

Table of Contents

List of Programs ix
Preface xv
Acknowledgments xvii

Checking Values of Character Variables

Introduction 1
Using PROC FREQ to List Values 1
Description of the Raw Data File PATIENTS.TXT 2
Using a DATA Step to Check for Invalid Values 7
Describing the VERIFY, TRIM, MISSING, and NOTDIGIT Functions 9
Using PROC PRINT with a WHERE Statement to List Invalid Values 13
Using Formats to Check for Invalid Values 15
Using Informats to Remove Invalid Values 18

Che Checking Values of Numeric Variables

Introduction 23
Using PROC MEANS, PROC TABULATE, and PROC UNIVARIATE to Look
 for Outliers 24
Using an ODS SELECT Statement to List Extreme Values 34
Using PROC UNIVARIATE Options to List More Extreme Observations 35
Using PROC UNIVARIATE to Look for Highest and Lowest Values by Percentage 37
Using PROC RANK to Look for Highest and Lowest Values by Percentage 43
Presenting a Program to List the Highest and Lowest Ten Values 47
Presenting a Macro to List the Highest and Lowest "n" Values 50
Using PROC PRINT with a WHERE Statement to List Invalid Data Values 52
Using a DATA Step to Check for Out-of-Range Values 54
Identifying Invalid Values versus Missing Values 55

1

2

From Cody's Data Cleaning Techniques Using SAS®, Second Edition.
Full book available for purchase here.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19621

iv Table of Contents

Listing Invalid (Character) Values in the Error Report 57
Creating a Macro for Range Checking 60
Checking Ranges for Several Variables 62
Using Formats to Check for Invalid Values 66
Using Informats to Filter Invalid Values 68
Checking a Range Using an Algorithm Based on Standard Deviation 71
Detecting Outliers Based on a Trimmed Mean and Standard Deviation 73
Presenting a Macro Based on Trimmed Statistics 76
Using the TRIM Option of PROC UNIVARIATE and ODS to Compute
 Trimmed Statistics 80
Checking a Range Based on the Interquartile Range 86

 Checking for Missing Values

Introduction 91
Inspecting the SAS Log 91
Using PROC MEANS and PROC FREQ to Count Missing Values 93
Using DATA Step Approaches to Identify and Count Missing Values 96
Searching for a Specific Numeric Value 100
Creating a Macro to Search for Specific Numeric Values 102

 Working with Dates

Introduction 105
Checking Ranges for Dates (Using a DATA Step) 106
Checking Ranges for Dates (Using PROC PRINT) 107
Checking for Invalid Dates 108
Working with Dates in Nonstandard Form 111
Creating a SAS Date When the Day of the Month Is Missing 113
Suspending Error Checking for Known Invalid Dates 114

4

3

Table of Contents v

Loo Looking for Duplicates and "n" Observations per Subject

Introduction 117
Eliminating Duplicates by Using PROC SORT 117
Detecting Duplicates by Using DATA Step Approaches 123
Using PROC FREQ to Detect Duplicate ID's 126
Selecting Patients with Duplicate Observations by Using a Macro List and SQL 129
Identifying Subjects with "n" Observations Each (DATA Step Approach) 130
Identifying Subjects with "n" Observations Each (Using PROC FREQ) 132

Wor Working with Multiple Files

Introduction 135
Checking for an ID in Each of Two Files 135
Checking for an ID in Each of "n" Files 138
A Macro for ID Checking 140
More Complicated Multi-File Rules 143
Checking That the Dates Are in the Proper Order 147

 Double Entry and Verification (PROC COMPARE)

Introduction 149
Conducting a Simple Comparison of Two Data Sets 150
Using PROC COMPARE with Two Data Sets That Have an Unequal Number
 of Observations 159
Comparing Two Data Sets When Some Variables Are Not in Both Data Sets 161

Som Some PROC SQL Solutions to Data Cleaning

Introduction 165
A Quick Review of PROC SQL 166
Checking for Invalid Character Values 166
Checking for Outliers 168

7

8

6

5

vi Table of Contents

Checking a Range Using an Algorithm Based on the Standard Deviation 169
Checking for Missing Values 170
Range Checking for Dates 172
Checking for Duplicates 173
Identifying Subjects with "n" Observations Each 174
Checking for an ID in Each of Two Files 174
More Complicated Multi-File Rules 176

Corr Correcting Errors

Introduction 181
Hardcoding Corrections 181
Describing Named Input 182
Reviewing the UPDATE Statement 184

Corr Creating Integrity Constraints and Audit Trails

Introducing SAS Integrity Constraints 187
Demonstrating General Integrity Constraints 188
Deleting an Integrity Constraint Using PROC DATASETS 193
Creating an Audit Trail Data Set 193
Demonstrating an Integrity Constraint Involving More than One Variable 200
Demonstrating a Referential Constraint 202
Attempting to Delete a Primary Key When a Foreign Key Still Exists 205
Attempting to Add a Name to the Child Data Set 207
Demonstrating the Cascade Feature of a Referential Constraint 208
Demonstrating the SET NULL Feature of a Referential Constraint 210
Demonstrating How to Delete a Referential Constraint 211

