

 The RETAIN Statement

Introduction 1
Demonstrating a DATA Step with and without a RETAIN Statement 1
Generating Sequential SUBJECT Numbers Using a Retained Variable 7
Using a SUM Statement to Create SUBJECT Numbers 9
Demonstrating That Variables Read with a SET Statement Are Retained 10
A Caution When Using a RETAIN Statement 11

Introduction

Suppose you have a SAS data set of clinical data. Each observation corresponds to a visit to the
clinic and contains such information as a patient number, the date of the visit, and some
information about the visit. It would be useful to compare information from one visit to another,
for a given patient. How many days were there from the previous visit? Did this patient’s blood
pressure go up or down? Questions such as these are traditionally more difficult to answer using
SAS software than comparisons within an observation. This first chapter introduces one of the
most useful tools for “remembering” information from a previous observation—the RETAIN
statement. You will see, in detail, exactly how this versatile statement works and how to avoid
getting in trouble when using it.

Demonstrating a DATA Step with and without a RETAIN
Statement

The RETAIN statement is often a mystery to beginning SAS programmers. To understand how
the RETAIN statement works, you must first understand the basic operation of the SAS DATA
step.

Program 1-1 demonstrates a SAS DATA step where a RETAIN statement is not used.

1

2 Longitudinal Data and SAS: A Programmer’s Guide

Program 1-1: Demonstrating a DATA Step without a RETAIN Statement

DATA WITHOUT_1;

PUT "Before the INPUT statement: " _ALL_; �

INPUT X @@;

PUT "After the INPUT statement: " _ALL_ /;

DATALINES;

1 2 . 3

;

By placing the PUT statements at strategic places in the DATA step, you can see what is going on
“behind the scenes.” A PUT statement writes out text or the value of variables to the location
specified by a FILE statement. Since there is no FILE statement in this DATA step, the results of
the PUT statements are written to the SAS Log (the default location). The keyword _ALL_ �
causes the PUT statement to output the value of all the variables, including some SAS internal
variables, such as _N_.

Before we examine the log produced by this program, let’s be sure that you understand the
meaning of the double @ sign in the INPUT statement. A trailing double @ says to the DATA
step, “Hold the line.” That is, do not move the pointer to a new line each time the DATA step
iterates. Instead, just keep on reading data values until there are no more on the line. Many of the
examples in this book will use a trailing double @ to save some space and make the programs
more compact (and perhaps easier to read).

Let’s look at the SAS log that results from running Program 1-1:

78 DATA WITHOUT_1;
79 PUT "Before the INPUT statement: " _ALL_;
80 INPUT X @@;
81 PUT "After the INPUT statement: " _ALL_ /;
82 DATALINES;

Before the INPUT statement: X=. _ERROR_=0 _N_=1
After the INPUT statement: X=1 _ERROR_=0 _N_=1

Before the INPUT statement: X=. _ERROR_=0 _N_=2
After the INPUT statement: X=2 _ERROR_=0 _N_=2

Before the INPUT statement: X=. _ERROR_=0 _N_=3
After the INPUT statement: X=. _ERROR_=0 _N_=3

Before the INPUT statement: X=. _ERROR_=0 _N_=4
After the INPUT statement: X=3 _ERROR_=0 _N_=4

Before the INPUT statement: X=. _ERROR_=0 _N_=5

Chapter 1: The RETAIN Statement 3

Notice that the value of X is a missing value at the top of the DATA step (before the INPUT
statement). This is the usual way that a SAS DATA step operates. Notice also that the DATA step
does not stop until it tries to read a fifth data value and realizes that there are no more data values
to read.

Let’s modify Program 1-1 by adding a RETAIN statement.

Program 1-2: Demonstrating a DATA Step with a RETAIN Statement

DATA WITH_1;

RETAIN X;

PUT "Before the INPUT statement: " _ALL_;

INPUT X @@;

PUT "After the INPUT statement: " _ALL_ /;

DATALINES;

1 2 . 3

;

The resulting log is shown next:

86 DATA WITH_1;
87 RETAIN X;
88 PUT "Before the INPUT statement: " _ALL_;
89 INPUT X @@;
90 PUT "After the INPUT statement: " _ALL_ /;
91 DATALINES;

Before the INPUT statement: X=. _ERROR_=0 _N_=1
After the INPUT statement: X=1 _ERROR_=0 _N_=1

Before the INPUT statement: X=1 _ERROR_=0 _N_=2
After the INPUT statement: X=2 _ERROR_=0 _N_=2

Before the INPUT statement: X=2 _ERROR_=0 _N_=3
After the INPUT statement: X=. _ERROR_=0 _N_=3

Before the INPUT statement: X=. _ERROR_=0 _N_=4
After the INPUT statement: X=3 _ERROR_=0 _N_=4

Before the INPUT statement: X=3 _ERROR_=0 _N_=5

4 Longitudinal Data and SAS: A Programmer’s Guide

Notice that the value of X is missing the first time, but for each additional iteration of the DATA
step, it retains the value it had in the previous iteration. Notice that the value of X is missing after
the third value of X is read. This missing value is retained just as all the other nonmissing values
in this example.

