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1.1 Introduction 

This book deals with data collected at equally spaced points in time. The discussion begins with a 
single observation at each point. It continues with k series being observed at each point and then 
analyzed together in terms of their interrelationships. 

One of the main goals of univariate time series analysis is to forecast future values of the series. For 
multivariate series, relationships among component series, as well as forecasts of these components, 
may be of interest. Secondary goals are smoothing, interpolating, and modeling of the structure.  
Three important characteristics of time series are often encountered: seasonality, trend, and 
autocorrelation. 

Seasonality occurs, for example, when data are collected monthly and the value of the series in any 
given month is closely related to the value of the series in that same month in previous years. 
Seasonality can be very regular or can change slowly over a period of years. 

A trend is a regular, slowly evolving change in the series level. Changes that can be modeled by low-
order polynomials or low-frequency sinusoids fit into this category. For example, if a plot of sales 
over time shows a steady increase of $500 per month, you may fit a linear trend to the sales data. A 
trend is a long-term movement in the series. 

In contrast, autocorrelation is a local phenomenon. When deviations from an overall trend tend to be 
followed by deviations of a like sign, the deviations are positively autocorrelated. Autocorrelation is 
the phenomenon that distinguishes time series from other branches of statistical analysis. 

For example, consider a manufacturing plant that produces computer parts. Normal production is 100 
units per day, although actual production varies from this mean of 100. Variation can be caused by 
machine failure, absenteeism, or incentives like bonuses or approaching deadlines. A machine may 
malfunction for several days, resulting in a run of low productivity. Similarly, an approaching 
deadline may increase production over several days. This is an example of positive autocorrelation, 
with data falling and staying below 100 for a few days, then rising above 100 and staying high for a 
while, then falling again, and so on. 

Another example of positive autocorrelation is the flow rate of a river. Consider variation around the 
seasonal level: you may see high flow rates for several days following rain and low flow rates for 
several days during dry periods. 
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Negative autocorrelation occurs less often than positive autocorrelation. An example is a worker's 
attempt to control temperature in a furnace. The autocorrelation pattern depends on the worker's 
habits, but suppose he reads a low value of a furnace temperature and turns up the heat too far and 
similarly turns it down too far when readings are high. If he reads and adjusts the temperature each 
minute, you can expect a low temperature reading to be followed by a high reading. As a second 
example, an athlete may follow a long workout day with a short workout day and vice versa. The 
time he spends exercising daily displays negative autocorrelation. 

1.2 Analysis Methods and SAS/ETS Software 

1.2.1 Options 
When you perform univariate time series analysis, you observe a single series over time. The goal is 
to model the historic series and then to use the model to forecast future values of the series. You can 
use some simple SAS/ETS software procedures to model low-order polynomial trends and 
autocorrelation. PROC FORECAST automatically fits an overall linear or quadratic trend with 
autoregressive (AR) error structure when you specify METHOD=STEPAR. As explained later, AR 
errors are not the most general types of errors that analysts study. For seasonal data you may want to 
fit a Winters exponentially smoothed trend-seasonal model with METHOD=WINTERS. If the trend 
is local, you may prefer METHOD=EXPO, which uses exponential smoothing to fit a local linear or 
quadratic trend. For higher-order trends or for cases where the forecast variable Y

t
 is related to one or 

more explanatory variables X
t
, PROC AUTOREG estimates this relationship and fits an AR series as 

an error term. 

Polynomials in time and seasonal indicator variables (see Section 1.3.2) can be computed as far into 
the future as desired. If the explanatory variable is a nondeterministic time series, however, actual 
future values are not available. PROC AUTOREG treats future values of the explanatory variable as 
known, so user-supplied forecasts of future values with PROC AUTOREG may give incorrect 
standard errors of forecast estimates. More sophisticated procedures like PROC STATESPACE, 
PROC VARMAX, or PROC ARIMA, with their transfer function options, are preferable when the 
explanatory variable's future values are unknown. 

One approach to modeling seasonality in time series is the use of seasonal indicator variables in 
PROC AUTOREG to model a highly regular seasonality. Also, the AR error series from PROC 
AUTOREG or from PROC FORECAST with METHOD=STEPAR can include some correlation at 
seasonal lags (that is, it may relate the deviation from trend at time t to the deviation at time t−12 in 
monthly data). The WINTERS method of PROC FORECAST uses updating equations similar to 
exponential smoothing to fit a seasonal multiplicative model. 

Another approach to seasonality is to remove it from the series and to forecast the seasonally 
adjusted series with other seasonally adjusted series used as inputs, if desired. The U.S. Census 
Bureau has adjusted thousands of series with its X-11 seasonal adjustment package. This package is 
the result of years of work by census researchers and is the basis for the seasonally adjusted figures 
that the federal government reports. You can seasonally adjust your own data using PROC X11, 
which is the census program set up as a SAS procedure. If you are using seasonally adjusted figures 
as explanatory variables, this procedure is useful.  
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An alternative to using X-11 is to model the seasonality as part of an ARIMA model or, if the 
seasonality is highly regular, to model it with indicator variables or trigonometric functions as 
explanatory variables. A final introductory point about the PROC X11 program is that it identifies 
and adjusts for outliers.* 

If you are unsure about the presence of seasonality, you can use PROC SPECTRA to check for it; 
this procedure decomposes a series into cyclical components of various periodicities. Monthly data 
with highly regular seasonality have a large ordinate at period 12 in the PROC SPECTRA output 
SAS data set. Other periodicities, like multiyear business cycles, may appear in this analysis. PROC 
SPECTRA also provides a check on model residuals to see if they exhibit cyclical patterns over time. 
Often these cyclical patterns are not found by other procedures. Thus, it is good practice to analyze 
residuals with this procedure. Finally, PROC SPECTRA relates an output time series Y

t
 to one or 

more input or explanatory series X
t
 in terms of cycles.  Specifically, cross-spectral analysis estimates 

the change in amplitude and phase when a cyclical component of an input series is used to predict the 
corresponding component of an output series. This enables the analyst to separate long-term 
movements from short-term movements. 