9

10 10

Table of Contents vii

Corr DataFlux and dfPower Studio

Introduction 213
Examples 215

 Listing of Raw Data Files and SAS Programs

Programs and Raw Data Files Used in This Book 217
Description of the Raw Data File PATIENTS.TXT 217
Layout for the Data File PATIENTS.TXT 218
Listing of Raw Data File PATIENTS.TXT 218
Program to Create the SAS Data Set PATIENTS 219
Listing of Raw Data File PATIENTS2.TXT 220
Program to Create the SAS Data Set PATIENTS2 221
Program to Create the SAS Data Set AE (Adverse Events) 221
Program to Create the SAS Data Set LAB_TEST 222
Listings of the Data Cleaning Macros Used in This Book 222

 239 Index

Appendix

11

From Cody's Data Cleaning Techniques Using SAS®, Second Edition by Ron Cody. Copyright © 2008,
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19621

1 Checking Values of Character Variables

Introduction 1
Using PROC FREQ to List Values 1
Description of the Raw Data File PATIENTS.TXT 2
Using a DATA Step to Check for Invalid Values 7
Describing the VERIFY, TRIM, MISSING, and NOTDIGIT Functions 9
Using PROC PRINT with a WHERE Statement to List Invalid Values 13
Using Formats to Check for Invalid Values 15
Using Informats to Remove Invalid Values 18

Introduction

There are some basic operations that need to be routinely performed when dealing with character
data values. You may have a character variable that can take on only certain allowable values,
such as 'M' and 'F' for gender. You may also have a character variable that can take on numerous
values but the values must fit a certain pattern, such as a single letter followed by two or three
digits. This chapter shows you several ways that you can use SAS software to perform validity
checks on character variables.

Using PROC FREQ to List Values

This section demonstrates how to use PROC FREQ to check for invalid values of a character
variable. In order to test the programs you develop, use the raw data file PATIENTS.TXT, listed
in the Appendix. You can use this data file and, in later sections, a SAS data set created from this
raw data file for many of the examples in this text.

You can download all the programs and data files used in this book from the SAS Web site:
http://support.sas.com/publishing. Click the link for SAS Press Companion Sites and select
Cody's Data Cleaning Techniques Using SAS, Second Edition. Finally, click the link for Example
Code and Data and you can download a text file containing all of the programs, macros, and text
files used in this book.

From Cody's Data Cleaning Techniques Using SAS®, Second
Edition. Full book available for purchase here.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19621

2 Cody’s Data Cleaning Techniques Using SAS, Second Edition

Description of the Raw Data File PATIENTS.TXT
The raw data file PATIENTS.TXT contains both character and numeric variables from a typical
clinical trial. A number of data errors were included in the file so that you can test the data
cleaning programs that are developed in this text. Programs, data files, SAS data sets, and macros
used in this book are stored in the folder C:\BOOKS\CLEAN. For example, the file
PATIENTS.TXT is located in a folder (directory) called C:\BOOKS\CLEAN. You will need to
modify the INFILE and LIBNAME statements to fit your own operating environment.

Here is the layout for the data file PATIENTS.TXT.

Variable
Name

Description Starting
Column

Length Variable Type Valid Values

Patno Patient
Number

1 3 Character Numerals only

Gender Gender 4 1 Character 'M' or 'F'

Visit Visit Date 5 10 MMDDYY10. Any valid date

HR Heart Rate 15 3 Numeric Between 40 and 100

SBP Systolic Blood
Pressure

18 3 Numeric Between 80 and 200

DBP Diastolic
Blood
Pressure

21 3 Numeric Between 60 and 120

Dx Diagnosis
Code

24 3 Character 1 to 3 digit numeral

AE Adverse Event 27 1 Character '0' or '1'

There are several character variables that should have a limited number of valid values. For this
exercise, you expect values of Gender to be 'F' or 'M', values of Dx the numerals 1 through 999,
and values of AE (adverse events) to be '0' or '1'. A very simple approach to identifying invalid
character values in this file is to use PROC FREQ to list all the unique values of these variables.
Of course, once invalid values are identified using this technique, other means will have to be
employed to locate specific records (or patient numbers) containing the invalid values.

Chapter 1 Checking Values of Character Variables 3

Use the program PATIENTS.SAS (shown next) to create the SAS data set PATIENTS from the
raw data file PATIENTS.TXT (which can be downloaded from the SAS Web site or found listed
in the Appendix). This program is followed with the appropriate PROC FREQ statements to list
the unique values (and their frequencies) for the variables Gender, Dx, and AE.