In its simplest form, a RETAIN statement takes the form RETAIN list_of_variables; by the way,
it doesn't matter where we place the RETAIN statement in the DATA step—the effect is the
same.

There was no reason to use a RETAIN statement in Program 1-2 other than to demonstrate how a
DATA step runs with and without such a statement. The next example, Program 1-3, is an
attempt (that does not work) to use a value from a previous observation whenever a missing value
is read from the input data.

Program 1-3: Demonstrating a DATA Step That Does Not Work without a RETAIN Statement

***If there is a missing value for X, use the value

from the previous observation ;

***Note: This program does NOT work as planned;

DATA WITHOUT_2;

PUT "Before INPUT: " _ALL_ ;

INPUT X @@;

IF X NE . THEN OLD_X = X;

ELSE X = OLD_X;

PUT "After assignment: " _ALL_ /;

DATALINES;

1 2 . 3

;

Chapter 1: The RETAIN Statement 5

The goal of this program is to substitute a value of X for a previous nonmissing value of X
whenever the current value of X (read from the input data) is a missing value. However, as we
can see in the log below, this program does not work because OLD_X is set to a missing value at
the top of the DATA step for every iteration.

94 ***If there is a missing value for X, use the value
95 from the previous observation ;
96 ***Note: This program does NOT work as planned;
97 DATA WITHOUT_2;
98 PUT "Before INPUT: " _ALL_ ;
99 INPUT X @@;
100 IF X NE . THEN OLD_X = X;
101 ELSE X = OLD_X;
102 PUT "After assignment: " _ALL_ /;
103 DATALINES;

Before INPUT: X=. OLD_X=. _ERROR_=0 _N_=1
After assignment: X=1 OLD_X=1 _ERROR_=0 _N_=1
Before INPUT: X=. OLD_X=. _ERROR_=0 _N_=2
After assignment: X=2 OLD_X=2 _ERROR_=0 _N_=2

Before INPUT: X=. OLD_X=. _ERROR_=0 _N_=3
After assignment: X=. OLD_X=. _ERROR_=0 _N_=3

Before INPUT: X=. OLD_X=. _ERROR_=0 _N_=4
After assignment: X=3 OLD_X=3 _ERROR_=0 _N_=4

Before INPUT: X=. OLD_X=. _ERROR_=0 _N_=5

You can see that OLD_X is assigned the nonmissing values as planned, but the PUT statement
right after the DATA statement shows that it is set to missing each time the DATA step iterates
and the program fails to work as desired.

Look at Program 1-4 to see how a RETAIN statement changes things.

6 Longitudinal Data and SAS: A Programmer’s Guide

Program 1-4: Adding a RETAIN Statement to Program 1-3

***If there is a missing value for X, use the value

from the previous observation;

***Note: With the added RETAIN statement, the program now works;

DATA WITH_2;

RETAIN OLD_X;

PUT "Before INPUT: " _ALL_ ;

INPUT X @@;

IF X NE . THEN OLD_X = X;

ELSE X = OLD_X;

PUT "After assignment: " _ALL_ /;

DATALINES;

1 2 . 3

;

This is the resulting output:

106 ***If there is a missing value for X, use the value
107 from the previous observation;
108 ***Note: With the added RETAIN statement, the program now works;
109 DATA WITH_2;
110 RETAIN OLD_X;
111 PUT "Before INPUT: " _ALL_ ;
112 INPUT X @@;
113 IF X NE . THEN OLD_X = X;
114 ELSE X = OLD_X;
115 PUT "After assignment: " _ALL_ /;
116 DATALINES;

Before INPUT: OLD_X=. X=. _ERROR_=0 _N_=1
After assignment: OLD_X=1 X=1 _ERROR_=0 _N_=1

Before INPUT: OLD_X=1 X=. _ERROR_=0 _N_=2
After assignment: OLD_X=2 X=2 _ERROR_=0 _N_=2

Before INPUT: OLD_X=2 X=. _ERROR_=0 _N_=3
After assignment: OLD_X=2 X=2 _ERROR_=0 _N_=3

Before INPUT: OLD_X=2 X=. _ERROR_=0 _N_=4
After assignment: OLD_X=3 X=3 _ERROR_=0 _N_=4

Before INPUT: OLD_X=3 X=. _ERROR_=0 _N_=5

Chapter 1: The RETAIN Statement 7

Notice that the variable OLD_X holds on to the value from the previous iteration of the DATA
step, and when X is missing (the third data value), the previous X value (2) is substituted for the
missing value.

