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1.1 Narrative (Qualitative) and Meta-Analytic (Quantitative) Literature
Reviews

Science is built up with fact, as a house is with stone.  But a collection of

fact is no more a science than a heap of stones is a house.

  Jules Henri Poincare (cited in Olkin, 1990)

. . . it is necessary, while formulating the problems of which in our

advance we are able to find the solutions, to call into council the views

of those of our predecessors who have declared an opinion on the

subject, in order that we may profit by whatever is sound in their

suggestions and avoid their errors.

 Aristotle, De Anima, Book 1, Chapter 2

                                                      (cited in Cooper & Hedges, 1994)

All scientists acknowledge that their efforts should build upon past work

through replication, integration, extension, or reconceptualization. It is, therefore,

ironic that the traditional review of scientific data has typically been conducted in

an unscientific fashion. In the traditional narrative (qualitative) review, the

reviewer uses “mental algebra” to combine the findings from a collection of studies

and describes the results verbally. Statisticians were the first scientists to advocate

alternative methods for combining research findings. These methods were labeled

meta-analysis by Gene Glass (1976):

Meta-analysis refers to the analysis of analyses . . . the statistical

analysis of a large collection of analysis results from individual studies

for the purpose of integrating findings. It connotes a rigorous alternative

to the casual, narrative discussions of research studies which typify our

attempts to make sense of the rapidly expanding literature (p. 3).

The quantification of research evidence is the key factor that distinguishes a meta-

analytic review from a narrative review (Olkin, 1990). In the meta-analytic review,

the meta-analyst uses statistical procedures to integrate the findings from a col-

lection of studies and describes the results using numerical effect-size estimates.
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One weakness of narrative reviews is that they may be more susceptible to the

subjective judgments, preferences, and biases of a particular reviewer’s perspective

than meta-analytic reviews. As Glass (1976) states:

A common method for integrating several studies with inconsistent

findings is to carp on the design or analysis deficiencies of all but a few

studies - those remaining frequently being one’s own work or that of

one’s students or friends - and then advance the one or two

“acceptable” studies as the truth of the matter (p. 4)

It is worth noting that inconsistent findings in a meta-analytic review are not

necessarily problematic. Inconsistent findings may simply reflect opposite tails of

the same distribution of effects. Consider, for example, the following distribution

of standardized effect-size estimates (that is, effect-size estimate divided by its

corresponding estimated standard deviation) that is centered at 0.50 (Cohen’s,

1988, conventional value for a medium-sized effect). By random chance some

studies (about 31%) should have negative effects even if the true effect-size in the

population is 0.50.

Figure 1.1 Distribution of standardized effect-size estimates centered at 0.50
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Alternatively, inconsistent findings may imply that some variable moderates

the treatment effect. A moderator variable influences the strength and/or direction

of the relation between the independent variable (that is, the treatment) and the

dependent variable (that is, the response; see Baron and Kenny, 1986, for a

discussion of moderator variables).  In Figure 1.2, the treatment has a negative

effect on Group 1 and a positive effect on Group 2. In this example, most negative

effects would be found for Group 1, and most positive effects would be found for

Group 2. If group is ignored, however, you might conclude that the findings are

inconsistent and that the treatment has no effect.

Figure 1.2 Distribution of standardized effect-size estimates for two different
groups that are affected in opposite ways by the treatment
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A second weakness of narrative reviews is that they often ignore the magnitude

of the treatment effect. In a narrative review, the reviewer frequently uses p-values

to draw conclusions by counting the number of studies that found significant

treatment effects. But p-values cannot be used to determine the magnitude of a

treatment effect. Consider the following example in which a treatment group is
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compared to a control group. Assume that the experimental and control groups

have equal sample sizes. Which treatment effect is largest: (a), (b), or (c)?

(a)  t(256) = 4.0, p < .0001

(b)  t(64) = 2.0, p < .05

(c)  t(4) = 0.5, p < .64

You may be tempted to answer (a) because it has a smaller p-value, but this is

actually a “trick question.” It turns out that the treatment effects are identical for

all three tests  the effect-size estimate is 0.50 in each case. A formula for

obtaining an effect-size estimate from an independent sample t-test is

d =
2t

df
(1.1)

where d is the effect-size estimate and df are the degrees of freedom (Friedman,

1968). Plugging the values for options (a), (b), and (c) into Equation 1.1,

you obtain:

d =
2 4.0( )

256
=

2 2.0( )
64

=
2 0.5( )

4
= 0.50.

