

C h a p t e r 1

Introduction to PROC SQL

A little history 2
PROC SQL statements 3
Why learn PROC SQL? 3

Reporting that suits your needs 4
The power to create 4
Ease of maintenance 5
Security 5
Data integrity checks 6
Optimized performance 6

Adaptability 7
Flexibility in a changing environment 7
Table merges and Cartesian products 7
Fuzzy logic 7
Criteria built from stored data 8
Work within a database from a SAS session 8
Interactive and Web-based applications 9

When not to use PROC SQL 9

The PROC SQL advantage 10

2 The Essential PROC SQL Handbook

A little history

SQL is a powerful, flexible, fourth-generation sublanguage that enables complex
processing through a few simple statements. You need only to indicate the desired
outcome rather than outline each of the steps necessary to reach that outcome because
SQL is a nonprocedural language. SQL statements allow for the complete creation,
maintenance, and reporting of relational database systems using English-like statements.

In the mid-1970s the Structured Query Language (SQL) was developed by IBM
researchers in San Jose, California, to support a new relational database model. In June
1970, Dr. E. F. Codd, a researcher with IBM, published his mathematical theory of data
management in a paper entitled "A Relational Model of Data for Large Shared Data
Banks." His ideas resulted in the definition of a new form of data storage structure, a
table consisting of rows and columns. The relational database model was thus born from
tables and the relationships between tables.

SQL was designed to enable access to data stored in a relational database. It allows you
to create, alter, and delete tables as well as modify or delete existing records or add new
records to tables.

By the late 1980s and early 1990s, each database vendor had its own version of SQL. In
an effort to minimize the inconsistencies and provide portability of SQL statements, the
American National Standards Institute (ANSI) developed a set of international standards
to be applied to the language. Several standards have been published by ANSI since
1986, including SQL-89, SQL-92, SQL-99 and SQL-2003.

Each successive SQL language release extends functionality. However, the foundations
of the SQL language have remained mostly unchanged. Vendors that are compliant with
the ANSI SQL-92 standard, for example, are also compliant with the SQL-99 core
function standards.

The power and ease-of-use of SQL has resulted in its use in hundreds of database
products today. Companies such as Oracle, Microsoft, Sybase, and IBM depend heavily
on SQL in their database products regardless of operating system. As a result, anyone
working with databases today must be proficient in SQL. The ANSI standards have
resulted in a set of more or less common statements with agreed upon functionality from
each vendor. However, many different ideas and syntactical differences are found in
each flavor of SQL.

PROC SQL underwent major change in SAS Version 8, resulting in a more versatile
procedure that is also more closely in line with the ANSI SQL-92 standard. The new
version extends the functionality of the SQL language with elements from Base SAS.

Chapter 1 Introduction to PROC SQL 3

PROC SQL statements

There are approximately 40 statements in SQL which can be grouped into several
categories. Data Definition Language (DDL) statements such as CREATE, ALTER, and
DROP are used to create and maintain tables and other objects such as indexes and views
in a relational database. Data Manipulation Language (DML) statements such as
SELECT, INSERT, UPDATE, and DELETE are used to retrieve and maintain rows of
table data. The final group of statements, COMMIT, ROLLBACK, GRANT, and
REVOKE are all Data Control Language (DCL) statements, which are focused on
database security.

This book concentrates on the DDL and DML statements that support reporting or
selection of data and the creation and maintence of tables and views. With knowledge of
just seven statements, you have the powerful functionality of SQL at your fingertips.

Why learn PROC SQL?

Why learn PROC SQL instead of continuing to use the SAS programming language and
the standard procedures? A single SELECT statement may encompass selection,
manipulation, merging, sorting, summary, filtration, and reporting processes, eliminating
several SAS procedures and DATA steps in your programs.

You will find that you can apply many of the concepts you already know to PROC SQL.
Whether it is retrieving data from a data set or database, the SQL procedure treats
everything as though it were a two-dimensional table composed of rows and columns.
This is similar to the SAS data set where the observations are rows and variables are
columns.

The SQL procedure completes many tasks with a single SQL statement while the more
traditional SAS solution may involve several SAS procedures and DATA steps.