Without a doubt, the most powerful and sophisticated methodology for forecasting univariate series 
is the ARIMA modeling methodology popularized by Box and Jenkins (1976). A flexible class of 
models is introduced, and one member of the class is fit to the historic data. Then the model is used 
to forecast the series. Seasonal data can be accommodated, and seasonality can be local; that is, 
seasonality for month t may be closely related to seasonality for this same month one or two years 
previously but less closely related to seasonality for this month several years previously. Local 
trending and even long-term upward or downward drifting in the data can be accommodated in 
ARIMA models through differencing. 

Explanatory time series as inputs to a transfer function model can also be accommodated. Future 
values of nondeterministic, independent input series can be forecast by PROC ARIMA, which, 
unlike the previously mentioned procedures, accounts for the fact that these inputs are forecast when 
you compute prediction error variances and prediction limits for forecasts. A relatively new 
procedure, PROC VARMAX, models vector processes with possible explanatory variables, the X in 
VARMAX. As in PROC STATESPACE, this approach assumes that at each time point you observe 
a vector of responses each entry of which depends on its own lagged values and lags of the other 
vector entries, but unlike STATESPACE, VARMAX also allows explanatory variables X as well as 
cointegration among the elements of the response vector. Cointegration is an idea that has become 
quite popular in recent econometrics.  The idea is that each element of the response vector might be a 
nonstationary process, one that has no tendency to return to a mean or deterministic trend function, 
and yet one or more linear combinations of the responses are stationary, remaining near some 
constant. An analogy is two lifeboats adrift in a stormy sea but tied together by a rope. Their location 
might be expressible mathematically as a random walk with no tendency to return to a particular 
point. Over time the boats drift arbitrarily far from any particular location. Nevertheless, because 
they are tied together, the difference in their positions would never be too far from 0. Prices of two 
similar stocks might, over time, vary according to a random walk with no tendency to return to a 
given mean, and yet if they are indeed similar, their price difference may not get too far from 0.   

                                                        

* Recently the Census Bureau has upgraded X-11, including an option to extend the series using ARIMA models prior to applying the centered 
filters used to deseasonalize the data. The resulting X-12 is incorporated as PROC X12 in SAS software. 
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1.2.2 How SAS/ETS Software Procedures Interrelate 
PROC ARIMA emulates PROC AUTOREG if you choose not to model the inputs. ARIMA can also 
fit a richer error structure. Specifically, the error structure can be an autoregressive (AR), moving 
average (MA), or mixed-model structure. PROC ARIMA can emulate PROC FORECAST with 
METHOD=STEPAR if you use polynomial inputs and AR error specifications. However, unlike 
FORECAST, ARIMA provides test statistics for the model parameters and checks model adequacy. 
PROC ARIMA can emulate PROC FORECAST with METHOD=EXPO if you fit a moving average 
of order d to the dth difference of the data. Instead of arbitrarily choosing a smoothing constant, as 
necessary in PROC FORECAST METHOD=EXPO, the data tell you what smoothing constant to use 
when you invoke PROC ARIMA. Furthermore, PROC ARIMA produces more reasonable forecast 
intervals.  In short, PROC ARIMA does everything the simpler procedures do and does it better. 

However, to benefit from this additional flexibility and sophistication in software, you must have 
enough expertise and time to analyze the series. You must be able to identify and specify the form of 
the time series model using the autocorrelations, partial autocorrelations, inverse autocorrelations, 
and cross-correlations of the time series. Later chapters explain in detail what these terms mean and 
how to use them. Once you identify a model, fitting and forecasting are almost automatic. 

The identification process is more complicated when you use input series. For proper identification, 
the ARIMA methodology requires that inputs be independent of each other and that there be no 
feedback from the output series to the input series. For example, if the temperature T

t
 in a room at 

time t is to be explained by current and lagged furnace temperatures F
t
, lack of feedback corresponds 

to there being no thermostat in the room. A thermostat causes the furnace temperature to adjust to 
recent room temperatures. These ARIMA restrictions may be unrealistic in many examples. You can 
use PROC STATESPACE and PROC VARMAX to model multiple time series without these 
restrictions. 

Although PROC STATESPACE and PROC VARMAX are sophisticated in theory, they are easy to 
run in their default mode. The theory allows you to model several time series together, accounting for 
relationships of individual component series with current and past values of the other series. 
Feedback and cross-correlated input series are allowed. Unlike PROC ARIMA, PROC 
STATESPACE uses an information criterion to select a model, thus eliminating the difficult 
identification process in PROC ARIMA. For example, you can put data on sales, advertising, 
unemployment rates, and interest rates into the procedure and automatically produce forecasts of 
these series. It is not necessary to intervene, but you must be certain that you have a property known 
as stationarity in your series to obtain theoretically valid results. The stationarity concept is discussed 
in Chapter 3, “The General ARIMA Model,” where you will learn how to make nonstationary series 
stationary. 

Although the automatic modeling in PROC STATESPACE sounds appealing, two papers in the 
Proceedings of the Ninth Annual SAS Users Group International Conference (one by Bailey and the 
other by Chavern) argue that you should use such automated procedures cautiously. Chavern gives an 
example in which PROC STATESPACE, in its default mode, fails to give as accurate a forecast as a 
certain vector autoregression. (However, the stationarity of the data is questionable, and stationarity 
is required to use PROC STATESPACE appropriately.) Bailey shows a PROC STATESPACE  
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forecast considerably better than its competitors in some time intervals but not in others.  In SAS 
Views: SAS Applied Time Series Analysis and Forecasting, Brocklebank and Dickey generate data 
from a simple MA model and feed these data into PROC STATESPACE in the default mode. The 
dimension of the model is overestimated when 50 observations are used, but the procedure is 
successful for samples of 100 and 500 observations from this simple series. Thus, it is wise to 
consider intervening in the modeling procedure through PROC STATESPACE’s control options. If a 
transfer function model is appropriate, PROC ARIMA is a viable alternative. 

This chapter introduces some techniques for analyzing and forecasting time series and lists the SAS 
procedures for the appropriate computations. As you continue reading the rest of the book, you may 
want to refer back to this chapter to clarify the relationships among the various procedures. 

Figure 1.1 shows the interrelationships among the SAS/ETS software procedures mentioned.  
Table 1.1 lists some common questions and answers concerning the procedures. 

