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1.1 Statistics—the Field 
 
In some ways, we are all born statisticians. Inferring general patterns from limited 
knowledge is nearly as automatic to the human consciousness as breathing. Yet, 
when inference is formalized through the science of mathematics to the field called 
Statistics, it often becomes clouded by preconceptions of abstruse theory. Let's see 
if we can provide some formalization to this natural process of rational inference 
without getting bogged down in theoretical details. 

The purpose of the field of Statistics is to characterize a population based on the 
information contained in a sample taken from that population. The sample 
information is conveyed by functions of the observed data, which are called 
statistics. The field of Statistics is a discipline that endeavors to determine which 
functions are the most relevant in the characterization of various populations. (The 
concepts of ‘populations’, ‘samples’, and ‘characterization’ are discussed in this 
chapter.) 

For example, the arithmetic mean might be the most appropriate statistic to help 
characterize certain populations, while the median might be more appropriate for 
others. Statisticians use statistical and probability theory to develop new 
methodology and apply the methods best suited for different types of data sets. 

Applied Statistics can be viewed as a set of methodologies used to help carry out 
scientific experiments. In keeping with the scientific method, applied statistics 
consists of developing a hypothesis, determining the best experiment to test the 
hypothesis, conducting the experiment, observing the results, and making 
conclusions. The statistician’s responsibilities include: study design, data 
collection, statistical analysis, and making appropriate inferences from the data. In 
doing so, the statistician seeks to limit bias, maximize objectivity, and obtain 
results that are scientifically valid. 
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 Populations 
 
A population is a universe of entities to be characterized but is too vast to study in 
its entirety. The population in a clinical trial would be defined by its limiting 
conditions, usually specified via study inclusion and exclusion criteria. 

Examples of populations include: 

• patients with mild-to-moderate hypertension 
• obese teenagers 
• adult, insulin-dependent, diabetic patients. 
 
The first example has only one limiting factor defining the population, that is, 
mild-to-moderate hypertension. This population could be defined more precisely as 
patients with diastolic blood pressure within a specific range of values as an 
inclusion criterion for the clinical protocol. Additional criteria would further limit 
the population to be studied. 

The second example uses both age and weight as limiting conditions, and the third 
example uses age, diagnosis, and treatment as criteria for defining the population. 

It is important to identify the population of interest in a clinical study at the time of 
protocol development, because the population is the ‘universe’ to which statistical 
inferences might apply. Severely restricting the population by using many specific 
criteria for admission might ultimately limit the clinical indication to a restricted 
subset of the intended market. 

 Samples  
 
You can describe a population by describing some representative entities in it. 
Measurements obtained from sample entities tend to characterize the entire 
population through inference.  

The degree of representation of the entities in a sample that is taken from the 
population of interest depends on the sampling plan used. The simplest type of 
sampling plan is called a ‘simple random sample’. It describes any method of 
selecting a sample of population entities such that each entity has the same chance 
of being selected as any other entity in the population. It’s easy to see how random 
samples should represent the population, and the larger the sample, the greater the 
representation. 

The method of obtaining a simple random sample from the population-of-interest is 
not always clear-cut. Simple random samples are rarely, if ever, used in clinical 
trials. Imagine the patients who comprise the populations in the three examples 
cited earlier, living all over the world. This would make the collection of a simple 
random sample an overwhelming task. 
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Although inferences can be biased if the sample is not random, adjustments can 
sometimes be used to control bias introduced by non-random sampling. An entire 
branch of Statistics, known as Sampling Theory, has been developed to provide 
alternative approaches to simple random sampling. Many of these approaches have 
the goal of minimizing bias. The techniques can become quite complex and are 
beyond the scope of this overview. 

For logistical reasons, clinical studies are conducted at a convenient study center 
with the assumption that the patients enrolled at that center are typical of those that 
might be enrolled elsewhere. Multi-center studies are often used to reduce bias that 
could arise due to patient characteristics or procedural anomalies that might be 
unique to a specific center. 

Stratified sampling is another technique that is often used to obtain a better 
representation of patients. Stratified sampling uses random samples from each of 
several subgroups of a population, which are called ‘strata’. Enrollment in a study 
is sometimes stratified by disease severity, age group, or some other characteristic 
of the patient. 