Generating Sequential SUBJECT Numbers Using a Retained
Variable

Let’s look at a very common programming requirement: adding sequential SUBJECT numbers to
a set of data. As we did before, the first attempt will be without a RETAIN statement to
demonstrate why a RETAIN statement is needed.

Program 1-5: Attempting to Generate a Sequential SUBJECT Number without Using a RETAIN
Statement

***Attempting to generate a sequential SUBJECT number without

using a RETAIN statement;

DATA WITHOUT_3;

PUT "Before the INPUT statement: " _ALL_ ;

INPUT X @@;

SUBJECT = SUBJECT + 1; �

PUT "After the INPUT statement: " _ALL_ /;

DATALINES;

1 3 5

;

The programmer is trying to generate a subject number in line �. Before any data values (X’s)
have been read, SUBJECT (and X) are both set to missing. Therefore, when you attempt to add 1
to a missing value, the result is a missing value. The log below shows that SUBJECT is missing
in every observation:

8 Longitudinal Data and SAS: A Programmer’s Guide

119 ***Attempting to generate a sequential SUBJECT number without
120 using an assignment statement;
121 DATA WITHOUT_3;
122 PUT "Before the INPUT statement: " _ALL_ ;
123 INPUT X @@;
124 SUBJECT = SUBJECT + 1;
125 PUT "After the INPUT statement: " _ALL_ /;
126 DATALINES;

Before the INPUT statement: X=. SUBJECT=. _ERROR_=0 _N_=1
After the INPUT statement: X=1 SUBJECT=. _ERROR_=0 _N_=1

Before the INPUT statement: X=. SUBJECT=. _ERROR_=0 _N_=2
After the INPUT statement: X=3 SUBJECT=. _ERROR_=0 _N_=2

Before the INPUT statement: X=. SUBJECT=. _ERROR_=0 _N_=3
After the INPUT statement: X=5 SUBJECT=. _ERROR_=0 _N_=3

Before the INPUT statement: X=. SUBJECT=. _ERROR_=0 _N_=4

A RETAIN statement will fix this problem. Besides retaining the value of SUBJECT, you need to
supply an initial value as well. This is done in the RETAIN statement. If you follow the variable
name with a number, the value of the retained variable will be initialized to that number. That is,
it will continue to be the initialized value until it is replaced by another value. Program 1-6 shows
the corrected version of this program with the RETAIN statement added.

Program 1-6: Adding a RETAIN Statement to Program 1-5

***The same program with a RETAIN statement;

DATA WITH_3;

RETAIN SUBJECT 0; �

PUT "Before the INPUT statement: " _ALL_ ;

INPUT X @@;

SUBJECT = SUBJECT + 1; �

PUT "After the INPUT statement: " _ALL_ /;

DATALINES;

1 3 5

;

Notice that SUBJECT is retained and the initial value is set to 0 (line �). Therefore, the first time
line � is executed, you are adding 0 + 1 = 1 and assigning this value to SUBJECT. Since
SUBJECT is retained, the next time line � executes, you will be adding 1 to the previous value

Chapter 1: The RETAIN Statement 9

(1) and SUBJECT will have a value of 2, and so forth. To be certain this is clear, you can inspect
the log below:

131 *The same program with a RETAIN statement;
132 DATA WITH_3;
133 RETAIN SUBJECT 0;
134 PUT "Before the INPUT statement: " _ALL_ ;
135 INPUT X @@;
136 SUBJECT = SUBJECT + 1;
137 PUT "After the INPUT statement: " _ALL_ /;
138 DATALINES;

Before the INPUT statement: SUBJECT=0 X=. _ERROR_=0 _N_=1
After the INPUT statement: SUBJECT=1 X=1 _ERROR_=0 _N_=1

Before the INPUT statement: SUBJECT=1 X=. _ERROR_=0 _N_=2
After the INPUT statement: SUBJECT=2 X=3 _ERROR_=0 _N_=2

Before the INPUT statement: SUBJECT=2 X=. _ERROR_=0 _N_=3
After the INPUT statement: SUBJECT=3 X=5 _ERROR_=0 _N_=3

Before the INPUT statement: SUBJECT=3 X=. _ERROR_=0 _N_=4

The program is now working as planned.