 

Figure 1.1   How SAS/ETS Software Procedures Interrelate 
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Table 1.1  Selected Questions and Answers Concerning SAS/ETS Software Procedures 

Questions 

1. Is a frequency domain analysis (F) or time domain analysis (T) conducted? 
2. Are forecasts automatically generated? 
3. Do predicted values have 95% confidence limits? 
4. Can you supply leading indicator variables or explanatory variables? 
5. Does the procedure run with little user intervention? 
6. Is minimal time series background required for implementation?  
7. Does the procedure handle series with embedded missing values? 

Answers 

SAS/ETS 
Procedures 1 2 3 4 5 6 7 

FORECAST T Y Y N′ Y Y Y 
AUTOREG T Y* Y Y Y Y Y 
X11 T Y* N N Y Y N 
X12 T Y* Y Y Y N Y 
SPECTRA F N N N Y N N 
ARIMA T Y* Y Y N N N 
STATESPACE T Y Y* Y Y N N 
VARMAX T Y Y Y Y N N 
MODEL T Y* Y Y Y N Y 
Time Series 
Forecasting System 

T Y Y Y Y Y Y 

 
* = requires user intervention 

 
N = no 

′  = supplied by the program T = time domain analysis 
F = frequency domain analysis Y = yes 

 
 

1.3 Simple Models: Regression 

1.3.1 Linear Regression 
This section introduces linear regression, an elementary but common method of mathematical 
modeling. Suppose that at time t you observe Y

t
. You also observe explanatory variables X

1t
, X

2t
, and 

so on. For example, Y
t
 could be sales in month t, X

1t
 could be advertising expenditure in month t, and 

X
2t
 could be competitors' sales in month t. Output 1.1 shows a simple plot of monthly sales versus 

date. 
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Output 1.1 
Producing 
a Simple 
Plot of 
Monthly 
Data 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A multiple linear regression model relating the variables is 

0 1 1 2 2
Y X X

t t t t
= β +β + β + ε     

For this model, assume that the errors 
t

ε  

• have the same variance at all times t 

• are uncorrelated with each other (
t

ε  and 
s

ε  are uncorrelated for t different from s) 

• have a normal distribution. 

 

These assumptions allow you to use standard regression methodology, such as PROC REG or PROC 
GLM. For example, suppose you have 80 observations and you issue the following statements: 

TITLE “PREDICTING SALES USING ADVERTISING”; 
TITLE2 “EXPENDITURES AND COMPETITORS’ SALES”; 
PROC REG DATA=SALES; 
   MODEL SALES=ADV COMP / DW; 

OUTPUT OUT=OUT1 P=P R=R; 
       RUN; 
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PREDICTING SALES USING ADVERTISING 
EXPENDITURES AND COMPETITORS' SALES 

 

The REG Procedure 
Model: MODEL1 

Dependent Variable: SALES 

 
Analysis of Variance 

 

                         Sum of          Mean 
Source         DF       Squares        Square      F Value       Prob>F 

 

Model           2  2.5261822E13  1.2630911E13       51.140       0.0001 
Error          77  1.9018159E13  246989077881 

C Total        79   4.427998E13 

 
Root MSE  496979.95722     R-square       0.5705 

Dep Mean 3064722.70871     Adj R-sq       0.5593 

                C.V.      16.21615 
 

Parameter Estimates 

 
                 � Parameter  � Standard   T for H0: 

Variable  DF      Estimate         Error   Parameter=0    Prob > |T| 

 
INTERCEP   1       2700165  373957.39855         7.221        0.0001 

ADV        1     10.179675    1.91704684         5.310        0.0001 

COMP       1     -0.605607    0.08465433        -7.154        0.0001 
 

   Durbin-Watson D             1.394 � 

(For Number of Obs.)           80  
   1st Order Autocorrelation   0.283 � 

Output 1.2  shows the estimates of 
210

and,, βββ �. The standard errors � are incorrect if the 

assumptions on 
t

ε  are not satisfied. You have created an output data set called OUT1 and have 
called for the Durbin-Watson option to check on these error assumptions. 

 

Output 1.2 
Performing a 
Multiple 
Regression 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The test statistics produced by PROC REG are designed specifically to detect departures from the 
null hypothesis (

t
ε:H

0
 uncorrelated) of the form 

ttt
e+ρε=ε

−11
:H  

where 1<ρ  and e
t
 is an uncorrelated series. This type of error term, in which 

t
ε  is related to 

1−
ε

t
, is 

called an AR (autoregressive) error of the first order. 



Chapter 1:  Overview of Time Series     9 

The Durbin-Watson option in the MODEL statement produces the Durbin-Watson test statistic � 

( )
2

2

2 1 1
ˆ ˆ ˆ/

n n

t t t t t
d

= − =

= Σ ε − ε Σ ε  

where 

0 1 1 2 2

ˆ ˆ ˆˆ Y X X
t t t t
ε = − β − β − β  

If the actual errors 
t

ε  are uncorrelated, the numerator of d has an expected value of about ( ) 2
12 σ−n  

and the denominator has an expected value of approximately 2
σn . Thus, if the errors 

t
ε  are 

uncorrelated, the ratio d should be approximately 2. 

Positive autocorrelation means that 
t

ε  is closer to 
1−

ε
t

 than in the independent case, so 
1−

ε−ε
tt

 

should be smaller. It follows that d should also be smaller. The smallest possible value for d is 0. If d 
is significantly less than 2, positive autocorrelation is present. 

When is a Durbin-Watson statistic significant? The answer depends on the number of coefficients in 
the regression and on the number of observations. In this case, you have k=3 coefficients 
(

0 1 2
and, ,β β β  for the intercept, ADV, and COMP) and n=80 observations. In general, if you want 

to test for positive autocorrelation at the 5% significance level, you must compare d=2.046 to a 
critical value. Even with k and n fixed, the critical value can vary depending on actual values of the 
independent variables. The results of Durbin and Watson imply that if k=3 and n=80, the critical 
value must be between d

L
=1.59 and d

U
=1.69. If d is less than d

L
, then you would reject the null 

hypotheses of uncorrelated errors in favor of the alternative: positive autocorrelation. Since d>2, 
which is evidence of negative autocorrelation, compute d′=4–d and compare the results to d

L
 and d

U.
 