Program 1-1 Writing a Program to Create the Data Set PATIENTS

--

|PROGRAM NAME: PATIENTS.SAS in C:\BOOKS\CLEAN |

|PURPOSE: To create a SAS data set called PATIENTS |

--;

libname clean "c:\books\clean";

data clean.patients;

 infile "c:\books\clean\patients.txt" truncover /* take care of problems

with short records */;

 input @1 Patno $3.

@4 Gender $1.

@5 Visit mmddyy10.

@15 Hr 3.

@18 SBP 3.

@21 DBP 3.

@24 Dx $3.

@27 AE $1.;

 LABEL Patno = "Patient Number"

Gender = "Gender"

Visit = "Visit Date"

HR = "Heart Rate"

SBP = "Systolic Blood Pressure"

DBP = "Diastolic Blood Pressure"

Dx = "Diagnosis Code"

AE = "Adverse Event?";

 format visit mmddyy10.;

run;

4 Cody’s Data Cleaning Techniques Using SAS, Second Edition

The DATA step is straightforward. Notice the TRUNCOVER option in the INFILE statement.
This will seem foreign to most mainframe users. If you do not use this option and you have short
records, SAS will, by default, go to the next record to read data. The TRUNCOVER option
prevents this from happening. The TRUNCOVER option is also useful when you are using list
input (delimited data values). In this case, if you have more variables on the INPUT statement
than there are in a single record on the data file, SAS will supply a missing value for all the
remaining variables. One final note about INFILE options: If you have long record lengths
(greater than 256 on PCs and UNIX platforms) you need to use the LRECL= option to change the
default logical record length.

Next, you want to use PROC FREQ to list all the unique values for your character variables. To
simplify the output from PROC FREQ, use the NOCUM (no cumulative statistics) and
NOPERCENT (no percentages) TABLES options because you only want frequency counts for
each of the unique character values. (Note: Sometimes the percent and cumulative statistics can
be useful—the choice is yours.) The PROC statements are shown in Program 1-2.

Program 1-2 Using PROC FREQ to List All the Unique Values for Character Variables

title "Frequency Counts for Selected Character Variables";

proc freq data=clean.patients;

 tables Gender Dx AE / nocum nopercent;

run;

Chapter 1 Checking Values of Character Variables 5

Here is the output from running Program 1-2.

Frequency Counts for Selected Character Variables

The FREQ Procedure

 Gender

Gender Frequency
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
2 1
F 12
M 14
X 1
f 2

Frequency Missing = 1

Diagnosis Code

Dx Frequency
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
1 7
2 2
3 3
4 3
5 3
6 1
7 2
X 2

Frequency Missing = 8

 (continued)

6 Cody’s Data Cleaning Techniques Using SAS, Second Edition

Adverse Event?

AE Frequency
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
0 19
1 10
A 1

Frequency Missing = 1

Let's focus in on the frequency listing for the variable Gender. If valid values for Gender are 'F',
'M', and missing, this output would point out several data errors. The values '2' and 'X' both occur
once. Depending on the situation, the lowercase value 'f' may or may not be considered an error.
If lowercase values were entered into the file by mistake, but the value (aside from the case) was
correct, you could change all lowercase values to uppercase with the UPCASE function. More on
that later. The invalid Dx code of 'X' and the adverse event of 'A' are also easily identified. At this
point, it is necessary to run additional programs to identify the location of these errors. Running
PROC FREQ is still a useful first step in identifying errors of these types, and it is also useful as a
last step, after the data have been cleaned, to ensure that all the errors have been identified and
corrected.

For those users who like shortcuts, here is another way to have PROC FREQ select the same set
of variables in the example above, without having to list them all.

Program 1-3 Using the Keyword _CHARACTER_ in the TABLES Statement

title "Frequency Counts for Selected Character Variables";

proc freq data=clean.patients(drop=Patno);

 tables _character_ / nocum nopercent;

run;

The keyword _CHARACTER_ in this example is equivalent to naming all the character variables
in the CLEAN.PATIENTS data set. Since you don't want the variable Patno included in this list,
you use the DROP= data set option to remove it from the list.

Chapter 1 Checking Values of Character Variables 7

Using a DATA Step to Check for Invalid Values

Your next task is to use a DATA step to identify invalid data values and to determine where they
occur in the raw data file (by listing the patient number).

This time, DATA step processing is used to identify invalid character values for selected
variables. As before, you will check Gender, Dx, and AE. Several different methods are used to
identify these values.

First, you can write a simple DATA step that reports invalid data values by using PUT statements
in a DATA _NULL_ step. Here is the program.