The point is that p-values cannot be used as surrogate effect-size estimates.

These weaknesses of narrative reviews can cause their conclusions to be

inconsistent with the data. In a study by Cooper and Rosenthal (1980), faculty

members and upper-level graduate students in psychology were randomly assigned

to use narrative or statistical procedures to review seven studies on sex differences

in persistence. None of the reviewers were familiar with meta-analytic techniques.

Participants in the statistical group were instructed how to combine the results from

the studies. Participants in the narrative group were asked to “employ whatever

criteria you would use if this exercise were being undertaken for a class term paper

or a manuscript for publication.” Participants were asked whether the evidence

supported the conclusion that females were more persistent on tasks than males

were. Five possible responses were provided (definitely yes, probably yes,
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impossible to say, probably no, and definitely no). The results showed that 68% of

the statistical reviewers were at least considering rejecting the null hypothesis,

compared with only 27% of the traditional reviewers. (The null hypothesis should

have been rejected at the .05 level because the confidence interval for the effect

size excluded the value zero.) Participants also were asked to estimate the

magnitude of sex differences in persistence. Six possible responses were provided

(very large, large, moderate, small, very small, and none at all). The results

showed that 58% of the statistical reviewers estimated at least a small sex

difference in persistence, compared with only 27% of the traditional reviewers.

(The effect was about equal to Cohen’s, 1988, conventional value for a “small”

effect.) Thus, participants in the narrative group underestimated the presence and

the strength of sex differences in persistence.

In the world outside of the controlled laboratory setting, similar results have

been reported. For example, an article in Science (Mann, 1994) compares the

conclusions drawn from meta-analytic versus traditional literature reviews in five

subject areas: (a) psychotherapy, (b) delinquency prevention, (c) school funding,

(d) job training, and (e) reducing anxiety in surgical patients. The comparison

reveals that narrative reviews underestimate the presence and the strength of

treatment effects for each subject area. More recently, Hunt (1997) provided

several examples of how narrative reviews underestimate the presence and

magnitude of treatment effects. Because of their superiority over narrative reviews,

it appears that meta-analytic reviews are here to stay. The next section documents

the increasing use of meta-analysis.

1.2 Increasing Use of Meta-Analysis

The use of meta-analysis has increased dramatically in recent years, especially in

the social sciences, medicine, and education. For example, we tabulated the

number of journal articles in PsycLit (a psychological research database) and
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Medline (a medical research database) that used the keyword “meta-analysis” from

1976 (the year the term was introduced) to 1995. In both databases, the number of

entries has increased rapidly and consistently (see Figures 1.3 and 1.4).

Figure 1.3 Increase in the use of meta-analysis over time in psychology
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Figure 1.4 Increase in the use of meta-analysis over time in medicine
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The rapid increase in the use of meta-analysis is likely to continue. In his

review of meta-analytic methods, Bangert-Drowns (1986) states the following:

Meta-analysis is not a fad. It is rooted in the fundamental values of the

scientific enterprise: replicability, quantification, causal and

correlational analysis. Valuable information is needlessly scattered in

individual studies. The ability of social scientists to deliver generalizable

answers to basic questions of policy is too serious a concern to allow us

to treat research integration lightly. The potential benefits of meta-

analysis method seem enormous. (p. 398)

1.3 Two Approaches to Conducting a Meta-Analysis

Although the term meta-analysis was coined relatively recently, statisticians have

been using these methods for about 100 years. Two different statistical approaches

have been used to combine evidence from primary studies. One approach relies on

testing the statistical significance of combined results across studies, and the other

approach relies on estimating the magnitude of combined results across studies.

Fisher (1932), Pearson (1933), and Tippett (1931) were among the first to propose

methods for testing the statistical significance of combined results across studies.

Consider, for example, the following quotation from the fourth edition of Sir R. A.