Specifically, because d′ (1.954) is greater than 1.69, you are unable to reject the null hypothesis of 
uncorrelated errors. If d′ were less than 1.59 you would reject the null hypothesis of uncorrelated 
errors in favor of the alternative: negative autocorrelation. Note that if 

1.59 < d < 1.69 

you cannot be sure whether d is to the left or right of the actual critical value c because you know 
only that 

1.59 < c < 1.69    

Durbin and Watson have constructed tables of bounds for the critical values. Most tables use k′=k−1, 
which equals the number of explanatory variables, excluding the intercept and n (number of 
observations) to obtain the bounds d

L
 and d

U
 for any given regression (Draper and Smith 1998).* 

Three warnings apply to the Durbin-Watson test. First, it is designed to detect first-order AR errors. 
Although this type of autocorrelation is only one possibility, it seems to be the most common. The 
test has some power against other types of autocorrelation. Second, the Durbin-Watson bounds do 
not hold when lagged values of the dependent variable appear on the right side of the regression. 
Thus, if the example had used last month's sales to help explain this month's sales, you would not 
know correct bounds for the critical value. Third, if you incorrectly specify the model, the Durbin-
Watson statistic often lies in the critical region even though no real autocorrelation is present. 
Suppose an important variable, such as X

3t
=product availability, had been omitted in the sales 

example. This omission could produce a significant d. Some practitioners use d as a lack-of-fit 
statistic, which is justified only if you assume a priori that a correctly specified model cannot have 
autocorrelated errors and, thus, that significance of d must be due to lack of fit. 

                                                        

* Exact p-values for d are now available in PROC AUTOREG as will be seen in Output 1.2A later in this section. 
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The output also produced a first-order autocorrelation, � denoted as 

ˆ 0.283ρ =  

When n is large and the errors are uncorrelated, 

( )
1/ 2

1/ 2 2ˆ ˆ/ 1n ρ − ρ  

is approximately distributed as a standard normal variate. Thus, a value 

( )
1/ 2

1/ 2 2ˆ ˆ/ 1n ρ − ρ  

exceeding 1.645 is significant evidence of positive autocorrelation at the 5% significance level. This 
is especially helpful when the number of observations exceeds the largest in the Durbin-Watson 
table—for example, 

     80  (.283)/ 2
283.01− = 2.639 

You should use this test only for large n values. It is subject to the three warnings given for the 

Durbin-Watson test. Because of the approximate nature of the ( )
1/ 2

1/ 2 2ˆ ˆ/ 1n ρ − ρ test, the Durbin-

Watson test is preferable. In general, d is approximately ( )ρ− ˆ12 . 

This is easily seen by noting that   

 

and 

 

Durbin and Watson also gave a computer-intensive way to compute exact p-values for their test 
statistic d. This has been incorporated in PROC AUTOREG. For the sales data, you issue this code to 
fit a model for sales as a function of this-period and last-period advertising.  

 

 PROC AUTOREG DATA=NCSALES;  
  MODEL SALES=ADV ADV1 / DWPROB;  

RUN; 

The resulting Output 1.2A shows a significant d=.5427 (p-value .0001 < .05). Could this be because 
of an omitted variable?  Try the model with competitor’s sales included.  

 

 PROC AUTOREG DATA=NCSALES;  
  MODEL SALES=ADV ADV1 COMP / DWPROB;  

RUN; 

Now, in Output 1.2B, d =1.8728  is insignificant (p-value .2239 > .05). Note also the increase in  
R-square (the proportion of variation explained by the model) from 39% to 82%. What is the effect 
of an increase of $1 in advertising expenditure? It gives a sales increase estimated at $6.04 this 
period but a decrease of $5.18 next period. You wonder if the true coefficients on ADV and ADV1 
are the same with opposite signs; that is, you wonder if these coefficients add to 0. If they do, then 
the increase we get this period from advertising is followed by a decrease of equal magnitude next 

2

1
ˆ ˆ ˆ ˆ/

t t t−

ρ = ε ε ε∑ ∑

2 2

1
ˆ ˆ ˆd ( ) /

t t t−

= ε − ε ε∑ ∑
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AUTOREG Procedure 
 

Dependent Variable = SALES 
 

Ordinary Least Squares Estimates 

 
SSE          5.1646E9    DFE              77 

MSE          67072080    Root MSE   8189.755 

SBC          1678.821    AIC        1671.675 
Reg Rsq        0.3866    Total Rsq    0.3866 

Durbin-Watson  0.5427    PROB<DW      0.0001 

 
 

Variable     DF        B Value   Std Error   t Ratio Approx Prob 

 
Intercept     1          14466      8532.1     1.695      0.0940 

ADV           1       6.560093      0.9641     6.804      0.0001 

ADV1          1      -5.015231      0.9606    -5.221      0.0001 

period. This means our advertising dollar simply shifts the timing of sales rather than increasing the 
level of sales. Having no autocorrelation evident, you fit the model in PROC REG asking for a test 
that the coefficients of ADV and ADV1 add to 0.  

 PROC REG DATA = SALES;  
  MODEL SALES = ADV ADV1 COMP;  
  TEMPR: TEST ADV+ADV1=0;  

RUN; 

Output 1.2C gives the results. Notice that the regression is exactly that given by PROC AUTOREG 
with no NLAG= specified. The p-value (.077>.05) is not small enough to reject the hypothesis that 
the coefficients are of equal magnitude, and thus it is possible that advertising just shifts the timing, a 
temporary effect. Note the label TEMPR on the test.  

Note also that, although we may have information on our company’s plans to advertise, we would 
likely not know what our competitor’s sales will be in future months, so at best we would have to 
substitute estimates of these future values in forecasting our sales. It appears that an increase of $1.00 
in our competitor’s sales is associated with a $0.56 decrease in our sales.  