Program 1-4 Using a DATA _NULL_ Step to Detect Invalid Character Data

title "Listing of invalid patient numbers and data values";

data _null_;

 set clean.patients;

 file print; ***send output to the output window;

 ***check Gender;

 if Gender not in ('F' 'M' ' ') then put Patno= Gender=;

 ***check Dx;

 if verify(trim(Dx),'0123456789') and not missing(Dx)

then put Patno= Dx=;

 /***

 SAS 9 alternative:

 if notdigit(trim(Dx)) and not missing(Dx)

then put Patno= Dx=;

 **/

 ***check AE;

 if AE not in ('0' '1' ' ') then put Patno= AE=;

run;

Before discussing the output, let's spend a moment looking over the program. First, notice the use
of the DATA _NULL_ statement. Because the only purpose of this program is to identify invalid
data values and print them out, there is no need to create a SAS data set. The reserved data set
name _NULL_ tells SAS not to create a data set. This is a major efficiency technique. In this
program, you avoid using all the resources to create a data set when one isn't needed.

8 Cody’s Data Cleaning Techniques Using SAS, Second Edition

The FILE PRINT statement causes the results of any subsequent PUT statements to be sent to the
Output window (or output device). Without this statement, the results of the PUT statements
would be sent to the SAS Log. Gender and AE are checked by using the IN operator. The
statement

if X in ('A' 'B' 'C') then . . .;

is equivalent to

if X = 'A' or X = 'B' or X = 'C' then . . .;

That is, if X is equal to any of the values in the list following the IN operator, the expression is
evaluated as true. You want an error message printed when the value of Gender is not one of the
acceptable values ('F', 'M', or missing). Therefore, place a NOT in front of the whole expression,
triggering the error report for invalid values of Gender or AE. You can separate the values in the
list by spaces or commas. An equivalent statement to the one above is:

if X in ('A','B','C') then . . .;

There are several alternative ways that the gender checking statement can be written. The method
above uses the IN operator.

A straightforward alternative to the IN operator is

if not (Gender eq 'F' or Gender eq 'M' or Gender = ' ') then

put Patno= Gender=;

Another possibility is

if Gender ne 'F' and Gender ne 'M' and Gender ne ' ' then

put Patno= Gender=;

While all of these statements checking for Gender and AE produce the same result, the IN
operator is probably the easiest to write, especially if there are a large number of possible values
to check. Always be sure to consider whether you want to identify missing values as invalid or
not. In the statements above, you are allowing missing values as valid codes. If you want to flag
missing values as errors, do not include a missing value in the list of valid codes.

Chapter 1 Checking Values of Character Variables 9

If you want to allow lowercase M's and F's as valid values, you can add the single line

Gender = upcase(Gender);

immediately before the line that checks for invalid gender codes. As you can probably guess, the
UPCASE function changes all lowercase letters to uppercase letters.

If you know from the start that you may have both upper- and lowercase values in your raw data
file, you could use the $UPCASE informat to convert all lowercase values to uppercase. For
example, to read all Gender values in uppercase, you could use:

@4 Gender $upcase1.

to replace the line that reads Gender values in Program 1-1.

A statement similar to the gender checking statement is used to test the adverse events.

There are so many valid values for Dx (any numeral from 1 to 999) that the approach you used
for Gender and AE would be inefficient (and wear you out typing) if you used it to check for
invalid Dx codes. The VERIFY function is one of the many possible ways you can check to see if
there is a value other than the numerals 0 to 9 as a Dx value. The next section describes the
VERIFY function along with several other functions.

Describing the VERIFY, TRIM, MISSING, and NOTDIGIT Functions
The verify function takes the form:

verify(character_variable,verify_string)

where verify_string is a character value (either the name of a character variable or a series of
values placed in single or double quotes). The VERIFY function returns the first position in the
character_variable that contains a character that is not in the verify_string. If the
character_variable does not contain any invalid values, the VERIFY function returns a 0. To
make this clearer, let's look at some examples of the VERIFY function.

10 Cody’s Data Cleaning Techniques Using SAS, Second Edition

Suppose you have a variable called ID that is stored in five bytes and is supposed to contain only
the letters X, Y, Z, and digits 0 through 5. For example, valid values for ID would be X1234 or
34Z5X. You could use the VERIFY function to see if the variable ID contained any characters
other than X, Y, Z and the digits 0 through 5 like this:

Position = verify(ID,'XYZ012345');

Suppose you had an ID value of X12B44. The value of Position in the line above would be 4, the
position of the first invalid character in ID (the letter B). If no invalid characters are found, the
VERIFY function returns a 0. Therefore, you can write an expression like the following to list
invalid values of ID:

if verify(ID,'XYZ012345') then put "Invalid value of ID:" ID;

This may look strange to you. You might prefer the statement:

if verify(ID,'XYZ012345') gt 0 then put "Invalid value of ID:" ID;

However, these two statements are equivalent. Any numerical value in SAS other than 0 or
missing is considered TRUE. You usually think of true and false values as 1 or 0—and that is
what SAS returns to you when it evaluates an expression. However, it is often convenient to use
values other than 1 to represent TRUE. When SAS evaluates the VERIFY function in either of
the two statements above, it returns a 4 (the position of the first invalid character in the ID). Since
4 is neither 0 or missing, SAS interprets it as TRUE and the PUT statement is executed.

