measures experiments. 

3. How are the degrees of freedom for confidence intervals and hypothesis tests affected? 

4. How are standard errors affected when estimated variance and covariance components 

are used? 

 

Chapter 4 discusses the various forms of split-plot experiments and appropriate analysis using 

PROC MIXED. Repeated measures use similar strategies for comparing means. Chapter 5 

builds on Chapter 4 by adding material specific to repeated measures data. Chapter 5 discusses 

procedures for identifying and estimating appropriate covariance matrices. Degree of freedom 

issues are first discussed in Chapter 2 and appear throughout the book. Repeated measures, and 

correlated error models in general, present special problems to obtain unbiased standard errors 

and test statistics. These issues are discussed in detail in Chapter 5. Spatial models are also 

correlated error models and require similar procedures (Chapter 11). 

1.5.4  Fixed Treatment, Random Block, Non-normal (Binomial)  
          Data Example 
The fourth example is a clinical trial with two treatments conducted at eight locations. At each 

location, subjects are assigned at random to treatments; nij subjects are assigned to treatment i at 

location j. Subjects are observed to have either favorable or unfavorable reactions to the 

treatments. For the ijth treatment-location combination, Yij subjects have favorable reactions, or, 

in other words, pij = Yij/nij is the proportion of favorable reactions to treatment i at location j.  
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This study raises the following modeling issues: 

1. Clinic effects may be random or fixed, raising inference space questions similar to those 

just discussed. 

2. The response variable is binomial, not normal. 

3. Because of issue 2, the response may not be linear in the parameters, and the errors may 

not be additive, casting doubt on the appropriateness of a linear statistical model. 

4. Also as a consequence of issue 2, the errors are a function of the mean, and are 

therefore not homogeneous. 

A possible model for this study is a generalized linear mixed model. Denote the probability of 

favorable reaction to treatment i at location j by πij. Then Yij  ~ Binomial(nij,πij). The generalized 

linear model is 

log ( )
1

ij

i j ij
ij

c c

π
μ τ τ

π

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= + + +

−

 

 

or alternatively  

( )( )

( )

( )

1

11
i j ijc c

i j ij

i j ij

c c

ij c c
e

e

e
μ τ τ

μ τ τ

μ τ τ
π

− + + +

+ + +

+ + +
=

+

=

+
 

 

where ci are random clinic effects,τj are fixed treatment effects, and (cτ)ij are random clinic × 

treatment interaction effects. Generalized linear mixed models are discussed in Chapter 14. 

1.5.5  Repeated Measures with Non-normal (Count) Data 
The fifth example appears in Output 10.39 of SAS System for Linear Models, Fourth Edition 

(Littell et al. 2002). Two treatments are assigned at random to subjects. Each subject is then 

observed at four times. In addition, there is a baseline measurement and the subject’s age. At 

each time of measurement, the number of epileptic seizures is counted. The modeling issues 

here are as follows: 

1. Counts are not normally distributed. 

2. Repeated measures raise correlated error issues similar to those discussed previously. 

3. The model involves both factor effects (treatments) and covariates (regression) in the 

 same model, i.e., analysis of covariance. 

 

Chapter 7 introduces analysis of covariance in mixed models. Count data in conjunction with 

repeated measures lead to generalized linear mixed models discussed in Chapter 14.  

1.5.6  Repeated Measures and Split Plots with Effects Modeled by  
          Nonlinear Regression Model 
The final example involves five treatments observed in a randomized block experiment. Each 

experimental unit is observed at several times over the growing season and percent emergence 

is recorded. Figure 1.1 shows a plot of the percent emergence by treatment over the growing 

season. Like Example 1.5.3, this is a repeated measures experiment, but the structure and model  
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equation are similar to split-plot experiments, so similar principles apply to mixed model 

analysis of these data. 

Figure 1.1  Treatment Means of Sawfly Data over Time 

 

 

The modeling issues are as follows: 

1. The “usual” mixed model and repeated measures issues discussed in previous 

 examples; plus 

2. The obvious nonlinear function required to describe percent emergence as a function of 

 date. 

 

A possible model for this experiment is 

Yijk = μij + wij + eijk 

 

where μij is the ijth treatment × date mean, wij is the random whole-plot error effect, and eijk are 

the repeated measures errors, possibly correlated. The Gompertz model described earlier is a 

suitable candidate to model μij as a function of date j for treatment i. The model described here 

is an example of a nonlinear mixed model. These are discussed in Chapter 15.  