From Output 1.2C the forecasting equation is seen to be 

PREDICTED SALES = 35967 – 0.563227COMP + 6.038203ADV – 5.188384ADV1 

 
Output 1.2A 
Predicting  
Sales from 
Advertising 
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PREDICTING SALES USING ADVERTISING 
EXPENDITURES AND COMPETITOR'S SALES 

 
AUTOREG Procedure 

 

Dependent Variable = SALES 
 

Ordinary Least Squares Estimates 

 
SSE          1.4877E9    DFE              76 

MSE          19575255    Root MSE   4424.393 

SBC          1583.637    AIC        1574.109 
Reg Rsq        0.8233    Total Rsq    0.8233 

Durbin-Watson  1.8728    PROB<DW      0.2239 

 
Variable     DF        B Value   Std Error   t Ratio Approx Prob 

 

Intercept     1          35967      4869.0     7.387      0.0001 
COMP          1      -0.563227      0.0411   -13.705      0.0001 

ADV           1       6.038203      0.5222    11.562      0.0001 

ADV1          1      -5.188384      0.5191    -9.994      0.0001 
 

PREDICTING SALES USING ADVERTISING 
EXPENDITURES AND COMPETITOR'S SALES 

 

Dependent Variable: SALES 

 
Analysis of Variance 

 

  Sum of         Mean 
Source          DF      Squares       Square      F Value       Prob>F 

 

Model            3 6931264991.2 2310421663.7      118.028       0.0001 
  Error           76 1487719368.2 19575254.845 

  C Total         79 8418984359.4 

 
  Root MSE    4424.39316     R-square       0.8233 

  Dep Mean   29630.21250     Adj R-sq       0.8163 

  C.V.          14.93203 
Parameter Estimates 

 

Parameter      Standard    T for H0: 
Variable  DF      Estimate         Error   Parameter=0    Prob > |T| 

 

INTERCEP   1         35967  4869.0048678         7.387        0.0001 
COMP       1     -0.563227    0.04109605       -13.705        0.0001 

ADV        1      6.038203    0.52224284        11.562        0.0001 

ADV1       1     -5.188384    0.51912574        -9.994        0.0001 
 

  Durbin-Watson D             1.873 

  (For Number of Obs.)           80 
  1st Order Autocorrelation   0.044 

 

PREDICTING SALES USING ADVERTISING 
EXPENDITURES AND COMPETITOR'S SALES 

 

  Dependent Variable: SALES 
  Test: TEMPR    Numerator:63103883.867  DF:    1   F value:   3.2237 

  Denominator:  19575255  DF:   76   Prob>F:    0.0766 

 

Output 1.2B  
Predicting Sales 
from Advertising 
and  
Competitor’s  
Sales 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output 1.2C   
Predicting Sales 
from Advertising 
and 
Competitor’s 
Sales 
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     OBS    DATE    CHANGE     S1    S2    S3    T1      T2 
 

       1    83Q1        .       1     0     0     1       1 
       2    83Q2    1678.41     0     1     0     2       4 

       3    83Q3     633.24     0     0     1     3       9 

       4    83Q4     662.35     0     0     0     4      16 
       5    84Q1   -1283.59     1     0     0     5      25 

 

                (More Output Lines) 
 

       47    94Q3     543.61     0     0     1    47    2209 

       48    94Q4    1526.95     0     0     0    48    2304 

 

1.3.2 Highly Regular Seasonality 
Occasionally, a very regular seasonality occurs in a series, such as an average monthly temperature at 
a given location. In this case, you can model seasonality by computing means. Specifically, the mean 
of all the January observations estimates the seasonal level for January. Similar means are used for 
other months throughout the year. An alternative to computing the twelve means is to run a 
regression on monthly indicator variables. An indicator variable takes on values of 0 or 1.  For the 
January indicator, the 1s occur only for observations made in January. You can compute an indicator 
variable for each month and regress Y

t
 on the twelve indicators with no intercept. You can also 

regress Y
t
 on a column of 1s and eleven of the indicator variables. The intercept now estimates the 

level for the month associated with the omitted indicator, and the coefficient of any indicator column 
is added to the intercept to compute the seasonal level for that month. 

For further illustration, Output 1.3 shows a series of quarterly increases in North Carolina retail 
sales; that is, each point is the sales for that quarter minus the sales for the previous quarter.  
Output 1.4 shows a plot of the monthly sales through time. Quarterly sales were computed as 
averages of three consecutive months and are used here to make the presentation brief. A model for 
the monthly data will be shown in Chapter 4. Note that there is a strong seasonal pattern here and 
perhaps a mild trend over time. The change data are plotted in Output 1.6. To model the seasonality, 
use S1, S2, and S3, and for the trend, use time, T1, and its square T2. The S variables are often 
referred to as indicator variables, being indicators of the season, or dummy variables. The first 
CHANGE value is missing because the sales data start in quarter 1 of 1983 so no increase can be 
computed for that quarter.  

 

Output 1.3   
Displaying 
North 
Carolina 
Retail Sales 
Data Set  
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Output 1.4   
Plotting 
North 
Carolina 
Monthly 
Sales 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now issue these commands: 

 PROC AUTOREG DATA=ALL;  
  MODEL CHANGE = T1 T2  S1  S2  S3 / DWPROB; 

RUN;  
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                             AUTOREG Procedure 
 

Dependent Variable = CHANGE 

 
                      Ordinary Least Squares Estimates 

 

 
               SSE           5290128    DFE              41 

               MSE          129027.5    Root MSE    359.204 

               SBC          703.1478    AIC        692.0469 
               Reg Rsq        0.9221    Total Rsq    0.9221 

               Durbin-Watson  2.3770    PROB<DW      0.8608 

 
 

 

 
      Variable     DF        B Value   Std Error   t Ratio Approx Prob 

      Intercept     1     679.427278       200.1     3.395      0.0015 

      T1            1     -44.992888     16.4428    -2.736      0.0091 
      T2            1       0.991520      0.3196     3.102      0.0035 

      S1            1   -1725.832501       150.3   -11.480      0.0001 

      S2            1    1503.717849       146.8    10.240      0.0001 
      S3            1    -221.287056       146.7    -1.508      0.1391 

 

This gives Output 1.5. 