Tip: A table generated in PROC SQL can be referenced in a DATA step in exactly
the same way as a data set. The reverse is also true; data sets created in a
DATA step can be used in PROC SQL.

PROC SQL allows you to modify and maintain tables within a database from the SAS
session. Statements to modify existing records, add new records, and delete records can
all be incorporated into a PROC SQL statement and applied via the SQL Pass-Through
Facility or LIBNAME engine.

4 The Essential PROC SQL Handbook

The compact nature of a SQL statement allows for quick updates of programming code if
the data changes. SQL statements can also include macro variables allowing for a
generic program that can be dynamically updated.

Reporting that suits your needs
A PROC SQL query generates a summarized, sorted report without a call to any other
procedures. The SELECT statement automatically produces printed output, eliminating
the need for a PRINT procedure. The SELECT statement also sorts the result set without
a call to PROC SORT.

SAS standard formats and user-defined formats created in PROC FORMAT may be
applied within a SELECT statement.

Output Delivery System (ODS) destinations may be specified for the reports generated by
a SELECT statement. A single SELECT statement may generate several formatted
reports such as HTML and PDF reports using ODS statements. A document destination
may also be specified, providing for flexible output options without the need to re-
execute the query.

The TEMPLATE procedure may be used to create custom styles for reports. Other SAS
procedures such as PROC TABULATE and PROC REPORT may operate on tables
created by the SQL procedure.

Tip: A simple SELECT statement produces a printed report unless you specify the
NOPRINT option. SELECT statements that are part of a subquery in a
CREATE, ALTER, or UPDATE statement do not generate output. In each of
these cases, the output returned by the SELECT statement is used as input to
the CREATE, ALTER, or UPDATE statement.

The power to create
The PROC SQL CREATE statement provides for the creation of tables, views, and SAS
data sets in either a database or a native SAS library from within a SAS session. Users
working within a database require appropriate privileges in order to execute a CREATE
statement in a database. The new tables can be created within a database or stored in a
native SAS data library.

There are several options available for the creation of tables in PROC SQL. Each column
and column modifier can be specified much in the same way as empty fields in a data set
can be established in a DATA step. However, tables can also be created using the
structure of an existing table or data set as a template, but leaving an empty table.
Alternatively, the CREATE statement can mimic the DATA step data set creation
process, taking both structure and data from an existing table or data set.

Chapter 1 Introduction to PROC SQL 5

Views provide the ability to selectively allow users to see columns and rows of
information in one or more tables and data sets. Views can be generated from a complex
SELECT statement that retrieves information from one or more tables or data sets.
However, you issue a simple SELECT statement against the view, retrieving up-to-date
information because the view is re-created each time it is queried. The dynamic nature of
views makes them invaluable for reporting applications.

Tip: Most table creation in a database can be accomplished using PROC SQL
statements. If additional database-specific statements are required, they can be
passed directly to the Relational Database Management Systems (RDBMS) for
processing using the SQL Pass-Through facility. Only those users with
appropriate database privileges can successfully submit CREATE statements.

Ease of maintenance
PROC SQL statements such as ALTER, INSERT, UPDATE, DROP, and DELETE
provide for the addition of new data and the modification or update of existing data in a
table. From within a SAS session, tables in a database as well as tables and data sets
stored in native SAS libraries can be maintained by users with appropriate database
privileges.

New rows can be added to tables directly using the INSERT statement, or they may be
taken from one or more tables or data sets in any active library, including a database.
One or more criteria can be set, limiting the rows taken from the other sources.

In PROC SQL, a single UPDATE statement applies the changes to existing rows in a
table without creating a new table or data set. The rows modified by the UPDATE
statement can be limited through WHERE clause criteria based on values within the same
table or other tables. Moreover, updates can be easily applied from records in one or
more other data sets or tables.

Existing tables and data sets can also be altered using the ALTER statement to include
additional columns and add column modifiers such as labels or formats. In each case, the
work is done on the existing table without the need to create a new table or data set.

Security
USER, a special keyword, when added to a PROC SQL INSERT or UPDATE statement
can be used to store the user ID associated with the action in a table. Such statements
can be triggered by specific events to execute in the background of applications, allowing
for the creation of an effective audit table. Dates and other information collected from
the SAS session can also be added to the entry.