1.6    A Typology for Mixed Models 
From the examples in the previous section, you can see that contemporary mixed models cover 

a very wide range of possibilities. In fact, models that many tend to think of as distinct are, in 

reality, variations on a unified theme. Indeed, the model that only a generation ago was 

universally referred to as the “general linear model”—fixed effects only, normal and 

independent errors, homogeneous variance—is now understood to be one of the more restrictive 

special cases among commonly used statistical models. This section provides a framework to 
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view the unifying themes, as well as the distinctive features, of the various modeling options 

under the general heading of “mixed models” that can be implemented with SAS. 

As seen in the previous example, the two main features of a statistical model are (1) a 

characterization of the mean, or expected value of the observations, as a function of model 

parameters and constants that describe the study design, and (2) a characterization of the 

probability distribution of the observations. The simplest example is a one-factor means 

model where the expected value of the observations on treatment i is μi and the distribution is 

N(μi, σ
2), which leads to the linear statistical model Yij = μi + eij. The generalized linear mixed 

model from the fifth example of Section 1.5 provides a more complex example: the mean model 

is  

( )( )( )
1 1

i j ijc c

ij
e

μ τ τ

π

− + + +

= +

 

  

and the distribution has two parts—that of the random effects cj and (cτ)ij, and that of the 

observations given the random effects, i.e.,  Yij | cj, (cτ)ij  ~ Binomial(nij,πij). But each model 

follows from the same general framework. 

Appendix 1 provides a more detailed presentation of mixed model theory. In what follows we 

present an admittedly simplistic overview that uses matrix notation which is developed more 

fully at appropriate points throughout the book and in the appendix.  

Models have two sets of random variables whose distributions we need to characterize: Y, the 

vector of observations, and u, the vector of random model effects. The models considered in 

this book assume that the random model effects follow a normal distribution, so that in general 

we assume u ~ MVN(0,G)—that is, u has a multivariate normal distribution with mean zero 

variance-covariance matrix G. In a simple variance components model, such as the randomized 

block model given in Section 1.4, G = σb
2
I.  

By “mean” of the observations we can refer to one of two concepts: either the unconditional 

mean, E[Y] or the conditional mean of the observations given the random model effects, 

E[Y|u]. In a fixed effects model, the distinction does not matter, but for mixed models it clearly 

does. Mixed models are mathematical descriptions of the conditional mean in terms of fixed 

effect parameters, random model effects, and various constants that describe the study design. 

The general notation is as follows: 

β is the vector of fixed effect parameters. 

X is the matrix of constants that describe the structure of the study with respect to the fixed 

effects. This includes the treatment design, regression explanatory or predictor variables, etc. 

Z is the matrix of constants that describe the study’s structure with regard to random effects. 

This includes the blocking design, explanatory variables in random coefficient designs (see 

Chapter 8), etc. 

The mixed model introduced in Section 1.4, where observations are normally distributed, 

models the conditional mean as E[Y|u] = Xβ + Zu, and assumes that the conditional distribution 

of the observations given the random effects is Y|u ~ MVN(Xβ + Zu, R), where R is the  
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variance-covariance matrix of the errors. In simple linear models where errors are independent 

with homogeneous variances, R = σ2
I. However, in heterogeneous error models (presented in 

Chapter 9) and correlated error models such as repeated measures or spatial models, the 

structure of R becomes very important.  

In the most general mixed model included in SAS, the nonlinear mixed model (NLMM), the 

conditional mean is modeled as a function of X, Z, β, and u with no restrictions; i.e., h(X, Z, β, 

u) models E[Y|u]. Each successive model is more restrictive. The class of generalized linear 

mixed models (GLMM) has a linear model embedded within a nonlinear function—that is, 

g(E[Y|u]) is modeled by Xβ + Zu. In NLMMs and GLMMs, the observations are not 

necessarily assumed to be normally distributed. The linear mixed model (LMM) does assume 

normally distributed observations and models the conditional mean directly—that is, you 

assume E[Y|u] = Xβ + Zu. Each mixed model has a fixed effects model analog, which means 

that there are no random model effects and hence Z and u no longer appear in the model, and 

the model now applies to E[Y]. The term “mixed model” is often associated with the LMM—it 

is the “standard” mixed model that is implemented in PROC MIXED. However, the LMM is a 

special case. The next section presents a flowchart to associate the various models with 

appropriate SAS software. 