 

Output 1.5  
Using PROC 
AUTOREG 
to Get the 
Durbin-
Watson Test 
Statistic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROC AUTOREG is intended for regression models with autoregressive errors. An example of a 
model with autoregressive errors is 

 

Yt =  
0

β +  
1
β  X1t +  

2
β X2t  + Zt  

where 

Zt = ρ Zt–1  + gt 

 

Note how the error term Z
t
 is related to a lagged value of itself in an equation that resembles a 

regression equation; hence the term “autoregressive.” The term g
t
 represents the portion of Z

t
 that 

could not have been predicted from previous Z values and is often called an unanticipated “shock” or 
“white noise.” It is assumed that the e series is independent and identically distributed. This one lag 
error model is fit using the /NAG=1 option in the MODEL statement. Alternatively, the options 
/NLAG=5 BACKSTEP can be used to try 5 lags of Z, automatically deleting those deemed 
statistically insignificant.  

Our retail sales change data require no autocorrelation adjustment. The Durbin-Watson test has a 
p-value 0.8608>0.05; so there is no evidence of autocorrelation in the errors. The fitting of the model 
is the same as in PROC REG because no NLAG specification was issued in the MODEL statement. 
The parameter estimates are interpreted just as they would be in PROC REG; that is, the predicted 
change PC in quarter 4 (where S1=S2=S3=0) is given by  

 

PC = 679.4 – 44.99 t + 0.99 t2  
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and in quarter 1 (where S1=1, S2=S3=0) is given by  

 

 PC = 679.4 –1725.83 – 44.99 t + 0.99 t
2 

 

etc. Thus the coefficients of S1, S2, and S3 represent shifts in the quadratic polynomial associated 
with the first through third quarters and the remaining coefficients calibrate the quadratic function to 
the fourth quarter level. In Output 1.6 the data are dots, and the fourth quarter quadratic predicting 
function is the smooth curve. Vertical lines extend from the quadratic, indicating the seasonal shifts 
required for the other three quarters. The broken line gives the predictions. The last data point for 
1994Q4 is indicated with an extended vertical line. Notice that the shift for any quarter is the same 
every year. This is a property of the dummy variable model and may not be reasonable for some data; 
for example, sometimes seasonality is slowly changing over a period of years.  

 

Output 1.6   
Plotting 
Quarterly Sales 
Increase with 
Quadratic 
Predicting 
Function 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To forecast into the future, extrapolate the linear and quadratic terms and the seasonal dummy 
variables the requisite number of periods. The data set extra listed in Output 1.7 contains such 
values. Notice that there is no question about the future values of these, unlike the case of 
competitor’s sales that was considered in an earlier example. The PROC AUTOREG technology 
assumes perfectly known future values of the explanatory variables. Set the response variable, 
CHANGE, to missing. 

 



Chapter 1:  Overview of Time Series     17 

 
           OBS    DATE    CHANGE     S1    S2    S3    T1      T2 

 

             1    95Q1        .       1     0     0    49    2401 
             2    95Q2        .       0     1     0    50    2500 

             3    95Q3        .       0     0     1    51    2601 

             4    95Q4        .       0     0     0    52    2704 
             5    96Q1        .       1     0     0    53    2809 

             6    96Q2        .       0     1     0    54    2916 

             7    96Q3        .       0     0     1    55    3025 

             8    96Q4        .       0     0     0    56    3136 

Output 1.7  
Data 
Appended for 
Forecasting 

 

 

 

 

 

 

 

Combine the original data set—call it NCSALES—with the data set EXTRA as follows: 

 
DATA ALL;  
   SET NCSALES EXTRA; 
RUN;  
 
 

Now run PROC AUTOREG on the combined data, noting that the extra data cannot contribute to the 
estimation of the model parameters since CHANGE is missing. The extra data have full information 
on the explanatory variables and so predicted values (forecasts) will be produced. The predicted 
values P are output into a data set OUT1 using this statement in PROC AUTOREG: 

 

 OUTPUT OUT=OUT1 PM=P;  
 

Using PM= requests that the predicted values be computed only from the regression function without 
forecasting the error term Z. If NLAG= is specified, a model is fit to the regression residuals and this 
model can be used to forecast residuals into the future. Replacing PM= with P= adds forecasts of 
future Z values to the forecast of the regression function. The two types of forecast, with and without 
forecasting the residuals, point out the fact that part of the predictability comes from the explanatory 
variables, and part comes from the autocorrelation—that is, from the momentum of the series. Thus, 
as seen in Output 1.5, there is a total R-square and a regression R-square, the latter measuring the 
predictability associated with the explanatory variables apart from contributions due to 
autocorrelation. Of course in the current example, with no autoregressive lags specified, these are the 
same and P= and PM= create the same variable. The predicted values from PROC AUTOREG using 
data set ALL are displayed in Output 1.8. 
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Output 1.8   
Plotting 
Quarterly Sales 
Increase with 
Prediction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Because this example shows no residual autocorrelation, analysis in PROC REG would be 
appropriate.  Using the data set with the extended explanatory variables, add P and CLI to produce 
predicted values and associated prediction intervals.  

 

 PROC REG;  
  MODEL CHANGE = T  T2  S1  S2  S3  /  P  CLI;  
  TITLE “QUARTERLY SALES INCREASE”;  

RUN; 
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                         QUARTERLY SALES INCREASE 
 

                        Dependent Variable: CHANGE 
 

                           Analysis of Variance 

 
                          Sum of         Mean 

   Source        DF      Squares       Square      F Value       Prob>F 

 
   Model          5 62618900.984 12523780.197       97.063       0.0001 

   Error         41 5290127.6025  129027.5025 

   C Total       46 67909028.586 
 

       Root MSE     359.20398     R-square       0.9221 

       Dep Mean     280.25532     Adj R-sq       0.9126 
       C.V.         128.17026 

 

                            Parameter Estimates 
 

                     Parameter      Standard    T for H0: 

    Variable  DF      Estimate         Error   Parameter=0    Prob > |T| 
 

    INTERCEP   1    679.427278  200.12467417         3.395        0.0015 

    T1         1    -44.992888   16.44278429        -2.736        0.0091 
    T2         1      0.991520    0.31962710         3.102        0.0035 

    S1         1  -1725.832501  150.33120614       -11.480        0.0001 

    S2         1   1503.717849  146.84832151        10.240        0.0001 
    S3         1   -221.287056  146.69576462        -1.508        0.1391 

 

                          Quarterly Sales Increase                         
 

             Dep Var   Predict   Std Err  Lower95%  Upper95% 

       Obs   CHANGE      Value   Predict   Predict   Predict  Residual 
 

         1         .   -1090.4   195.006   -1915.8    -265.0         . 