Because inferences from non-random samples might not be as reliable as those 
made from random samples, the clinical statistician must specifically address the 
issue of selection bias in the analysis. Statistical methods can be applied to 
determine whether the treatment group assignment ‘appears’ random for certain 
response variables. For example, baseline values might be lower for Group A than 
Group B in a comparative clinical study. If Group A shows a greater response, part 
of that perceived response might be a regression-toward-the-mean effect, that is, a 
tendency to return to normal from an artificially low baseline level. Such effects 
should be investigated thoroughly to avoid making faulty conclusions due to 
selection bias.  

Additional confirmatory studies in separate, independent samples from the same 
population can also be important in allaying concerns regarding possible sampling 
biases. 

 Characterization  
 
So how is the population characterized from a sample? Statistical methods used to 
characterize populations can be classified as descriptive or inferential. 

Descriptive statistics are used to describe the distribution of population 
measurements by providing estimates of central tendency and measures of 
variability, or by using graphical techniques such as histograms. Inferential 
methods use probability to express the level of certainty about estimates and to test 
specific hypotheses. 

Exploratory analyses represent a third type of statistical procedure used to 
characterize populations. Although exploratory methods use both descriptive and 
inferential techniques, conclusions cannot be drawn with the same level of 
certainty because hypotheses are not pre-planned. Given a large data set, it is very  
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likely that at least one statistically significant result can be found by using 
exploratory analyses. Such results are ‘hypothesis-generating’ and often lead to 
new studies prospectively designed to test these new hypotheses. 

Two main inferential methods are confidence interval estimation and hypothesis 
testing, which are discussed in detail later in this chapter. 

 
1.2 Probability Distributions 

 
An understanding of basic probability concepts is essential to grasp the 
fundamentals of statistical inference. Most introductory statistics texts discuss 
these basics, therefore, only some brief concepts of probability distributions are 
reviewed here. 

Each outcome of a statistical experiment can be mapped to a numeric-valued 
function called a ‘random variable’. Some values of the random variable might be 
more likely to occur than others. The probability distribution associated with the 
random variable X describes the likelihood of obtaining certain values or ranges of 
values of the random variable. 

For example, consider two cancer patients, each having a 50-50 chance of 
surviving at least 3 months. Three months later, there are 4 possible outcomes, 
which are shown in Table 1.1. 

TABLE 1.1  Probability Distribution of Number of Survivors (n=2) 

Outcome Patient 1 Patient 2 X Probability 

1 Died Died 0 0.25 

2 Died Survived 1 0.25 

3 Survived Died 1 0.25 

4 Survived Survived 2 0.25 
 
Each outcome can be mapped to the random variable X, which is defined as the 
number of patients surviving at least 3 months. X can take the values 0, 1, or 2 with 
probabilities 0.25, 0.50, and 0.25, respectively, because each outcome is equally 
likely. 
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The probability distribution for X is given by Px as follows: 

X Px 

0 0.25 

1 0.50 

2 0.25 
 
 Discrete Distributions  

 
The preceding example is a discrete probability distribution because the random 
variable X can only take discrete values, in this case, integers from 0 to 2. 

The binomial distribution is, perhaps, the most commonly used discrete 
distribution in clinical biostatistics. This distribution is used to model experiments 
involving n independent trials, each with 2 possible outcomes, say, ‘event’ or ‘non-
event’, and the probability of ‘event’, p, is the same for all n trials. The preceding 
example, which involves two cancer patients, is an example of a binomial 
distribution in which n = 2 (patients), p = 0.5, and ‘event’ is survival of at least 3 
months. 

Other commonly used discrete distributions include the poisson and the 
hypergeometric distributions. 

 Continuous Distributions  
 
If a random variable can take any value within an interval or continuum, it is called 
a continuous random variable. Height, weight, blood pressure, and cholesterol level 
are usually considered continuous random variables because they can take any 
value within certain intervals, even though the observed measurement is limited by 
the accuracy of the measuring device. 

The probability distribution for a continuous random variable cannot be specified 
in a simple form as it is in the discrete example above. To do that would entail an 
infinite list of probabilities, one for each possible value within the interval. One 
way to specify the distribution for continuous random variables is to list the 
probabilities for ranges of X-values. However, such a specification can also be 
very cumbersome. 