Fisher’s influential text Statistical Methods for Research Workers:

When a number of quite independent tests of significance have been

made, it sometimes happens that although a few or none can be claimed

individually as significant, yet the aggregate gives an impression that the

probabilities are on the whole lower than would often have been

obtained by chance. It is sometimes desired, taking account only of these

probabilities, and not of the detailed composition of the data from which

they were derived, which may be of very different kinds, to obtain a

single test of the significance of the aggregate, based on the product of

the probabilities individually observed (p. 99).
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An early application of this approach was described by Stouffer and his colleagues

(Stouffer, Suchman, DeVinney, Star, & Williams, 1949). In three studies, male

soldiers rated how much they wanted their sisters to join the United States Army.

The ratings were used to determine male soldiers’ attitudes toward female soldiers.

Some of the male soldiers had female soldiers in their own camp, and some did

not. In all three studies, male soldiers were less likely to want their sisters to join

the Army when there were female soldiers at their own camp. Stouffer and his

colleagues combined the p-values from the three studies to obtain an overall

significance test.

Significance tests of combined results are sometimes called omnibus or

nonparametric tests because they do not depend on the distribution of data.

Omnibus tests depend only on the fact that the p-values are uniformly distributed

between the values 0 and 1.00 when the null hypothesis is true and the treatment

has no effect (see Hedges & Olkin, 1985, p. 2). The primary disadvantage of

omnibus tests is that they cannot provide estimates of the magnitude of treatment

effects across studies.

Birge (1932), Cochran and Yates (Cochran, 1937, 1943; Yates & Cochran,

1938), and Pearson (1904) were among the first to propose methods for estimating

the magnitude of treatment effects across studies. For example, Karl Pearson

(1904), the famous biometrician, conducted an empirical review of 11 studies that

had tested the effectiveness of a typhoid vaccine. Five studies tested whether the

vaccine reduced the incidence of typhoid, and the other six studies tested whether

the vaccine reduced mortality among those who had contracted typhoid. Pearson

computed average correlations of .23 and .19 for typhoid incidence and mortality,

respectively. Pearson concluded that these average correlations were too low to

warrant adopting the vaccine for British soldiers: “I think the right conclusion to

draw would be not that it was desirable to inoculate the whole army, but that

improvement in the serum and method of dosing, with a view to a far higher

correlation, should be attempted” (p. 1245).

For at least 50 years, social and statistical scientists have questioned the utility

of significance testing in research (for example, Bakan, 1966; Berkson, 1938;

Carver, 1978; Cohen, 1994; Falk, 1986; Harris, 1991; Hogben, 1957; Kirk, 1996;
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Kupfersmid, 1988; Meehl, 1978; Morrison & Henkel, 1970; Nunnally, 1960;

Schmidt, 1996; Shaver, 1993). Even Frank Yates (1951), a colleague and friend of

R. A. Fisher, said that Fisher’s text Statistical Methods for Research Workers “has

caused scientific research workers to pay undue attention to the results of

significance tests . . . and too little (attention) to the estimates of the magnitude of

the effects they are estimating” (p. 32). A common theme emerges from these

writings: People often use p-values as surrogate effect-size estimates (for example,

they incorrectly assume that small p-values denote large treatment effects). People

often misinterpret a p-value as the probability that the null hypothesis is false.

Notwithstanding the attacks social and statistical scientists have waged on

significance testing, many people continue to “worship” p-values (Schulman,

Kupst, & Suran, 1976). In a humorous article, Salsburg (1985) concluded that far

too many physicians are adherents of a religion called Statistics. According to

Salsburg, adherents of this religion engage in the ritual known as “hunting for

p-values.” If the p-value is larger than .05, the practitioner must be prepared to

suffer the wrath of the angry gods of Statistics. The deep mysterious symbols of

this religion are ns, * (p < .05), ** (p < .01) and (mirabile dictu) *** (p < .001).

The more *’s, the happier are the gods of Statistics. We think that it is a bad idea to

worship p-values because any treatment effect, no matter how trivial, can achieve

statistical significance at any level if the sample size is large enough.