There is one more potential problem when using the VERIFY function. Suppose you had an ID
equal to 'X123'. What would the expression

verify(ID,'XYZ012345')

return? You might think the answer is 0 since you only see valid characters in the ID (X, 1, 2, and
3). However, the expression above returns a 5! Why? Because that is the position of the first
trailing blank. Since ID is stored in 5 bytes, any ID with fewer than 5 characters will contain
trailing blanks—and blanks, even though they are sometimes hard to see, are still considered
characters to be tested by the VERIFY function.

Chapter 1 Checking Values of Character Variables 11

To avoid problems with trailing blanks, you can use the TRIM function to remove any trailing
blanks before the VERIFY function operates. Therefore, the expression

verify(trim(ID),'XYZ012345')

will return a 0 for all valid values of ID, even if they are shorter than 5 characters.

There is one more problem to solve. That is, the expression above will return a 1 for a missing
value of ID. (Think of character missing values as blanks). The MISSING function is a useful
way to test for missing values. It returns a value of TRUE if its argument contains a missing value
and a value of FALSE otherwise. And, this function can take character or numeric arguments!
The MISSING function has become one of this author's favorites. It makes your SAS programs
much more readable. For example, take the line in Program 1-4 that uses the MISSING function:

if verify(trim(Dx),'0123456789') and not missing(Dx)

 then put Patno= Dx=;

Without the MISSING function, this line would read:

if verify(trim(Dx),'0123456789') and Dx ne ' '

 then put Patno= Dx=;

If you start using the MISSING function in your SAS programs, you will begin to see statements
like the one above as clumsy or even ugly.

You are now ready to understand the VERIFY function that checked for invalid Dx codes. The
verify string contained the characters (numerals) 0 through 9. Thus, if the Dx code contains any
character other than 0 through 9, it returns the position of this offending character, which would

12 Cody’s Data Cleaning Techniques Using SAS, Second Edition

have to be a 1, 2, or 3 (Dx is three bytes in length), and the error message would be printed.
Output from Program 1-4 is shown below:

Listing of invalid patient numbers and data values
Patno=002 Dx=X
Patno=003 gender=X
Patno=004 AE=A
Patno=010 gender=f
Patno=013 gender=2
Patno=002 Dx=X
Patno=023 gender=f

Note that patient 002 appears twice in this output. This occurs because there is a duplicate
observation for patient 002 (in addition to several other purposely included errors), so that the
data set can be used for examples later in this book, such as the detection of duplicate ID's and
duplicate observations.

If you have SAS 9 or higher, you can use the NOTDIGIT function.

notdigit(character_value)

is equivalent to

verify(character_value,'0123456789')

That is, the NOTDIGIT function returns the first position in character_value that is not a digit.
The NOTDIGIT function treats trailing blanks the same way that the VERIFY function does, so if
you have character strings of varying lengths, you may want to use the TRIM function to remove
trailing blanks.

Chapter 1 Checking Values of Character Variables 13

Using the NOTDIGIT function, you could replace the VERIFY function in Program 1-4 like this:

if notdigit(trim(Dx)) and not missing(Dx)

 then put Patno= Dx=;

Suppose you want to check for valid patient numbers (Patno) in a similar manner. However, you
want to flag missing values as errors (every patient must have a valid ID). The following
statement:

if notdigit(trim(Patno)) then put "Invalid ID for PATNO=" Patno;

will work in the same way as your check for invalid Dx codes except that missing values will
now be listed as errors.

Using PROC PRINT with a WHERE Statement to List
Invalid Values

There are several alternative ways to identify the ID's containing invalid data. As with most of the
topics in this book, you will see several ways of accomplishing the same task. Why? One reason
is that some techniques are better suited to an application. Another reason is to teach some
additional SAS programming techniques. Finally, under different circumstances, some techniques
may be more efficient than others.

One very easy alternative way to list the subjects with invalid data is to use PROC PRINT
followed by a WHERE statement. Just as you used an IF statement in a DATA step in the
previous section, you can use a WHERE statement in a similar manner with PROC PRINT and
avoid having to write a DATA step altogether. For example, to list the ID's with invalid
GENDER values, you could write a program like the one shown in Program 1-5.

Program 1-5 Using PROC PRINT to List Invalid Character Values

title "Listing of invalid gender values";

proc print data=clean.patients;

 where Gender not in ('M' 'F' ' ');

 id Patno;

 var Gender;

run;

14 Cody’s Data Cleaning Techniques Using SAS, Second Edition

It's easy to forget that WHERE statements can be used within SAS procedures. SAS programmers
who have been at it for a long time (like the author) often write a short DATA step first and use
PUT statements or create a temporary SAS data set and follow it with a PROC PRINT. The
program above is both shorter and more efficient than a DATA step followed by a PROC PRINT.
However, the WHERE statement does require that all variables already exist in the data set being
processed. DATA _NULL_ steps, however, tend to be fairly efficient and are a reasonable
alternative as well as the more flexible approach.