Continuous distributions are most conveniently approximated by functions of the 
random variable X, such as Px. Examples of such functions are  

   Px = 2x    for  0 < x < 1 
or 
   Px = ae–ax  for   0 < x < ∞  
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The normal distribution is the most commonly used continuous distribution in 
clinical research statistics. Many naturally occurring phenomena follow the normal 
distribution, which can be explained by a powerful result from probability theory 
known as the Central Limit Theorem, discussed in the next section. 

The normal probability distribution is given by the function 

 
 
 
 
where µ and σ are called ‘parameters’ of the distribution. For any values of µ and σ 
(>0), a plot of Px versus x has a ‘bell’ shape (illustrated in Appendix B). 

Other common continuous distributions are the exponential distribution, the chi-
square distribution, the F-distribution, and the Student t-distribution. Appendix B 
lists some analytic properties of common continuous distributions used in 
statistical inference (mentioned throughout this book). The normal, chi-square, F- 
and t-distributions are all interrelated, and some of these relationships are shown in 
Appendix B. 

Whether discrete or continuous, every probability distribution has the property that 
the sum of the probabilities over all X-values equals 1. 

 The Central Limit Theorem  
 
The Central Limit Theorem states that, regardless of the distribution of 
measurements, sums and averages of a large number of like measurements tend to 
follow the normal distribution. Because many measurements related to growth, 
healing, or disease progression might be represented by a sum or an accumulation 
of incremental measurements over time, the normal distribution is often applicable 
to clinical data for large samples. 

To illustrate the Central Limit Theorem, consider the following experiment. A 
placebo (inactive pill) is given to n patients, followed by an evaluation one hour 
later. Suppose that each patient's evaluation can result in ‘improvement,’ coded as 
+1, ‘no change’ (0), or ‘deterioration’ (–1), with each result equally probable. Let 
X1, X2, ..., Xn represent the measurements for the n patients, and define Z to be a 
random variable that represents the sum of these evaluation scores for all n 
patients,  

         Z = X1 + X2 + ... + Xn 

2

2
(xμ)

2σx
1          for   x  eP
2πσ

−
= ∞ < < ∞– –
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For n = 1, the probability distribution of Z is the same as X, which is constant for 
all possible values of X. This is called a ‘uniform’ distribution. See Figure 1.1. 

FIGURE 1.1  Probability Distribution for Z = X1 

 

Z Pz 

–1 1/3 

  0 1/3 

+1 1/3 
 

 
 
For n = 2, there are 9 equally probable outcomes resulting in 5 possible, distinct 
values for Z, as shown in Table 1.2. 

TABLE 1.2  All Possible Equally Probable Outcomes (n=2) 

Patient 1 Patient 2 Z Prob. 
–1 -1 –2 1/9 
–1  0 –1 1/9 
 0 -1 –1 1/9 
–1 +1  0 1/9 
 0  0  0 1/9 
+1 -1  0 1/9 
 0 +1 +1 1/9 
+1  0 +1 1/9 
+1 +1 +2 1/9 

 

The resulting probability distribution for Z is shown in Figure 1.2. 

FIGURE 1.2  Probability Distribution for Z = X1+X2 

 
Z Pz 

–2 1/9 

–1 2/9 

  0 3/9 

+1 2/9 

+2 1/9 
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For n = 3, Z can take values from –3 to +3. See Figure 1.3 for the distribution.  
 
FIGURE 1.3  Probability Distribution for Z = X1+X2+X3  

 

Z Pz 

–3 1/27 

–2 3/27 

–1 6/27 

  0 7/27 

+1 6/27 

+2 3/27 

+3 1/27 
 
 
 
You can see from the histograms that, as n becomes larger, the distribution of Z 
takes on the bell-shaped characteristic of the normal distribution. The distribution 
of Z for 8 patients (n = 8) is shown in Figure 1.4. 