If you accept the need to formally test the null hypothesis (that is, the

hypothesis that the treatment has no effect), there is a preferred alternative to

significance testing. It involves estimating the magnitude of the treatment effect,

called an effect-size estimate, and placing a confidence interval around this

estimate (Hedges, Cooper, & Bushman, 1992; Oakes, 1986). This alternative

approach can tell not only whether the null hypothesis should be rejected at a given

significance level, but also whether the observed treatment effect is large enough to

be considered practically important. This book adopts the approach of estimating

effect-size estimates and corresponding confidence intervals.
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1.4 Operationally Defining Abstract Concepts in Research

Scientific theories are composed of abstract concepts that are linked together in

some logical fashion. To test hypotheses derived from theories, researchers must

tie abstract concepts to concrete representations of those concepts by means of

operational definitions. An operational definition specifies the operations or tech-

niques used to measure the concept. For example, the concept “hunger” might be

defined operationally as “depriving an organism of food for 24 hours.” Operational

definitions are the translation of an abstract concept into a concrete reality.

In a meta-analysis that investigates the same conceptual variables, researchers

often use different operational definitions. For example, consider a meta-analysis

on the relation between “alcohol” and “aggression” in humans (Bushman &

Cooper, 1990). Even though only experimental studies of male social drinkers were

included in this meta-analysis, researchers used widely different operational

definitions of the concepts “alcohol” and “aggression.” Although the concept

“alcohol” seems simple enough to define, it was defined in a number of ways.

Researchers used different types of alcohol (for example, absolute alcohol; distilled

spirits such as vodka, whiskey, rum, and bourbon; beer; wine), different doses of

alcohol, and different concentrations of alcohol. The concept “aggression” also was

defined in a number of ways. Some researchers used physical measures of

aggression (for example, giving electric shocks or noise blasts to another person,

taking money away from another person), whereas other researchers used verbal

measures of aggression (for example, directing verbally abusive comments to

another person, evaluating another person in a negative manner).

Any single operational definition will not fully reflect the more abstract

concept that it represents (Gold, 1984). In a meta-analysis, if you find the same

relation between concepts, regardless of the operational definitions used in the

individual studies, then your confidence in the relation increases. In fact, you

might have more confidence in the findings from a meta-analysis of five studies

that used different operational definitions than in the findings from a meta-analysis

of 50 studies that used the same operational definitions.
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1.5 Categorical (Qualitative) and Continuous (Quantitative) Variables

A variable is a qualitative or quantitative entity that can vary or take on different (at

least two) values. The value of the variable is the number or label that describes the

person or object of interest. In research, variables are used to represent the abstract

concepts being studied. One useful distinction is between categorical and

continuous variables (for example, Agresti, 1990). A categorical variable simply

records which of several distinct categories or groups a person or object falls into.

Some examples of categorical variables include political party affiliation, religious

denomination, sex, and psychiatric diagnostic groups (for example, schizophrenia,

major depression, generalized anxiety disorder). The numbers that are assigned to

categorical variables are used only as labels or names; words or letters would work

as well as numbers. For the variable SEX, for instance, you could assign the value

1 to males and the value 2 to females. These values do not imply that females are

twice as good as males or that you could calculate the “average sex.” With

categorical variables, you generally calculate the number or the percent of people

in each category. The values of a categorical variable are qualitatively different,

whereas the values of a continuous variable are quantitatively different. Some

examples of continuous variables include temperature, weight, income, and blood

alcohol concentration. Mathematical operations (for example, differences,

averages) make sense with continuous variables but not with categorical variables.

In the SAS language, categorical variables are called classification (CLASS)

variables. Variables not specified in a CLASS statement are assumed to

be continuous.

1.5.1 Types of Variables in Research

1.5.1.1 Independent and Dependent Variables

Researchers generally are interested in studying the relations among two or more

variables. Suppose that two variables are being studied, a stimulus (X) and a

response (Y), and the researcher wants to know whether the stimulus affects the
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response. For example, a medical researcher might want to know whether taking

aspirin (X) reduces the likelihood of a heart attack (Y), and a psychological

researcher might want to know whether viewing television violence (X) increases

aggression (Y). This relation between variables X and Y is depicted in Figure 1.5.

Figure 1.5 Effects of a stimulus (X) on a response (Y)

X Y

If the stimulus (X) can be controlled or manipulated by the researcher, it is

called the independent variable (treatment or intervention). It is “independent” in

the sense that its values are created by the researcher and are not affected by

anything else that happens in the study. The corresponding response variable (Y) is

called the dependent variable (dependent measure or outcome). It is “dependent”

in the sense that its values are assumed to depend upon the values of the

independent variable.