Table 1.1 shows the various models and their features in terms of the model equation used for 

the conditional mean and the assumed distribution of the observations. 

Table 1.1  Summary of Models, Characteristics, and Related Book Chapters  
 

Type of Model Model of Mean Distribution Chapter 

NLMM h(X, β, Z, u) u, Y|u general 15 

GLMM g–1(Xβ + Zu) Y|u general, u normal 14 

LMM Xβ + Zu u, Y|u normal 2–11 

NLM h(X, β) Y normal 15 

GLM g–1(Xβ) Y general 12 

LM Xβ Y normal 2, 4 

 

1.7    Flowcharts to Select SAS Software to Run Various  
         Mixed Models 

SAS offers several procedures (PROCs) designed to implement the various mixed models 

introduced in the previous sections. PROC MIXED is probably the best known mixed model 

procedure. It is designed to implement LMMs. SAS has several fixed effects model procedures: 

PROC GLM implements LMs, PROC NLIN implements NLMs, and PROC GENMOD 

implements GLMs. There are also several procedures, e.g., LOGISTIC and LIFEREG, that 

implement special types of GLMs; PROC REG, which implements special types of LMs; and so 

forth. These special-purpose procedures are not discussed in this book, but they are discussed in 

detail in other SAS publications as noted throughout this book. Note that PROC GLM was  
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named before generalized linear models appeared, and was named for “general linear models”; 

these are now understood not to be general at all, but the most restrictive special case among the 

models described in Section 1.6, and are now known simply as linear models (LM).  

For GLMMs and NLMMs, SAS offers PROC GLIMMIX,1 PROC NLMIXED, and the 

%NLINMIX macro. PROC GLIMMIX is the latest addition to the mixed model tools in 

SAS/STAT. The GLIMMIX procedure fits mixed models with normal random effects where the 

conditional distribution of the data is a member of the exponential family. Because the normal 

distribution is also a member of this family, the GLIMMIX procedure can fit LMMs. And 

because you do not have to specify random effects in the SAS mixed model procedures, PROC 

MIXED can fit LMs, and PROC GLIMMIX can fit GLMs and LMs. Whereas the GLIMMIX 

procedure supersedes the %GLIMMIX macro, the %NLINMIX macro continues to have uses 

distinct and supplementary to the NLMIXED procedure.  

Figures 1.2 and 1.3 provide flowcharts to help you select the appropriate model and software for 

your mixed model project. The basic questions you need to ask are as follows: 

•  Can you assume a normal distribution for your observations? If the model contains 

random effects, then this question refers to the conditional distribution of the data, given 

the random effects.   

•  Can you assume that the mean or a transformation of the mean is linearly related to the 

model effects? Note that “linear relation” does not mean the absence of curvature. A 

quadratic (in X) regression model β0 + β1X + β2X 2 is a linear model in the β’s because 

all the terms in the model are additive. The linear component is termed the linear 

predictor. Generalized linear (mixed) models imply such linearity on a certain scale (the 

transformation g() ). On the other hand, the Gompertz regression equation (see Sections 

1.4 and 1.5) is a nonlinear equation.  

•  Are all effects (except errors) fixed? Or are there random model effects? 

•  Can you assume the errors are independent? Or, as in repeated measures or spatial data, 

are errors possibly correlated?  

•  A corollary to the previous question is, Are the variances among the errors 

homogeneous? If the answer is no, then the same modeling strategies for correlated 

errors are also needed for heterogeneous errors. 

Once you answer these questions you can follow the flowchart to see what kind of model you 

have and what SAS procedure is appropriate. Then you can refer to the relevant chapter in this 

book for more information about the model and procedures. 

                                                 

1 The GLIMMIX procedure is an add-on in SAS 9.1 to SAS/STAT for the (32-bit) Windows platform. It 

does not ship with SAS 9.1. You can obtain the GLIMMIX procedure for SAS 9.1 as a download from  

www.sas.com/statistics. This site also contains the documentation for the GLIMMIX procedure. 
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Figure 1.2  Flowchart Indicating Tools in SAS/STAT for Normal Distributed Response 

Response Errors Random Effects Nonlinearity Tool in SAS/STAT
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Figure 1.3  Flowchart Indicating Tools in SAS/STAT for Non-normal Distributed Response 

Response Errors Random Effects Nonlinearity Tool in SAS/STAT
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