The output from Program 1-5 follows.

Listing of invalid gender values

Patno gender

 003 X
 010 f
 013 2
 023 f

This program can be extended to list invalid values for all the character variables. You simply add
the other invalid conditions to the WHERE statement as shown in Program 1-6.

Program 1-6 Using PROC PRINT to List Invalid Character Data for Several Variables

title "Listing of invalid character values";

proc print data=clean.patients;

 where Gender not in ('M' 'F' ' ') or

notdigit(trim(Dx)) and not missing(Dx) or

AE not in ('0' '1' ' ');

 id Patno;

 var Gender Dx AE;

run;

Chapter 1 Checking Values of Character Variables 15

The resulting output is shown next.

Listing of invalid character values

Patno Gender Dx AE

 002 F X 0
 003 X 3 1
 004 F 5 A
 010 f 1 0
 013 2 1
 002 F X 0
 023 f 0

Notice that this output is not as informative as the one produced by the DATA _NULL_ step in
Program 1-4. It lists all the patient numbers, genders, Dx codes, and adverse events even when
only one of the variables has an error (patient 002, for example). So, there is a trade-off—the
simpler program produces slightly less desirable output. We could get philosophical and extend
this concept to life in general, but that's for some other book.

Using Formats to Check for Invalid Values

Another way to check for invalid values of a character variable from raw data is to use
user-defined formats. There are several possibilities here. One, you can create a format that leaves
all valid character values as is and formats all invalid values to a single error code. Let's start out
with a program that simply assigns formats to the character variables and uses PROC FREQ to
list the number of valid and invalid codes. Following that, you will extend the program by using a
DATA step to identify which ID's have invalid values. Program 1-7 uses formats to convert all
invalid data values to a single value.

Program 1-7 Using a User-Defined Format and PROC FREQ to List Invalid
Data Values

proc format;

 value $gender 'F','M' = 'Valid'

' ' = 'Missing'

other = 'Miscoded';

16 Cody’s Data Cleaning Techniques Using SAS, Second Edition

 value $ae '0','1' = 'Valid'

' ' = 'Missing'

other = 'Miscoded';

run;

title "Using formats to identify invalid values";

proc freq data=clean.patients;

 format Gender $gender.

AE $ae.;

 tables Gender AE/ nocum nopercent missing;

run;

For the variables GENDER and AE, which have specific valid values, you list each of the valid
values in the range to the left of the equal sign in the VALUE statement. Format each of these
values with the value 'Valid'.

You may choose to combine the missing value with the valid values if that is appropriate, or you
may want to keep track of missing values separately as was done here. Finally, any value other
than the valid values or a missing value will be formatted as 'Miscoded'. All that is left is to run
PROC FREQ to count the number of 'Valid', 'Missing', and 'Miscoded' values. The TABLES
option MISSING causes the missing values to be listed in the body of the PROC FREQ output.
(Important note: When you use the MISSING TABLES option with PROC FREQ and you are
outputting percentages, the percentages are computed by dividing the number of a particular
value by the total number of observations, missing or non-missing.) Here is the output from
PROC FREQ.

Chapter 1 Checking Values of Character Variables 17

Using formats to identify invalid values

The FREQ Procedure

Gender

Gender Frequency
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
Missing 1
Miscoded 4
Valid 26

 Adverse Event?

AE Frequency
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
Missing 1
Valid 29
Miscoded 1

This output isn't particularly useful. It doesn't tell you which observations (patient numbers)
contain missing or invalid values. Let's modify the program by adding a DATA step, so that ID's
with invalid character values are listed.

Program 1-8 Using a User-Defined Format and a DATA Step to List Invalid
Data Values

proc format;

 value $gender 'F','M' = 'Valid'

' ' = 'Missing'

other = 'Miscoded';

 value $ae '0','1' = 'Valid'

' ' = 'Missing'

other = 'Miscoded';

run;

title "Listing of invalid patient numbers and data values";

data _null_;

 set clean.patients(keep=Patno Gender AE);

 file print; ***Send output to the output window;

18 Cody’s Data Cleaning Techniques Using SAS, Second Edition

 if put(Gender,$gender.) = 'Miscoded' then put Patno= Gender=;

 if put(AE,$ae.) = 'Miscoded' then put Patno= AE=;

run;

The "heart" of this program is the PUT function. To review, the PUT function is similar to the
INPUT function. It takes the following form:

character_variable = put(variable, format)

where character_variable is a character variable that contains the value of the variable listed as
the first argument to the function, formatted by the format listed as the second argument to the
function. The result of a PUT function is always a character variable, and the function is
frequently used to perform numeric-to-character conversions. In Program 1-8, the first argument
of the PUT function is a character variable you want to test and the second argument is the
corresponding character format. The result of the PUT function for any invalid data values would
be the value 'Miscoded'.