         2    1678.4    2097.1   172.102    1292.7    2901.5    -418.7 
         3     633.2     332.1   163.658    -465.1    1129.3     301.2 

         4     662.4     515.3   156.028    -275.6    1306.2     147.0 

         5   -1283.6   -1246.6   153.619   -2035.6    -457.6  -37.0083 
              

                         (more output lines)  

 
        49         .    -870.4   195.006   -1695.9  -44.9848         . 

        50         .    2412.3   200.125    1581.9    3242.7         . 

        51         .     742.4   211.967  -99.8696    1584.8         . 
        52         .    1020.9   224.417     165.5    1876.2         . 

        53         .    -645.8   251.473   -1531.4     239.7         . 

        54         .    2644.8   259.408    1750.0    3539.6         . 
        55         .     982.9   274.992   69.2774    1896.5         . 

        56         .    1269.2   291.006     335.6    2202.8         . 

 
Sum of Residuals                      0 

Sum of Squared Residuals   5290127.6025 

Predicted Resid SS (Press) 7067795.5909 

Output 1.9   
Producing 
Forecasts and 
Prediction 
Intervals with 
the P and CLI 
Options in the 
Model 
Statement 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For observation 49 an increase in sales of –870.4 (i.e., a decrease) is predicted for the next quarter 
with confidence interval extending from –1695.9 to  –44.98.  This is the typical after-Christmas sales 
slump. 
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What does this sales change model say about the level of sales, and why were the levels of sales not 
used in the analysis? First, notice that a cubic term in time, bt3, when differenced becomes a quadratic 
term: bt3 – b(t–1)3 =  b(3t2 – 3t + 1). Thus a quadratic plus seasonal model in the differences is 
associated with a cubic plus seasonal model in the levels. However if the error term in the differences 
satisfies the usual regression assumptions, which it seems to do for these data, then the error term in 
the original levels can’t possibly satisfy them—the levels appear to have a nonstationary error term. 
Ordinary regression statistics are invalid on the original level series. If you ignore this, the usual 
(incorrect here) regression statistics indicate that a degree 8 polynomial is required to get a good fit. 
A plot of sales and the forecasts from polynomials of varying degree is shown in Output 1.10. The 
first thing to note is that the degree 8 polynomial, arrived at by inappropriate use of ordinary 
regression, gives a ridiculous forecast that extends vertically beyond the range of our graph just a few 
quarters into the future. The degree 3 polynomial seems to give a reasonable increase while the 
intermediate degree 6 polynomial actually forecasts a decrease. It is dangerous to forecast too far into 
the future using polynomials, especially those of high degree. Time series models specifically 
designed for nonstationary data will be discussed later. In summary, the differenced data seem to 
satisfy assumptions needed to justify regression.  

 

Output 1.10  
Plotting Sales 
and Forecasts 
of Polynomials 
of Varying 
Degree 
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1.3.3 Regression with Transformed Data 
Often, you analyze some transformed version of the data rather than the original data.  The 
logarithmic transformation is probably the most common and is the only transformation discussed in 
this book.  Box and Cox (1964) suggest a family of transformations and a method of using the data to 
select one of them. This is discussed in the time series context in Box and Jenkins (1976, 1994). 

Consider the following model: 

( )X

0 1
Y t

t t
ε= β β      

Taking logarithms on both sides, you obtain 

( ) ( ) ( ) ( )0 1
log Y log log X log

t t t
ε= β + β +  

Now if 

( )log
t t

εη =  

and if 
t
η  satisfies the standard regression assumptions, the regression of log(Y

t
) on 1 and X

t
 

produces the best estimates of log(
0
β ) and log(

1
β ). 

As before, if the data consist of (X
1
, Y

1
), (X

2
, Y

2
), ..., (X

n
, Y

n
), you can append future known values 

X
n+1

, X
n+2

, ..., X
n+s

 to the data if they are available. Set Y
n+1

 through Y
n+s

 to missing values (.).  Now use 
the MODEL statement in PROC REG: 

MODEL LY=X / P CLI; 
where 

LY=LOG(Y); 
 

is specified in the DATA step. This produces predictions of future LY values and prediction limits 
for them. If, for example, you obtain an interval  

−1.13 < log(Y
n+s

) < 2.7 

you can compute 

exp(−1.13) = .323 

and 

exp(2.7) = 14.88 

to conclude 

.323 < Y
n+s

 < 14.88    

Note that the original prediction interval had to be computed on the log scale, the only scale on which 
you can justify a t distribution or normal distribution. 

When should you use logarithms?  A quick check is to plot Y against X.  When 

( )X

0 1
Y t

t t
ε= β β  

the overall shape of the plot resembles that of 

( )X

0 1
Y = β β      
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See Output 1.11 for several examples of this type of plot.  Note that the curvature in the plot 
becomes more dramatic as 

1
β  moves away from 1 in either direction; the actual points are scattered 

around the appropriate curve.  Because the error term ε  is multiplied by ( )X

0 1
β β , the variation 

around the curve is greater at the higher points and lesser at the lower points on the curve. 

 

Output 1.11   
Plotting 
Exponential 
Curves 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output 1.12 shows a plot of U.S. Treasury bill rates against time.  The curvature and especially the 
variability displayed are similar to those just described.  In this case, you simply have X

t
=t. A plot of 

the logarithm of the rates appears in Output 1.13. Because this plot is straighter with more uniform 
variability, you decide to analyze the logarithms.  



