
Chapter 1

Resource Tips

Some ways to save disk space..2

How to save space in SAS catalogs..6

9 ways to minimize input/output..7

Implementing application data security ..8
Data set passwords ..8
Operating system security...8
SAS®9 ...8
Data encryption...8
Other points ..9

Useful options for tuning ... 10

Saving resources when the log is long ... 11

Several ways to tune a SORT.. 13

2 SAS Tips and Techniques, Second Edition

Some ways to save disk space
Disk space equates to cost. Reducing space means the need for less disk hardware
and therefore less cost.

1. Use PROC DATASETS, the DIR window, or the Libraries window to delete
temporary and permanent data sets after use.

2. Use the KEEP= or DROP= data set options to limit the data set to only the
variables required. You can also use the KEEP or DROP statements to do this.

3. Use the WHERE= data set option or WHERE statement to limit the number of
observations processed by procedures or DATA steps. A WHERE statement
can be used to replace an IF statement in a DATA step, and can be more
efficient.

4. Use _NULL_ as the data set name in the DATA statement when you don’t
need to create a data set—for example, when creating a report.

5. Use remote library services to enable you to keep only one copy of data on
your network.

6. Use data set compression. Data set compression can be done in one of several
ways. Using either a data set option, a LIBNAME option, or a system option,
you can set the compression to use. COMPRESS=YES is equivalent to
COMPRESS=CHAR, and is good for compressing data that has mainly
character values. COMPRESS=BINARY is good for compressing data that
has mainly numerics. COMPRESS=NO disables compression.

7. Use views, rather than temporary data sets, but remember that this will
increase CPU time.

8. Use pipes to compress data (for operating systems that support pipes). These
enable compressed data to be read and written in real time. Please see your
operating system companion for more information.

9. Use SQL to merge, summarize, sort, and so on, rather than using a
combination of procedures and DATA steps with temporary data sets. Using
one SQL statement can avoid saving temporary data sets, depending on the
data that you are using. Keep in mind that SQL is often not as efficient as
DATA step and procedure code.

10. Keep temporary files on tape, cartridge, CD, DVD, or other high-capacity
media.

Chapter 1: Resource Tips 3

11. Use SQL pass thru for relational database processing to allow SQL to use
temporary file space of the server SQL system (which is often a larger
complex). This avoids using space on the machine that you are running.

12. Produce a format and store coded values in your data set. These values can be
decoded using the format in a DATA step or a procedure.

13. Put your data into something approaching third-normal form, although this can
affect system performance. Third-normal form involves splitting data (where
appropriate) into more tables where tables with data that have a 1:1
relationship are placed in individual tables. For instance, with address data,
you could have a table of zip codes and city names, which would mean the
main address data could have zip codes but not city names. Then, when you
want to know a city name, you could just take the zip code and look it up in
the zip/city file.

14. Store your data in the order in which it is usually required. This avoids the
need to re-sort data, thereby saving utility work space. Indexes can be added
to avoid re-sorting too. Generating and maintaining indexes can take
resources. Also, the index itself will take some space and use CPU time.

15. If you have a large SAS program consisting of many steps, then when reading
a file into a data set, you should delete any observation that you don’t need as
soon as you determine you don’t need it. This reduces the size of the data set
when it is subsequently used in the rest of the program.

16. Use the LENGTH statement to limit the bytes used to represent a number or
character to what is required for the desired precision. You must be careful
when doing this for numerics, because the precision can be affected and CPU
time will increase slightly. It is safest to do so only for characters and integer
numerics, unless you are sure of what you are doing. Consider taking the SAS
Programming III course.

17. An ideal technique for reducing the space required to store SAS dates is to
reduce the length of the variable to 4. You require only 4 bytes of storage, not
8, to store any date.

18. Minimize the data that you keep in your permanent SAS libraries. Always ask
yourself several questions:
 Do I need this data? (What value is the information that it represents?)
 Can data within the data set be derived from other information that I have? (For
 example, don’t keep month, year, and day if you have a date.)
 Is there another copy that I can refer to (for example, data held in DB2)?

4 SAS Tips and Techniques, Second Edition

 Is the cost of reproducing the data high (i.e., can I re-run my SAS program to
 reproduce the data)?
 Am I likely to need to refer to this data before it is outdated? (Daily data may
 be useful only for a day.)
 How much is it costing to keep this data (disk charges, etc.)?
 Can I tell the system to delete my data when it is no longer of use (for example,
 automatically delete data after 30 days)?
 Can I summarize historical data and delete details if I never again need them?

19. Delete any unused indexes. Make sure that the indexes are not being used by
anyone before deleting.

20. Store program code centrally, rather than distributing it to users. Maintaining
one copy will save space and make maintenance easier.