6 The Essential PROC SQL Handbook

Database security is also maintained. A user must have the appropriate security to create
tables, views, and indexes within a database. Only those users with appropriate database
privileges can successfully submit INSERT, UPDATE, ALTER, and DELETE
statements. In addition, only those users with read-access to tables may report from them
or views built from those tables using the SELECT statement.

Data integrity checks
Integrity constraints such as primary key, foreign key, check, unique, and not null can all
be added either at the time a table is created or later with an ALTER statement. Once set,
they automatically check all incoming data values.

Primary key integrity constraints check for duplicate values as data is entered into one or
more columns of a table. Foreign key integrity constraints prevent data from being
entered into the column of one table unless the value is already in another. This form of
constraint is useful for ensuring that each row of your incoming data has a valid code
such as a state abbreviation.

The check integrity constraint can be used to check all incoming data against one or more
criteria. For example, it can be used to limit your incoming data to a specific date range.
The NOT NULL integrity constraint can be applied to prevent the entry of null values.

Foreign key constraints make the task of synchronizing column values common to two
tables or data sets effortless through the specification of referential actions. When a
value in the parent or reference table is modified, the value in the linked or child table is
automatically modified in the same way. In addition, the constraint can be set up so that
the value in the child table is changed to a missing value if the value in the linked parent
table is deleted.

Optimized performance
The PROC SQL optimizer automatically works out a plan for executing SQL statements
in the most efficient manner possible. Indexes can be built to provide better performance
for your queries. In addition, directions for the optimizer may be added as statement
options.

Performance optimization is important when tables are stored in one or more databases as
well as native SAS libraries. The SQL optimizer determines whether processing should
be transferred to the database or be handled by SAS. Options such as DBMASTER, new
in SAS 9, assist in the optimizer in efficient handling of queries involving tables residing
in different database locations.

Chapter 1 Introduction to PROC SQL 7

Adaptability

Flexibility in a changing environment
We all know how unstable the computing environment in companies is today. Your
company may decide to implement a new data warehouse using Sybase instead of DB2.
A new package may be introduced to generate reports from your Oracle database.

If you are using a SAS/ACCESS LIBNAME statement to connect to a database, the only
change needed regardless of the database is to the LIBNAME connection string required
to establish a connection to the database.

Using the familiar SAS interface, you can easily create new tables and update and
retrieve your data. There is no need to learn another product or interface such as Oracle
SQL*Plus or ISQL. Moreover, the information extracted using SQL is directly available
for further processing in a SAS DATA step or other SAS procedures.

SAS PROC SQL allows you to apply your standard SAS output formats and labeling
options and almost all of the SAS functions. In fact, if you are a SAS programmer, you
already know more about SQL statements than most other programmers!

Table merges and Cartesian products
One of the strengths of SQL is its ability to join or merge two or more tables, generating
result sets or new tables that include data from one or more of the tables. Criteria can be
built from any column in the joined tables as well. Unlike the SAS data set merge, the
tables do not have to be presorted or indexed on a key variable in order to accomplish the
join. With PROC SQL, the procedure sorts and merges the tables in the same step.

There are several ways to accomplish a join or merge in SQL. It is possible to match
common values in a column in two or more tables. However, it is also possible to
produce a Cartesian product of all combinations of all rows from all of the tables.

Two or more tables can also be joined using outer joins which retrieve nonmatching rows
from one or both tables along with the unique matching rows. Set operations provide
additional merge or join functionality based on intersect, union, and exception operations.

Fuzzy logic
A wide range of criteria can be applied to SQL queries thereby limiting the rows
retrieved or manipulated by the query. However, often the criteria we wish to apply
cannot be written in a simple fashion using mathematical operators such as =, <, or >.

8 The Essential PROC SQL Handbook

PROC SQL WHERE clauses may include conditions that require fuzzy logic or inexact
matching.

Fuzzy logic can be applied to pattern-matching criteria in an SQL query. SAS functions
such as SCAN and CONTAINS allow us to parse a string for the inclusion of various
characters. The LIKE operator can be used in conjunction with wildcard symbols to
restrict character string matches to a particular position within a column value. For
criteria based on a range, the BETWEEN operator can be used to set the bounds.