While the probability distribution of the measurements (X) is ‘uniform’, the sum of 
these measurements (Z) is a random variable that tends toward a normal 
distribution as n increases. The Central Limit Theorem states that this will be the 
case regardless of the distribution of the X measurements. Because the sample 
mean, x,  is the sum of measurements (multiplied by a constant, 1/n), the Central 
Limit Theorem implies that x  has an approximate normal distribution for large 
values of n regardless of the probability distribution of the measurements that 
comprise x.  
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FIGURE 1.4  Probability Distribution for  
                      Z = X1+X2+X3+X4+X5+X6+X7+X8 

 
Z Pz 

–8 0.000 

–7 0.001 

–6 0.005 

–5 0.017 

–4 0.041 

–3 0.077 

–2 0.119 

–1 0.155 

0 0.169 

+1 0.155 

+2 0.119 

+3 0.077 

+4 0.041 

+5 0.017 

+6 0.005 

+7 0.001 

+8 0.000 
 

 
 

1.3 Study Design Features 
 
Sound statistical results can be valid only if the study plan is well thought out and 
accompanied by appropriate data collection techniques. Even the most 
sophisticated statistical tests might not lead to valid inferences or appropriate 
characterizations of the population if the study itself is flawed. Therefore, it is 
imperative that statistical design considerations be addressed in clinical studies 
during protocol development. 

There are many statistical design considerations that go into the planning stage of a 
new study. The probability distribution of the primary response variables will help 
predict how the measurements will vary. Because greater variability of the 
measurements requires a larger sample size, distributional assumptions enable the 
computation of sample-size requirements to distinguish a real trend from statistical 
variation. Determining the sample size is discussed in Chapter 2. 
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Methods to help reduce response variability can also be incorporated into the study 
design. Features of controlled clinical trials such as randomization and blinding, 
and statistical ‘noise-reducing’ techniques (such as the use of covariates, 
stratification or blocking factors, and the use of within-patient controls) are ways to 
help control extraneous variability and focus on the primary response 
measurements. 

 Controlled Studies  
 
A controlled study uses a known treatment, which is called a ‘control’, along with 
the test treatments. A control may be inactive, such as a placebo or sham, or it may 
be another active treatment, perhaps a currently marketed product. 

A study that uses a separate, independent group of patients in a control group is 
called a parallel-group study. A study that gives both the test treatment and the 
control to the same patients is called a within-patient control study. 

A controlled study has the advantage of being able to estimate the pure therapeutic 
effect of the test treatment by comparing its perceived benefit relative to the benefit 
of the control. Because the perceived benefit might be due to numerous study 
factors other than the treatment itself, a conclusion of therapeutic benefit cannot be 
made without first removing those other factors from consideration. Because the 
controls are subject to the same study factors, treatment effect relative to control, 
instead of absolute perceived benefit, is more relevant in estimating actual 
therapeutic effect. 

 Randomization  
 
Randomization is a means of objectively assigning experimental units or patients to 
treatment groups. In clinical trials, this is done by means of a randomization 
schedule generated prior to starting the enrollment of patients. 

The randomization scheme should have the property that any randomly selected 
patient has the same chance as any other patient of being included in any treatment 
group. Randomization is used in controlled clinical trials to eliminate systematic 
treatment group assignment, which might lead to bias. In a non-randomized setting, 
patients with the most severe condition might be assigned to a group based on the 
treatment's anticipated benefit. Whether this assignment is intentional or not, this 
creates bias because the treatment groups would represent samples from different 
populations, some of whom might have more severe conditions than others. 
Randomization filters out such selection bias and helps establish baseline 
comparability among the treatment groups. 

Randomization provides a basis for unbiased comparisons of the treatment groups. 
Omitting specific responses from the analysis is a form of tampering with this 
randomization and will probably bias the results if the exclusions are made in a 
non-randomized fashion. For this reason, the primary analysis of a clinical trial is 
often based on the ‘intent-to-treat’ principle, which includes all randomized 
patients in the analysis even though some might not comply with protocol 
requirements. 
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 Blinded Randomization  
 
Blinded (or masked) randomization is one of the most important features of a 
controlled study. Single-blind, double-blind, and even triple-blind studies are 
common among clinical trials. 

A single-blind study is one in which the patients are not aware of which treatment 
they receive. Many patients actually show a clinical response with medical care 
even if they are not treated. Some patients might respond when treated with a 
placebo but are unaware that their medication is inactive. These are examples of 
the well-known placebo effect, which might have a psychological component 
dependent on the patient's belief that he is receiving appropriate care. A 20% or 
greater placebo response is not uncommon in many clinical indications. 