If the stimulus (X) cannot be manipulated by the researcher, it is called a

predictor variable. In human participants, individual differences such as sex, age,

race, religion, political affiliation, intelligence, ability, personality, risk status (for

example, smoker or nonsmoker), and disease status (for example, HIV positive or

negative) can be measured but cannot be (ethically) manipulated. The correspond-

ing response variable (Y) is called the criterion variable.

In this book, X is called the independent variable or treatment, and Y is called

the dependent variable or outcome, regardless of whether the researcher

manipulated X. Although this usage is not technically accurate, it makes for

smoother prose and it simplifies discussion considerably.

The relation between variables X and Y may be influenced by third variables.

Two types of third variables, moderator variables and mediator variables, are

described respectively in the next sections.
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1.5.1.2 Moderator Variables

A moderator variable influences the strength and/or direction of the relation

between the independent and dependent variables (Baron & Kenny, 1986). In a

study by Stern, McCants, and Pettine (1982), for example, individuals were more

likely to become seriously ill if they experienced uncontrollable life events (for

example, death of a spouse) than if they experienced controllable life events (for

example, being fired from a job). In this example, the type of life event (that is,

controllable versus uncontrollable) is the moderator variable. Moderators are

typically introduced when there is a weak or inconsistent relation between the

independent and dependent variables (Baron & Kenny, 1986). The moderating

effects of variable Z on the relation between variables X and Y is depicted in

Figure 1.6. In meta-analysis, moderators are any known study characteristics that

are associated with differences in effect-size estimates between studies.

Figure 1.6 Moderating effects of the third variable (Z) on the relation between the
stimulus (X) and the response (Y)

X Y

Z

1.5.1.3 Mediator Variables

A mediator variable is the generative mechanism through which the independent

variable influences the dependent variable (Baron & Kenny, 1986). Mediator

variables are sometimes called intervening variables because they come between

the stimulus and the response. Independent variables produce changes in mediator

variables that, in turn, produce changes in dependent variables. Berkowitz (1990),

for example, proposes that aversive events (for example, provocation, frustration,
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hot temperature) increase impulsive aggression because they produce negative

affect − an unpleasant emotional response. Berkowitz views negative affect as a

possible mediator between aversive events and impulsive aggression. Mediators

are typically introduced when there is a strong relation between the independent

and dependent variables (Baron & Kenny, 1986). The mediating effect of variable

Z on the relation between variables X and Y is depicted in Figure 1.7.

Figure 1.7 Mediating effects of the third variable (Z) on the relation between the
stimulus (X) and the response (Y)

X YZ

1.5.2 Effect-Size Measures for Categorical Variables

Suppose that the independent and dependent variables in a study are both

dichotomous (that is, both are categorical variables with two levels). For such

studies, which are very common in the field of medicine, the odds ratio is the most

frequently used effect-size metric. For example, Table 1.1 depicts the results from

a large randomized, double-blind, placebo-controlled trial testing whether aspirin

reduces mortality from cardiovascular disease (Steering Committee of the

Physicians Health Study Group, 1988). The study participants, 22,071 male

physicians, took either an aspirin or a placebo every other day. The data from the

study at the five-year follow-up are reported here as percentages.
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Table 1.1 Results from a large randomized, double-blind, placebo-controlled trial
testing whether aspirin reduces mortality from cardiovascular disease

Heart attack No heart attack

Aspirin 0.94% 99.06%

Placebo 1.71% 98.29%

The odds of not having a heart attack in the aspirin group are 99.06 to 0.94 or

105.38 to 1. The odds of not having a heart attack in the placebo group are 98.29 to

1.71 or 57.48 to 1. To compare the aspirin and placebo groups, simply create a

ratio of these two odds: 105.38 ÷  57.48 = 1.83. Thus, physicians in the placebo

group are almost twice as likely to have a heart attack as physicians in the aspirin

group. An odds ratio of 1.0 means that the aspirin doesn’t differ from the placebo

in reducing heart attacks. Chapter 4 discusses how to combine odds ratios.