Here is the output from Program 1-8.

Listing of invalid patient numbers and data values
Patno=003 gender=X
Patno=004 AE=A
Patno=010 gender=f
Patno=013 gender=2
Patno=023 gender=f

Using Informats to Remove Invalid Values

PROC FORMAT is also used to create informats. Remember that formats are used to control how
variables look in output or how they are classified by such procedures as PROC FREQ. Informats
modify the value of variables as they are read from the raw data, or they can be used with an
INPUT function to create new variables in the DATA step. User-defined informats are created in
much the same way as user-defined formats. Instead of a VALUE statement that creates formats,
an INVALUE statement is used to create informats. The only difference between the two is that
informat names can only be 31 characters in length. (Note: For those curious readers, the reason
is that informats and formats are both stored in the same catalog and an "@" is placed before
informats to distinguish them from formats.) The following is a program that changes invalid
values for GENDER and AE to missing values by using a user-defined informat.

Chapter 1 Checking Values of Character Variables 19

Program 1-9 Using a User-Defined Informat to Set Invalid Data Values to Missing
--

| Purpose: To create a SAS data set called PATIENTS2 |

| and set any invalid values for Gender and AE to |

| missing, using a user-defined informat |

---;

libname clean "c:\books\clean";

proc format;

 invalue $gen 'F','M' = _same_

other = ' ';

 invalue $ae '0','1' = _same_

other = ' ';

run;

data clean.patients_filtered;

 infile "c:\books\clean\patients.txt" pad;

 input @1 Patno $3.

@4 Gender $gen1.

@27 AE $ae1.;

 label Patno = "Patient Number"

Gender = "Gender"

AE = "adverse event?";

run;

title "Listing of data set PATIENTS_FILTERED";

proc print data=clean.patients_filtered;

 var Patno Gender AE;

run;

Notice the INVALUE statements in the PROC FORMAT above. The keyword _SAME_ is a SAS
reserved value that does what its name implies—it leaves any of the values listed in the range
specification unchanged. The keyword OTHER in the subsequent line refers to any values not
matching one of the previous ranges. Notice also that the informats in the INPUT statement use
the user-defined informat name followed by the number of columns to be read, the same method
that is used with predefined SAS informats.

20 Cody’s Data Cleaning Techniques Using SAS, Second Edition

Output from the PROC PRINT is shown next.

Listing of data set PATIENTS_FILTERED

Obs Patno Gender AE

 1 001 M 0
 2 002 F 0
 3 003 1
 4 004 F
 5 XX5 M 0
 6 006 1
 7 007 M 0
 8 M 0
 9 008 F 0
 10 009 M 1
 11 010 0
 12 011 M 1
 13 012 M 0
 14 013
 15 014 M 1
 16 002 F 0
 17 003 M 0
 18 015 F 1
 19 017 F 0
 20 019 M 0
 21 123 M 0
 22 321 F 1
 23 020 F 0
 24 022 M 1
 25 023 0
 26 024 F 0
 27 025 M 1
 28 027 F 0
 29 028 F 0
 30 029 M 1
 31 006 F 0

Notice that invalid values for GENDER and AE are now missing values, including the two
lowercase 'f's (patient numbers 010 and 023).

Chapter 1 Checking Values of Character Variables 21

Let's add one more feature to this program. By using the keyword UPCASE in the informat
specification, you can automatically convert the values being read to uppercase before the ranges
are checked. Here are the PROC FORMAT statements, rewritten to use this option.

proc format;

 invalue $gen (upcase) 'F' = 'F'

'M' = 'M'

other = ' ';

 invalue $ae '0','1' = _same_

other = ' ';

run;

The UPCASE option is placed in parenthesis following the informat name. Notice some other
changes as well. You cannot use the keyword _SAME_ anymore because the value is changed to
uppercase for comparison purposes, but the _SAME_ specification would leave the original
lowercase value unchanged. By specifying each value individually, the lowercase 'f' (the only
lowercase GENDER value) would match the range 'F' and be assigned the value of an uppercase
'F'.

The output of this data set is identical to the output for Program 1-9 except the value of GENDER
for patients 010 and 023 is an uppercase 'F'.

If you want to preserve the original value of the variable, you can use a user-defined informat
with an INPUT function instead of an INPUT statement. You can use this method to check a raw
data file or a SAS data set. Program 1-10 reads the SAS data set CLEAN.PATIENTS and uses
user-defined informats to detect errors.