Using a SUM Statement to Create SUBJECT Numbers

Creating SUBJECT numbers or other counters in a SAS DATA step is such a common operation,
the thoughtful folks at SAS came up with a special SUM statement that makes this process easier.
Look at Program 1-7, which uses a SUM statement to accomplish the same objective as Program
1-6.

Program 1-7: Demonstrating the SUM Statement

DATA WITHOUT_4;

PUT "Before the INPUT statement: " _ALL_ ;

INPUT X @@;

SUBJECT + 1; /* SUM statement */ �

PUT "After the INPUT statement: " _ALL_ /;

DATALINES;

1 3 5

;

10 Longitudinal Data and SAS: A Programmer’s Guide

Line � is a SUM statement. This is a funny-looking statement to people used to programming in
other languages, because there is no equal sign. That is what makes this a SUM statement rather
than an assignment statement. It accomplishes several objectives. It automatically retains the
variable in the statement (SUBJECT here) and sets the initial value to 0. Inspection of the log
below shows that it works as designed:

155 DATA WITHOUT_4;
156 PUT "Before the INPUT statement: " _ALL_ ;
157 INPUT X @@;
158 SUBJECT + 1; /* SUM statement */
159 PUT "After the INPUT statement: " _ALL_ /;
160 DATALINES;

Before the INPUT statement: X=. SUBJECT=0 _ERROR_=0 _N_=1
After the INPUT statement: X=1 SUBJECT=1 _ERROR_=0 _N_=1

Before the INPUT statement: X=. SUBJECT=1 _ERROR_=0 _N_=2
After the INPUT statement: X=3 SUBJECT=2 _ERROR_=0 _N_=2

Before the INPUT statement: X=. SUBJECT=2 _ERROR_=0 _N_=3
After the INPUT statement: X=5 SUBJECT=3 _ERROR_=0 _N_=3

Before the INPUT statement: X=. SUBJECT=3 _ERROR_=0 _N_=4

Demonstrating That Variables Read with a SET Statement
Are Retained

There is another way in which SAS implicitly retains variables. Variables read with a SET
statement are automatically retained. Most of the time, we don't really need to think about this.
However, there are times when this feature of the SET statement can be used to our advantage.
The small demonstration program shown next creates a data set with one observation (X=1 and
Y=2). In the DATA step that follows, a SET statement is conditionally executed. Look at
Program 1-8 and the resulting log.

Program 1-8: Demonstrating That Variables from a SET Statement Are Retained

DATA ONE;

INPUT X Y;

DATALINES;

1 2

;

Chapter 1: The RETAIN Statement 11

DATA TWO;

IF _N_ = 1 THEN SET ONE;

PUT "Before INPUT statement: " _ALL_;

INPUT NEW;

PUT "After INPUT statement: " _ALL_ / ;

DATALINES;

3

4

5

;

Here is the SAS log from running this program:

171 DATA TWO;
172 IF _N_ = 1 THEN SET ONE;
173 PUT "Before INPUT statement: " _ALL_;
174 INPUT NEW;
175 PUT "After INPUT statement: " _ALL_ / ;
176 DATALINES;

Before INPUT statement: X=1 Y=2 NEW=. _ERROR_=0 _N_=1
After INPUT statement: X=1 Y=2 NEW=3 _ERROR_=0 _N_=1

Before INPUT statement: X=1 Y=2 NEW=. _ERROR_=0 _N_=2
After INPUT statement: X=1 Y=2 NEW=4 _ERROR_=0 _N_=2

Before INPUT statement: X=1 Y=2 NEW=. _ERROR_=0 _N_=3
After INPUT statement: X=1 Y=2 NEW=5 _ERROR_=0 _N_=3

Before INPUT statement: X=1 Y=2 NEW=. _ERROR_=0 _N_=4

Notice that the values of X and Y remain at 1 and 2, respectively, in every observation in the data
set TWO. Without the implicit retain feature of the SET statement, this would not work.

A Caution When Using a RETAIN Statement

There are some serious pitfalls that you can encounter when using the RETAIN statement. For
example, suppose you want to read several observations from one SAS data set and create a
single observation in a new data set. Under certain circumstances where you have missing values
and you are using retained variables, you may make the mistake of using a retained value from a
previous subject instead of a missing value for the present subject. We will demonstrate and
discuss an example later in this book (see Program 7-7). So think of the RETAIN statement when
you need to “remember” information from previous observations, but be especially cautious and
test your programs carefully.

12