1.5.3 Effect-Size Measures for Continuous Variables

Two measures of effect dominate the meta-analytic literature when the dependent

variable is continuous: the standardized mean difference and the Pearson product-

moment correlation coefficient. When the primary studies in question compare two

groups, either through experimental (treatment) versus control group comparisons

or through orthogonal contrasts, the effect-size estimate often is expressed as some

form of standardized difference between the group means. For example, suppose

that 100 participants in a study are randomly assigned to experimental or control

groups. Suppose also that the mean score for the experimental group is higher

(Y E  = 10) than the mean score for the control group (Y C  = 8), but that the variation

in scores is about the same for the two groups (pooled standard deviation,

POOLEDS  = 4). To calculate a standardized mean difference, the control group mean

is subtracted from the experimental group mean and this difference is divided
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by the pooled standard deviation − that is, 10 −8( ) 4 = 0.5. According to Cohen

(1988), a “small” standardized mean difference is 0.2, a “medium” standardized

mean difference is 0.5, and a “large” standardized mean difference is 0.8. Thus, the

treatment effect in our hypothetical example is medium sized.

When two continuous variables are related, the Pearson product-moment

correlation coefficient (r) is most often used. Values of r can range from +1.0

(a perfect positive correlation) to −1.0 (a perfect negative correlation). A

correlation coefficient of 0 indicates that the two variables are not (linearly)

related. The sign on the correlation gives the direction of the relation between the

two variables − a positive sign indicates that the relation is positive, whereas a

negative sign indicates the relation is negative. The value of the correlation

indicates the strength of the relation. Most correlations are not perfect. According

to Cohen (1988), a “small” correlation is ± .1, a “medium” correlation is ± .3, and a

“large” correlation is ± .5. Chapter 5 discusses how to combine standardized mean

differences and correlation coefficients.

1.6 Some Issues to Consider When You Conduct a Meta-Analysis

1.6.1 Publication Bias and Study Quality

It is well documented that studies that report statistically significant results are

more likely to be published than are studies reporting nonsignificant results (for

example, Greenwald, 1975). In meta-analysis, the conditional publication of

studies with significant results has been called the “file drawer problem”

(Rosenthal, 1979). The most extreme version of this problem would result if only 1

out of 20 studies conducted was published and the remaining 19 studies were

located in researchers’ file drawers (or garbage cans), assuming that the .05

significance level is used. If publication bias is a problem, then the studies included

in a meta-analysis may represent a biased subset of the total number of studies that

are conducted on the topic. Chapter 3 describes some graphing procedures that can

be used to detect publication bias.
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One way to reduce publication bias is to include unpublished studies (for

example, theses, dissertations) in the meta-analysis. Including unpublished studies

in a meta-analysis, however, raises questions about the qualitative differences

between published and unpublished studies. Because most refereed journals have

reasonably strict standards for publication, published studies may be more

methodologically sound than unpublished studies. Eysenck (1978) argued that

when researchers fail to exclude studies of poor design, a meta-analysis becomes

an exercise in “mega-silliness” that only demonstrates the axiom “garbage in 

garbage out.” Our personal belief is that unpublished studies should be included in

a meta-analysis, but that studies should be coded on variables related to

methodological quality (for example, random assignment, double blind procedures,

publication status). You can then test whether the coded variables moderate the

treatment effects (see Chapters 8 and 9).

1.6.2 Missing Effect-Size Estimates

Missing data is perhaps the largest problem facing the practicing meta-analyst.

Missing effect-size estimates pose a particularly difficult problem because meta-

analytic procedures cannot be used at all without a statistical measure for the

results of a study (Pigott, 1994). Sometimes research reports do not include enough

information (for example, means, standard deviations, statistical tests) to permit the

calculation of an effect-size estimate. Unfortunately, the proportion of studies with

missing effect-size estimates in a meta-analysis is often quite large, about 25% in

psychological studies (Bushman & Wang, 1995, 1996). Vote-counting procedures

can be used on studies that don’t report enough information to calculate effect-size

estimates but do report information about the direction and/or statistical signifi-

cance of results (Bushman, 1994). Vote-counting procedures are described in

Chapter 6.