21. If the length of numeric ID variables is more than 8 digits (Note: default
numeric length is 8), save it as a numeric variable, such as account number,
Social Security number, employee, ID or student ID (all numbers). This also
applies for 8 or fewer digits. For example, a number using 3 bytes of storage
(in Windows) can represent a 4-digit number up to 8,192, and a number using
6 bytes of storage can represent a 12-digit number up to 137,438,953,472. For
example,
 Don’t use: Length ID $ 16 ;
 Instead use: Length ID 8 ; which will save half the space!

22. Define an index to avoid sorting. (Sorting often takes very large amounts of
space.) Of course, indexes use space, but often the space used can be far less
than that required for sorting. Indexes are not as efficient as sorted data,
however.

23. Delete records not needed when they are read.

24. Don’t use audit trails unless you need them.

25. Keep data in permanent libraries only if it will be needed later.

26. Use character variables to store numbers. For instance, if a number will only
ever be 0 or 1, then it can be stored in a character of length 1, but a number
(under Windows) must be at least 3 bytes long.

27. Use the FTP filename access method to access data on other machines, rather
than making a local copy.

Chapter 1: Resource Tips 5

28. Use the LENGTH function to shorten characters and numerics when possible.
You can write a program to analyze a data set and set lengths appropriately
based on data values.

29. Use the SASFILE statement to load data sets into memory, which saves some
space that you would otherwise need for them on disk. This also has the
benefit of giving faster access to the data set in memory.

6 SAS Tips and Techniques, Second Edition

How to save space in SAS catalogs
SAS catalogs are not automatically compressed. As you save catalog entries,
unused space accumulates. In some cases, less than half the space used by a catalog
is actually needed.

To compress and reuse the unused space in a catalog, use REPAIR in PROC
DATASETS.

This will compress sasuser.profile:
Proc datasets library=sasuser ;
 repair profile / mt=cat ;
quit ;

Chapter 1: Resource Tips 7

9 ways to minimize input/output
Input/output (I/O) to disk is the factor that usually slows down SAS programs.
Reducing I/O will speed up execution and often reduce costs.

Generally, SAS is I/O intensive, rather than CPU intensive. As the great
performance and tuning guru Ken Williams says, “The best I/O is the one you
didn’t do.” Thus, a saving in I/O will improve the performance of your SAS
program.

Here are 9 ways to minimize I/O:

1. Use LENGTH statements to minimize variable lengths, where possible.

2. Use CLASS statement(s), where possible, rather than BY statements, which
 might require a SORT.

3. Use DROP and KEEP statements to minimize observation length.

4. Use SORT only when necessary.

5. Create multiple data sets in one DATA step when possible.

6. Use WHERE statements with procedures to avoid subsetting in a DATA step
 followed by a procedure.

7. Use the _NULL_ DATA step when you don’t need to create a data set. For
 example, you might want to create an external file, produce a report, or just do
 some calculations.

8. Compress some large SAS data sets, but beware that compression can use more
 space in some cases, which might actually increase I/O.

9. Develop and test programs on a small subset of the data.

Note: This list is not comprehensive. It merely attempts to provide a few ideas for
investigation. Not all of the points will always reduce I/O time.

8 SAS Tips and Techniques, Second Edition

Implementing application data security
The aim is to let permitted users access data via your application, but to make it
very difficult for anyone to access data without your application. The application
should detect who the user is and should provide appropriate data access for them.

Data set passwords
You can put passwords on SAS data sets. This prevents accessing them without
specifying the password. This also prevents users from accessing SAS data sets in
their own batch jobs (unless they know the password). Passwords can be coded into
source code so that your program “knows” the password. Using PROC
PWENCODE is useful in this case, because it will generate a string, which cannot
be recognized as the password, in place of the password.

Operating system security
On z/OS, you may have RACF or ACF2 to secure your data sets. On Windows and
UNIX, you can protect directories from unauthorized users. On standalone PCs,
you can often specify a startup password.

SAS®9
In SAS®9, the Business Intelligence Architecture enables much more security. By
using the SAS Metadata Server, you can define users and groups of users along
with information about the resources that they can access and what they can do
with them.

Data encryption
An encryption key (or algorithm) can be used to encode numbers or text and can be
kept in a secure data set. It can be read in when compiling the application or can
even be built by an algorithm in the code. Different encryption keys can be used for
different groupings of information to add another level of security. This means that
a hacker would need many encryption keys to access all of the data.

There is also the ENCRYPT data set option, which makes SAS encrypt your data
sets.

Chapter 1: Resource Tips 9

Other points
 You should exit SAS before the application ends.

 Close secured files after they have been used. Free FILENAME and LIBNAME
allocations when you are finished with them.

 For z/OS, specify the NOSTAX system option so that the attention key will end
the SAS session.