Suppose that a response, Y, can be represented by a true therapeutic response 
component, TR, and a placebo effect, PE. Letting subscripts A and P denote 
‘active’ and ‘placebo’ treatments, respectively, the estimated therapeutic benefit of 
the active compound might be measured by the difference 

  YA – YP = (TRA + PEA) – (TRP + PEP) 
 
Because a placebo has no therapeutic benefit, TRP = 0. With PE∆ = PEA – PEP , you 
obtain 
 
  YA – YP = TRA + PE∆ 
 
When patients are unaware of their treatment, the placebo effect (PE) should be the 
same for both groups, making PE∆ = 0. Therefore, the difference in response values 
estimates the true therapeutic benefit of the active compound. 

However, if patients know which treatment they have been assigned, the placebo 
effect in the active group might differ from that of the control group, perhaps due 
to better compliance or expectation of benefit. In this case, the estimate of 
therapeutic benefit is contaminated by a non-zero PE∆. 

In addition, bias, whether conscious or not, might arise if the investigator does not 
evaluate all patients uniformly. Evaluation of study measurements (such as global 
assessments and decisions regarding dosing changes, visit timing, use of 
concomitant medications, and degree of follow-up relating to adverse events or 
abnormal labs) might be affected by the investigator’s knowledge of the patient’s 
treatment. Such bias can be controlled by double-blinding the study, which means 
that information regarding treatment group assignment is withheld from the 
investigator as well as the patient. 

Double-blinding is a common and important feature of a controlled clinical trial, 
especially when evaluations are open to some degree of subjectivity. However, 
double-blinding is not always possible or practical. For example, test and control 
treatments might not be available in the same formulation. In such cases, treatment 
can sometimes be administered by one investigator and the evaluations performed  
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by a co-investigator at the same center in an attempt to maintain some sort of 
masking of the investigator. 

Studies can also be triple-blind, wherein the patient, investigator, and clinical 
project team (including the statistician) are unaware of the treatment administered 
until the statistical analysis is complete. This reduces a third level of potential 
bias—that of the interpretation of the results. 

Selection of appropriate statistical methods for data analysis in confirmatory 
studies should be done in a blinded manner whenever possible. Usually, this is 
accomplished through the development of a statistical analysis plan prior to 
completing data collection. Such a plan helps remove the potential for biases 
associated with data-driven methodology. It also eliminates the ability to select a 
method for the purpose of producing a result closest to the outcome that is being 
sought. 

 Selection of Statistical Methods  
 
Features of controlled clinical trials, such as randomization and blinding, help to 
limit bias when making statistical inferences. The statistical methods themselves 
might also introduce bias if they are ‘data-driven’, that is the method is selected 
based on the study outcomes. In most cases, the study design and objectives will 
point to the most appropriate statistical methods for the primary analysis. These 
methods are usually detailed in a formal analysis plan prepared prior to data 
collection and, therefore, represent the best ‘theoretical’ methodology not 
influenced by the data. 

Often, sufficient knowledge of the variability and distribution of the response in 
Phase 3 or in pivotal trials is obtained from previous studies. If necessary, there are 
ways to confirm distributional assumptions based on preliminary blinded data in 
order to fully pre-specify the methodology. Because different statistical methods 
might lead to different conclusions, failure to pre-specify the methods might lead to 
the appearance of selecting a method that results in the most desirable conclusion. 

Methodology bias is one concern addressed by an analysis plan. More importantly, 
pre-specifying methodology helps to ensure that the study objectives are 
appropriately addressed. The statistical method selected will depend very strongly 
on the actual objective of the study. Consider a trial that includes three doses of an 
active compound and an inactive placebo. Possible study objectives include 
determining if 

• there is any difference among the four groups being studied. 
• any of the active doses is better than the placebo. 
• the highest dose is superior to the lower doses. 
• there is a dose-response. 
 
A different statistical method might be required for each of these objectives. The 
study objective must be clear before the statistical method can be selected. 
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1.4 Descriptive Statistics 
 
Descriptive statistics describe the probability distribution of the population. This is 
done by using histograms to depict the shape of the distribution, by estimating 
distributional parameters, and by computing various measures of central tendency 
and dispersion. 