Chapter 1:  Overview of Time Series     23 

 

 

Output 1.12  
Plotting Ninety-
Day Treasury 
Bill Rates 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Output 1.13  
Plotting Ninety-
Day Logged 
Treasury Bill 
Rates 
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                        CITIBASE/CITIBANK ECONOMIC DATABASE 

 

                         OBS     DATE    LFYGM3    TIME                    
 

                           1    NOV82       .       251 

                           2    DEC82       .       252 
                           3    JAN83       .       253 

                           4    FEB83       .       254 

                           5    MAR83       .       255 
 

                              (More Output Lines) 

 
                          20    JUN84       .       270 

                          21    JUL84       .       271 

                          22    AUG84       .       272 
                          23    SEP84       .       273 

                          24    OCT84       .       274 

To analyze and forecast the series with simple regression, you first create a data set with future 
values of time: 

DATA TBILLS2; 
SET TBILLS END=EOF; 
TIME+1; 
OUTPUT; 
IF EOF THEN DO I=1 TO 24; 
   LFYGM3=.; 
   TIME+1; 
   DATE=INTNX('MONTH',DATE,1); 
   OUTPUT; 

   END; 
   DROP I; 
RUN; 
 

Output 1.14 shows the last 24 observations of the data set TBILLS2. You then regress the log T-bill 
rate, LFYGM3, on TIME to estimate log ( )0

β  and ( )1log β  in the following model: 

( ) ( ) ( )0 1
LFYGM3 log log *TIME log

t
= β + β + ε  

You also produce predicted values and check for autocorrelation by using these SAS statements: 

PROC REG DATA=TBILLS2; 
MODEL LFYGM3=TIME / DW P CLI; 
ID DATE; 
TITLE 'CITIBASE/CITIBANK ECONOMIC DATABASE'; 
TITLE2 'REGRESSION WITH TRANSFORMED DATA'; 

RUN; 

The result is shown in Output 1.15. 

 

Output 1.14   
Displaying 
Future Date 
Values for 
U.S. Treasury 
Bill Data 
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Output 1.15  Producing Predicted Values and Checking Autocorrelation with the P, CLI, and   
                     DW Options in the MODEL Statement 

 

CITIBASE/CITIBANK ECONOMIC DATABASE 
REGRESSION WITH TRANSFORMED DATA 

 

Dependent Variable: LFYGM3 

 
Analysis of Variance 

 

                               Sum of         Mean 
      Source          DF      Squares       Square      F Value       Prob>F 

      Model            1     32.68570     32.68570      540.633       0.0001 

      Error          248     14.99365      0.06046 
      C Total        249     47.67935 

 

              Root MSE       0.24588     R-square       0.6855 
              Dep Mean       1.74783     Adj R-sq       0.6843 

              C.V.          14.06788 

 
                               Parameter Estimates 

 

                       Parameter      Standard   T for H0: 
      Variable  DF      Estimate         Error   Parameter=0    Prob > |T| 

 

      INTERCEP   1      1.119038    0.03119550        35.872        0.0001 
      TIME       1      0.005010    0.00021548        23.252        0.0001 

 

REGRESSION WITH TRANSFORMED DATA 
                  Dep Var   Predict   Std Err  Lower95%  Upper95% 

  Obs    DATE     LFYGM3      Value   Predict   Predict   Predict  Residual 

 
  1     JAN62      1.0006    1.1240     0.031    0.6359    1.6122   -0.1234 

  2     FEB62      1.0043    1.1291     0.031    0.6410    1.6171   -0.1248 

  3     MAR62      1.0006    1.1341     0.031    0.6460    1.6221   -0.1334 
  4     APR62      1.0043    1.1391     0.030    0.6511    1.6271   -0.1348 

  5     MAY62      0.9858    1.1441     0.030    0.6562    1.6320   -0.1583 

 
(More Output Lines) 

 

251     NOV82           .    2.3766     0.031    1.8885    2.8648         . 
 

(More Output Lines) 

 
 

270     JUN84           .    2.4718     0.035    1.9827    2.9609         . 

271     JUL84           .    2.4768     0.035    1.9877    2.9660         . 
272     AUG84           .    2.4818     0.035    1.9926    2.9711         . 

273     SEP84           .    2.4868     0.035    1.9976    2.9761         . 

274     OCT84           .    2.4919     0.036    2.0025    2.9812         . 
 

Sum of Residuals                      0 

Sum of Squared Residuals        14.9936 
Predicted Resid SS (Press)      15.2134 

 

DURBIN-WATSON D        0.090 � 
(FOR NUMBER OF OBS.)         250 � 

1ST ORDER AUTOCORRELATION   0.951 � 
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Now, for example, you compute: 

( ) ( ) ( ) ( ) ( )0
1.119 1.96 0.0312 log 1.119 1.96 0.0312− < β < +      

Thus, 

0
2.880 3.255< β <  

is a 95% confidence interval for 
0

β .  Similarly, you obtain 

1
1.0046 1.0054< β <  

which is a 95% confidence interval for 
1
β . The growth rate of Treasury bills is estimated from this 

model to be between 0.46% and 0.54% per time period. Your forecast for November 1982 can be 
obtained from 

1.888 < 2.377 < 2.865 

so that 

6.61 < FYGM3
251

 < 17.55 

is a 95% prediction interval for the November 1982 yield and 

exp(2.377) = 10.77 

is the predicted value.  Because the distribution on the original levels is highly skewed, the prediction 
10.77 does not lie midway between 6.61 and 17.55, nor would you want it to do so.  

Note that the Durbin-Watson statistic is d=0.090. However, because n=250 is beyond the range of the 
Durbin-Watson tables, you use 951.0ˆ =ρ  to compute  

( )
1/ 2

1/ 2 2ˆ ˆn / 1ρ −ρ  = 48.63 

which is greater than 1.645. At the 5% level, you can conclude that positive autocorrelation is present 
(or that your model is misspecified in some other way). This is also evident in the plot, in Output 
1.13, in which the data fluctuate around the overall trend in a clearly dependent fashion. Therefore, 
you should recompute your forecasts and confidence intervals using some of the methods in this 
book that consider autocorrelation. 

Suppose X=log(y) and X is normal with mean M
x
 and variance 2

x
σ . Then y = exp(x) and y has 

median exp(M
x
) and mean exp(M

x
+ ½ 2

x
σ ) For this reason, some authors suggest adding half the 

error variances to a log scale forecast prior to exponentiation. We prefer to simply exponentiate and 
think of the result, for example, exp(2.377) = 10.77, as an estimate of the median, reasoning that this 
is a more credible central estimate for such a highly skewed distribution. 

 