10 SAS Tips and Techniques, Second Edition

Useful options for tuning
When tuning your SAS program to make it run more efficiently, it is useful to turn
on various information options available in SAS. Remember to turn them off when
you finish the tuning and run your program, because many options increase the
overhead (CPU time, elapsed time, I/Os) of your program.

options oplist stats fullstats echoauto source source2 memrpt mprint
stimer ;

Option Description
oplist Shows settings of SAS system options in SAS log

echoauto Shows autoexec file in log

stats Writes performance statistics to log

fullstats Writes performance statistics in expanded form

stimer Maintains and prints timing statistics (Don't use this with
views.)

memrpt Shows memory report

source Shows source code in log

source2 Shows included source code in log

mprint Shows statements generated by macro facility

Also consider using ARM macros or the Rtrace facility for other approaches to
tuning.

Chapter 1: Resource Tips 11

Saving resources when the log is long
When writing a lot of information to the log in interactive SAS, you can be slowed
down as SAS scrolls the log to display each line as it is written. This is the default
behavior, which works well when you don’t write much to the log. This tip tells
you how to save time and resources by altering the AUTOSCROLL setting.

Activating the Log window (by selecting Log from the View menu or by clicking
the Log window) and setting AUTOSCROLL to 0 tells SAS not to bother scrolling
the Log window until the DATA step is finished. AUTOSCROLL can be set by
using the pull-down menus to choose EDIT then OPTIONS then AUTOSCROLL.

The following example takes 31.25 seconds to run (on my test machine) with
AUTOSCROLL=1. Then, running the same code with AUTOSCROLL=0 takes
only 0.29 seconds. I ran these tests several times to ensure there was no effect due
to caching of data or anything due to the order of the code being run.

dm 'log; clear;autoscroll 1' ;
data _null_ ;
 set sashelp.prdsale ;
 do i=1 to 50 ;
 put year= month= actual= ;
 end ;
run ;
dm 'log; clear;autoscroll 0' ;
data _null_ ;
 set sashelp.prdsale ;
 do i=1 to 50 ;
 put year= month= actual= ;
 end ;
run ;

12 SAS Tips and Techniques, Second Edition

568 dm 'log; clear;autoscroll 1' ;
569 data _null_ ;
570 set sashelp.prdsale ;
571 do i=1 to 50 ;
572 put year= month= actual= ;
573 end ;
574 run ;

Lines deleted

NOTE: There were 1440 observations read from the data set
SASHELP.PRDSALE.

NOTE: DATA statement used (Total process time):
 real time 7.81 seconds
 cpu time 7.39 seconds

575 dm 'log; clear;autoscroll 0' ;
576 data _null_ ;
577 set sashelp.prdsale ;
578 do i=1 to 50 ;
579 put year= month= actual= ;
580 end ;
581 run ;

Lines deleted

NOTE: There were 1440 observations read from the data set
SASHELP.PRDSALE.

NOTE: DATA statement used (Total process time):
 real time 0.29 seconds
 cpu time 0.29 seconds

Chapter 1: Resource Tips 13

Several ways to tune a SORT
Here is a brief list of things you can look at if you want to make your PROC SORT
go faster, use less space, or use less CPU time. Always test the methods and
combinations to see what works best for you.

 SAS®9 can use a product called SyncSort to perform sorts, which can be faster
than the SAS sort. It is also multi-threaded to make use of multiple processors.
SyncSort was also available in SAS 8 and later for z/OS and UNIX. You need to
use the SORTPGM= option to select SyncSort, because the SAS sort is usually the
default. You should always check the actual default for your installation of SAS, as
this could vary between operating systems and releases of SAS, or be set by your
SAS administrator.

 In SAS®9, the standard SAS sort is multi-threaded and performs very well on
multi-processor machines.

Proc sort data=x threads ;
 By y ;
Run ;

 Use TAGSORT where the BY variables combined length is short compared to
observation length, and data set is huge. I have had cases where I was sorting very
large data sets and a plain PROC SORT took a long time to run, but using
TAGSORT cut the time down to less than half.

Proc sort data=x tagsort ;
 By y ;
Run ;

 You usually don’t need the previous order maintained within the new order, so
specify NOEQUALS.

proc sort data=data-set NOEQUALS ;
 by y ;
run ;

 Allocate more sort work data sets to improve sort efficiency (if you are using
z/OS).

Options sortwkno=6 ;

 Reduce observations sorted by using a WHERE clause.

proc sort data=xxx(where=(price>1000)) out=yyy ;
 by y ;
run;

 Use all available memory for sorting.

options sortsize=max ;

14 SAS Tips and Techniques, Second Edition

 If data is grouped, but not sorted, then use NOTSORTED to avoid the need to sort.

proc print data=calendar ;
 by month NOTSORTED ;
run;

 If external data (perhaps coming from another database via an import) is pre-
sorted, then tell SAS it is sorted in a particular order.

Data new(SORTEDBY=year month) ;
 Set x.y ;
run ;

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