A histogram is a plot of the measured values of a random variable by their 
frequency. For example, height measurements for 16-year-old male students can be 
described by a sample histogram based on 25 students. See Figure 1.5. 

FIGURE 1.5  Histogram of Height Measurements (n=25) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If more-and-more measurements are taken, the histogram might begin looking  
like a ‘bell-shaped’ curve, which is characteristic of a normal distribution. See 
Figure 1.6. 
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FIGURE 1.6  Histogram of Height Measurements (n=300) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If you assume the population distribution can be modeled with a known 
distribution (such as the normal), you need only estimate the parameters associated 
with that distribution in order to fully describe it. The binomial distribution has 
only one parameter, p, which can be directly estimated from the observed data. The 
normal distribution has two parameters, µ and σ2, representing the mean and 
variance, respectively. 

Suppose a sample of n measurements, denoted by x1, x2, ..., xn is obtained. Various 
descriptive statistics can be computed from these measurements to help describe 
the population. These include measures of central tendency, which describe the 
center of the distribution, and measures of dispersion, which describe the variation 
of the data. Common examples of each are shown in Table 1.3. 

In addition to distributional parameters, you sometimes want to estimate 
parameters associated with a statistical model. If an unknown response can be 
modeled as a function of known or controlled variables, you can often obtain 
valuable information regarding the response by estimating the weights or 
coefficients of each of these known variables. These coefficients are called model 
parameters. They are estimated in a way that results in the greatest consistency 
between the model and the observed data. 
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TABLE 1.3  Common Descriptive Statistics 

Measures of 'Central Tendency' 

Arithmetic Mean x  = (Σ xi) / n  = (x1 + x2 + ... + xn) / n 

Median the middle value, if n is odd;  the average of 
the two middle values if n is even (50th 
percentile) 

Mode the most frequently occurring value 

Geometric Mean (Πxi)1/n = (x1 ⋅ x2 ⋅ ... ⋅ xn)1/n 

Harmonic Mean n / Σ(xi)–1 =  n{(1/x1) + (1/x2) + ... + (1/xn)}–1 

Weighted Mean x w = (Σwixi) / W,  where W = Σwi 

Trimmed Mean Arithmetic mean omitting the largest and 
smallest observations 

Winsorized Mean Arithmetic mean after replacing outliers with 
the closest non-outlier values 

 

Measures of 'Dispersion' 

Variance s2 = Σ(xi – x )2 / (n – 1) 

Standard Deviation s = square root of the variance 

Standard Error (of the 
mean) 

(s2 / n)1/2 = Standard deviation of x  

Range Largest value - Smallest value 

Mean Absolute 
Deviation 

(Σ | xi – x | ) / n 

Inter-Quartile Range 75th percentile – 25th percentile 

Coefficient of Variation s / x  

 
 
Descriptive statistical methods are often the only approach that can be used for 
analyzing the results of pilot studies or Phase I clinical trials. Due to small sample 
sizes, the lack of blinding, or the omission of other features of a controlled trial, 
statistical inference might not be possible. However, trends or patterns observed in 
the data by using descriptive or exploratory methods will often help in building 
hypotheses and identifying important cofactors. These new hypotheses can then be 
tested in a more controlled manner in subsequent studies, wherein inferential 
statistical methods would be more appropriate. 
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Install Equation Editor and double-
click here to view equation.  

1.5 Inferential Statistics 
 
The two primary statistical methods for making inferences are confidence interval 
estimation and hypothesis testing.  

 Confidence Intervals  
 
Population parameters, such as the mean (µ) or the standard deviation (σ), can be 
estimated by using a point estimate, such as the sample mean (x) or the sample 
standard deviation (s). A confidence interval is an interval around the point 
estimate that contains the parameter with a specific high probability or confidence 
level. A 95% confidence interval for the mean (µ) can be constructed from the 
sample data with the following interpretation: If the same experiment were 
conducted a large number of times and confidence intervals were constructed for 
each, approximately 95% of those intervals would contain the population mean (µ). 