PROC SQL may also include the SAS SOUNDEX function in the WHERE clause of a
query. This function will match column values that sound similar to the given value.

Criteria built from stored data
Subqueries provide the ability to calculate or retrieve one or more values which are then
substituted into a WHERE clause. Essentially they allow report criteria to be built at the
time the query is run. Subqueries are executed first, returning one or more values to the
main query.

Work within a database from a SAS session
An advantage of the SQL procedure is its ability to establish a connection to a database
through SAS/ACCESS and the SQL Pass-Through facility. PROC SQL statements may
be submitted interactively within a SAS session directly to a database regardless of its
location. For example, database servers can be accessed from client machines, or the
database may be distributed between several machines.

In addition, a single SAS session can support multiple connections to one or more
databases enabling multisource data delivery for data warehouse extraction,
transformation and loading processes and other applications. SAS procedures and DATA
steps can seamlessly combine database tables and tables and data sets stored in native
SAS libraries.

SQL Pass-Through facility
SAS took the new tool one step further by incorporating the ability to execute SQL
statements generated from within a SAS session directly against a variety of database
systems. The SQL Pass-Through facility enables a user to retrieve information from a
database and incorporate it into SAS data sets, all from within the familiar SAS
environment.

A database specific CONNECT statement first opens communication with the database.
SAS then passes the SQL statements to the database for execution and returns the results
to the SAS session. Finally, a DISCONNECT statement closes the database connection.

Chapter 1 Introduction to PROC SQL 9

SAS/ACCESS LIBNAME statement
Since SAS 8, connecting to a database has become even easier with the enhancement of
the LIBNAME statement. With PROC SQL and SAS/ACCESS, the export and import
steps are eliminated. A LIBNAME statement provides the means to connect to the
database, and these tables can be accessed directly by either a DATA step or PROC SQL.
Moreover, a data set stored in a native SAS library may be matched to records in tables
stored in two different database systems using fields in common between the tables.

The LIBNAME statement specifies the parameters needed to establish a database
connection and associate that connection with a libref. Once assigned, the libref can be
used as part of two-level names in any SAS procedure or DATA step. In addition, views
can store embedded LIBNAME statements making the connection to a database invisible
to the user.

Interactive and Web-based applications
Internet and intranet-driven applications can incorporate SQL statements using htmSQL
input files that provide access to tables and data sets, both in native SAS libraries and
databases. In addition, entire SQL statements can easily be built from parameters passed
through interactive Web pages.

In SAS/AF FRAME entry and webAF, objects can be populated through data retrieved
from either native SAS libraries or databases using the SQL procedure. Parameters
passed through FRAME objects can also be used to set criteria used in SQL statements.

Values retrieved from tables or data sets using SQL queries can also be easily bound to
macro variables using the INTO clause. These variables can be passed to macro
programs in FRAME source code or other SAS programs.

When not to use PROC SQL

The SQL procedure does not read or write text files directly. Nor is it well suited to the
creation of a data set using instream record images.

The SAS DATA step offers a wide range of delimiters and other formatting options
commonly encountered in data files. It provides more flexibility when reading files such
as spreadsheets that may include missing values when they are imported into SAS. The
SAS INPUT statement also allows for named input.

10 The Essential PROC SQL Handbook

Although the PROC SQL INSERT statement may be used to add rows to a table or data
set, a VALUES keyword is required for each row and the complete record must be
enclosed in parentheses. In addition, all character and missing variables must be
enclosed in quotation marks. Because many files that are imported contain, at best, a
delimiter between fields, the added syntax required by the INSERT statement can
significantly add to the workload of data imports.

The SAS DATA step is your only solution if you are attempting to import fixed-width
columnar data into SAS. PROC SQL does not allow for positional column references in
the INSERT statement.

The PROC SQL advantage

SQL is an important component of every database today regardless of its function. It is
used for transactional databases as well as data warehouses and data marts supporting
data mining activities. The effort you put into learning PROC SQL in SAS provides you
with a skill that can be used in environments other than SAS. Once you’ve completed
this book, you will be ready to tackle reporting, table creation, and maintenance in any
database system your company decides to implement.