Currently, the most common "solutions" to the problem of missing effect-size

estimates are (a) to omit from the review those studies with missing effect-size

estimates and analyze only complete cases, (b) to set the missing effect-size

estimates equal to zero, (c) to set the missing effect-size estimates equal to the
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mean that is obtained from studies with effect-size estimates, (d) to set studies

equal to the conditional mean that is obtained from studies with effect-size

estimates (that is, Buck’s, 1960, method), and (e) to use the available information

in a research report to get a lower limit for the effect-size estimate (Rosenthal,

1994). Unfortunately, all of these procedures have serious problems that limit their

usefulness (Bushman & Wang, 1996).

We proposed an alternative procedure for handling missing effect-size

estimates (Bushman & Wang, 1996). Our procedure, called the combined proce-

dure, combines sample effect-sizes and vote counts to estimate the population

effect size. We believe that the combined procedure, described in Chapter 7, is the

method of choice for handling missing effect-size estimates if some studies do not

provide enough information to calculate effect-size estimates but do provide

information about the direction and/or statistical significance of results.

1.6.3 Fixed- and Random-Effects Models

Effect-size estimates should not be combined unless they are homogeneous or

similar in magnitude. You can formally test whether effect-size estimates are too

heterogeneous to combine.  A statistically significant heterogeneity test implies

that variation in effects between-studies is significantly larger than you would

expect by random chance. Between-studies variation in effects can be treated as

fixed or random (Hedges & Olkin, 1985). The fixed-effects model assumes that the

population effect size is a single fixed value, whereas the random-effects model

assumes that the population effect size is a randomly distributed variable with its

own mean and variance. When between-studies effect-size variation is treated as

fixed, the only source of variation treated as random is the within-studies sampling

variation. By entering known study characteristics in an analysis of variance

(ANOVA) or regression model, the meta-analyst might be able to explain the

“extra” variation between-studies (see Hedges, 1994). If the “extra” variation can

be explained by a few simple study characteristics, then a fixed-effects model

should be used. When a fixed-effects model is used, generalizations can be made to

a universe of studies with similar study characteristics. The reviewers should use
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random-effects models if the differences between studies are too complicated to be

captured by a few study characteristics. When a random-effects model is used,

generalizations can be made to a universe of such diverse studies. Although

generalizability is higher for random-effects models than for fixed-effects models,

statistical power is higher for fixed-effects models than for random-effects models,

(Rosenthal, 1995). Consequently, effect-size confidence intervals are narrower for

fixed-effects models than for random-effects models. Fixed- and random-effects

models are discussed in Chapters 8 and 9, respectively.

1.6.4 Correlated Effect-Size Estimates

Most meta-analytic procedures are based on the assumption that the effect-size

estimates that are to be combined are independent. This independence assumption,

however, is often violated. Some studies may compare multiple variants of a

treatment with a common control. These studies, called multiple-treatment studies

(Gleser & Olkin, 1994), will contribute more than one treatment versus control

effect-size estimate. Because of the common control group, the effect-size

estimates will be correlated. Other studies, called multiple-endpoint studies (Gleser

& Olkin, 1994), may include only one treatment and one control but may use

multiple dependent variables as endpoints for each participant. A treatment versus

control effect-size estimate may be calculated for each endpoint measure. Because

measures on each participant are correlated, the effect-size estimates for the

measures will be correlated within studies. The best way to combine correlated

effect-size estimates is to use multivariate procedures (Gleser & Olkin, 1994;

Kalaian & Raudenbush, 1996). We discuss multivariate procedures in meta-

analysis in Chapter 10.
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1.7 Using the SAS System to Conduct a Meta-Analysis

Although meta-analytic procedures have been around for about 100 years, only

since the advent of the digital computer have meta-analytic methods become

accessible to practicing meta-analysts. A good meta-analytic software package

should have the capability to (a) manage meta-analytical databases, (b) perform

numerical calculations based on meta-analytical procedures, (c) use graphical

displays to illustrate assumptions about meta-analytic procedures and to present

the findings from a meta-analytical review, (d) produce the summary report of a

meta-analytical review. None of the existing meta-analytic packages, however,

have all of these capabilities (see Normand, 1995, for a review). Although SAS

software is not specifically designed to conduct meta-analytic reviews, it has the

procedures that are needed to manage databases, analyze data, and graph results.

Thus, we believe that SAS is the software of choice for conducting a meta-analytic

review. We hope that the SAS code in this book will make meta-analytic methods

even more accessible to individuals who want to conduct a meta-analysis.
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