The general form of a confidence interval is [θL – θU], where θL represents the 
lower limit and θU is the upper limit of the interval. If the probability distribution of 
the point estimate is symmetric (such as the normal distribution), the interval can 
be found by 

θ̂  ±  C · θ̂σ  
 

where θ̂ θ̂σ is the point estimate of the population parameter θ,  is the standard 
error of the estimate, and C represents a value determined by the probability 
distribution of the estimate and the significance level that you want. When θ̂σ is 
unknown, the estimate ˆˆ

θ
σ  may be used.  

For example, for α between 0 and 1, a 100(1–α)% confidence interval for a normal 
population mean (µ) is 

x̄  ±  Zα/2 · σ / √ n  
 

where the point estimate of µ is x,  the standard error of x is σ/√ n

α 

, and the 
value of Zα/2 is found in the normal probability tables (See Appendix A.1). Some 
commonly used values of α and the corresponding critical Z-values are  

Zα/2 

0.10 1.645 

0.05 1.96 

0.02 2.33 

0.01 2.575 
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In most cases, the standard deviation (σ) will not be known. If it can be estimated 
using the sample standard deviation (s), a 100(1–α)% confidence interval for the 
mean (µ) can be formed as 

x̄  ± tα/2 · s / √ n


  
 
where tα/2 is found from the Student-t probability tables (see Appendix A.2) based 
on the number of degrees of freedom, in this case, n–1. For example, a value of  
tα/2 = 2.093 would be used for a 95% confidence interval when n = 20. 

Many SAS procedures will print point estimates of parameters with their standard 
errors. These point estimates can be used to form confidence intervals using the 
general form for θ̂ that is given above. Some of the most commonly used 
confidence intervals are for population means (µ), differences in means between 
two populations (µ1–µ2), population proportions (p), and differences in proportions 
between two populations (p1 – p2). For each of these, the form for θ̂  and its 
standard error are shown in Table 1.4. 

TABLE 1.4  Confidence Interval Components Associated with  
                   Means and Proportions 

θ θ̂ 
2
θ̂σ  2

ˆˆ
θσ  C 

µ 

 

x  σ2 / n s2 / n Zα/2 if σ is known; tα/2 if σ is 
unknown 

µ1 – µ2 1 2x x−  
σ1

 2/n1 + σ2
 2

 / n2 
s2 (1/n1 + 1/n2) Zα/2 if  σ1 and σ2 are known;   

tα/2 if σ1 or σ2 is unknown. If 
unknown, assume equal 
variances and use  
s2 = [(n1–1)s 2

1  + (n2 –1)s 2
2 ]/  

(n1 + n2 – 2) 

p 

 
p̂ = x/n p (1– p) / n p̂ (1– p̂) / n Zα/2 

(x ‘events’ in n binomial trials)* 

p1 – p2 p̂1 – p̂2 p1(1– p1) / n1 + 
p2(1– p2) / n2 

p̂1 (1– p̂1 ) / n1 
+  

 p̂2 (1– p̂2 ) / n2 

Zα/2 

(p̂i = xi/ni for i = 1,2)* 

 

      * applies to large samples 
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 Hypothesis Testing  
 
Hypothesis testing is a means of formalizing the inferential process for decision-
making purposes. It is a statistical approach for testing hypothesized statements 
about population parameters based on logical argument.  

To understand the concept behind the hypothesis test, let’s examine a form of 
deductive argument from logic, using the following example: 

If you have an apple, you do not have an orange. You have an orange. Therefore, 
you do not have an apple.  

The first two statements of the argument are premises and the third is the 
conclusion. The conclusion is logically deduced from the two premises, and its 
truth depends on the truth of the premises. 

If P represents the first premise and Q represents the second premise, the argument 
may be formulated as 

  if P then not Q   (conditional premise) 
  Q      (premise) 
  _______________ 
  therefore, not P   (conclusion) 
 
This is a deductively valid argument of logic that applies to any two statements, P 
and Q, whether true or false. Note that if you have both an apple and an orange, the 
conditional premise would be false, which makes the conclusion false because the 
argument is still valid. 

Statistical arguments take the same form as this logical argument, but statistical 
arguments must account for random variations in statements that might not be 
known to be completely true. A statistical argument might be paraphrased from the 
logical argument above as 

  if P then probably not Q     (conditional premise) 
  Q         (premise) 
  ____________________ 
  therefore, probably not P   (conclusion) 
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The following examples illustrate such ‘statistical arguments’. 

Example 1 
 
Statements: 
      P = the coin is fair 
      Q = you observe 10 tails in a row 
 
Argument: 
If the coin is fair, you would probably not observe 10 tails in a 
row. You observe 10 tails in a row. Therefore, the coin is 
probably not fair. 
 

 
 

Example 2 
 
Statements: 
     P = Drug A has no effect on arthritis 
    Q = from a sample of 25 patients, 23 showed   
            improvement in their arthritis after taking Drug A 
 
Argument: 
If Drug A has no effect on arthritis, you would probably not see 
improvement in 23 or more of the sample of 25 arthritic patients 
treated with Drug A. You observe improvement in 23 of the 
sample of 25 arthritic patients treated with Drug A. Therefore, 
Drug A is probably effective for arthritis. 
 

 
In the first example, you might initially suspect the coin of being biased in favor of 
tails. To test this hypothesis, assume the null case, which is that the coin is fair. 
Then, design an experiment that consists of tossing the coin 10 times and recording 
the outcome of each toss. You decide to reject the hypothesis concluding that the 
coin is biased in favor of tails if the experiment results in 10 consecutive tails.  
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Formally, the study is set out by identifying the hypothesis, developing a test 
criterion, and formulating a decision rule. For Example 1,  

 
Null hypothesis:  the coin is fair 
 
Alternative:  the coin is biased in favor of tails 
 
Test criterion:  the number of tails in 10 consecutive  

tosses of the coin 
 
Decision rule:  reject the null hypothesis if all 10 tosses  

result in 'tails' 
 
 
First, establish the hypothesis P. The hypothesis is tested by observing the results 
of the study outcome Q. If you can determine that the probability of observing Q is 
very small when P is true and you do observe Q, you can conclude that P is 
probably not true. The degree of certainty of the conclusion is related to the 
probability associated with Q, assuming P is true.  

Hypothesis testing can be set forth in an algorithm with 5 parts: 

• the null hypothesis (abbreviated H0) 
• the alternative hypothesis (abbreviated  HA) 
• the test criterion 
• the decision rule 
• the conclusion. 
 
The null hypothesis is the statement P translated into terms involving the 
population parameters. In Example 1, ‘the coin is fair’ is equivalent to ‘the 
probability of tails on any toss is ½’. Parametrically, this is stated in terms of the 
binomial parameter p, which represents the probability of tails. 

  H0:  p ≤ 0.5 
 
The alternative hypothesis is ‘not P’, or 

  HA:  p > 0.5 
 
Usually, you take ‘not P’ as the hypothesis to be demonstrated based on an 
acceptable risk for defining ‘probably’ as used in Examples 1 and 2. 

The test criterion or ‘test statistic’ is some function of the observed data. This is 
statement Q of the statistical argument. Statement Q might be the number of tails 
in 10 tosses of a coin or the number of improved arthritic patients, as used in 
Examples 1 and 2, or you might use a more complex function of the data. Often the 
test statistic is a function of the sample mean and variance or some other summary 
statistics.  
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The decision rule results in the rejection of the null hypothesis if unlikely values of 
the test statistic are observed when assuming the test statistic is true. To determine 
a decision rule, the degree of such ‘unlikeliness’ needs to be specified. This is 
referred to as the significance level of the test (denoted α) and, in clinical trials, is 
often (but not always) set to 0.05. By knowing the probability distribution of the 
test statistic when the null hypothesis is true, you can identify the most extreme 
100α% of the values as a rejection region. The decision rule is simply to reject H0 
when the test statistic falls in the rejection region. 

See Chapter 2 for more information about significance levels.  

 
1.6 Summary 

 
This introductory chapter provides some of the basic concepts of statistics, gives an 
overview of statistics as a scientific discipline, and shows that the results of a 
statistical analysis can be no better than the data collected. You’ve seen that the 
researcher must be vigilant about biases that can enter into a data set from a 
multitude of sources. With this in mind, it is important to emphasize the correct 
application of statistical techniques in study design and data collection as well as at 
the analysis stage. 

Statistical methods used to characterize populations from sample data can be 
classified as descriptive or inferential, most notably, parameter estimates by 
confidence intervals and hypothesis testing. These techniques are the focus of the 
methods presented in this book, Chapters 4 through 22. 
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