Program 1-10 Using a User-Defined Informat with the INPUT Function

proc format;

 invalue $gender 'F','M' = _same_

other = 'Error';

 invalue $ae '0','1' = _same_

other = 'Error';

run;

data _null_;

 file print;

 set clean.patients;

22 Cody’s Data Cleaning Techniques Using SAS, Second Edition

 if input (Gender,$gender.) = 'Error' then

put @1 "Error for Gender for patient:" Patno" value is " Gender;

 if input (AE,$ae.) = 'Error' then

put @1 "Error for AE for patient:" Patno" value is " AE;

run;

The advantage of this program over Program 1-9 is that the original values of the variables are
not lost.

Output from Program 1-10 is shown below:

Listing of invalid character values
Error for Gender for patient:003 value is X
Error for AE for patient:004 value is A
Error for Gender for patient:006 value is
Error for Gender for patient:010 value is f
Error for Gender for patient:013 value is 2
Error for AE for patient:013 value is
Error for Gender for patient:023 value is f

From Cody's Data Cleaning Techniques Using SAS®, Second Edition by Ron Cody. Copyright © 2008,
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

From Cody's Data Cleaning Techniques Using SAS®, Second Edition.
Full book available for purchase here.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19621
http://www.sas.com/apps/sim/redirect.jsp?detail=TR19621

Index

A

AIC data management 214
algorithm based on standard deviation,

 checking ranges with 71–72,
 169–170

ALL keyword 122–123
ampersand (&) 41, 102
AND operator 53
APPEND procedure 187

adding errors to data sets 65
adding names to child data sets 207
audit trail data 195, 198
BASE= option 207
DATA= option 207

ARRAY statement 101
asterisk (*) 171
ATDATETIME automatic variable 196
ATMESSAGE automatic variable 196,

 198
ATOPCODE automatic variable 196–197
ATRETURNCODE automatic variable

 196
ATUSERID automatic variable 196
AUDIT statement, DATASETS procedure

 195
audit trails 193–200

B

bar charts 33
BASE= option

APPEND procedure 207
COMPARE procedure 152

BETWEEN keyword, WHERE statement
 (PRINT) 107

blanks, trailing 10, 12
Boolean operators 53
box plots 33
BOXPLOT procedure 33

BRIEF option, COMPARE procedure 155,
158

BY statement 124, 137
BY variables

ALL keyword 122–123
detecting duplicates 125
ID variables as 135–138
NODUPKEY option, SORT procedure

 120

C

CALL SYMPUT routine 48
CALL SYMPUTX routine 48
Cartesian product 166
CASCADE feature 203, 208–210
case conversions 9
$CHAR informat 109–110, 159
CHARACTER keyword 6, 94
character variables

checking for invalid dates 110
checking for invalid values with DATA

step 7–13
checking for invalid values with formats

15–18
checking for invalid values with SQL

procedure 166–168
checking for missing values 170
checking values with IF statement 13
counting missing values 93–96
listing invalid values with WHERE

statement 13–15
listing values with FREQ procedure 1–6
removing invalid values with informats

18–22
Check integrity constraint 188
child data sets 202, 207–208
CIMPORT procedure 187
COMPARE= option, COMPARE procedure

 152

240 Index

COMPARE procedure 149
BASE= option 152
BRIEF option 155, 158
COMPARE= option 152
comparing data sets with selected

variables 161–163
comparing data sets with unequal

observations 159–160
comparing two data sets 150–159
ID statement 152, 159–160
LISTBASE option 159–160
LISTCOMP option 159–160
TRANSPOSE option 156
VAR statement 163

CONTENTS procedure 190–191, 205
converting lowercase to uppercase 9
COPY procedure 187
corrections

See error handling
COUNT function 173–174
counting missing values 93–100
CPORT procedure 187
CREATE clause, SQL procedure 166

D

DATA _NULL_ step
checking for out-of-range values 54–55
checking range based on interquartile

range 88
detecting invalid character data 7–9
identifying subjects with n observations

131
listing highest/lowest ten values 47–49
MERGE statement 137
WHERE statement comparison 14

DATA= option, APPEND procedure 207
data sets

adding errors to 65
adding general integrity constraints to

189–191
child 202, 207–208
comparing with selected variables

161–163

comparing with unequal observations
159–160

comparing two 150–159
creating 125, 143–144
creating audit trails 193–200
integrity constraints and 187–191, 202
parent 202

DATA step
checking for invalid values 7–13
checking for out-of-range values 54–55
checking ranges for dates 106
counting missing values 96–100
detecting duplicates 123–126
identifying missing values 96–100
identifying subjects with n observations

130–132
IF statement 13, 106
integrity constraints 187
listing invalid values 15, 17
reading data in 182
SQL procedure alternative 165

DataFlux 213–216
DATASETS procedure 43, 65

AUDIT statement 195
audit trail data sets 195
IC CREATE statement 190–191
integrity constraints 188, 190–191, 193,

200–202, 211–212
MESSAGE= option 194
MSGTYPE=USER option 194
NOLIST option 43

DATE9. format 107
dates

checking for invalid 108–111
checking order of 147–148
checking ranges 106–107, 172
creating when day of month is missing

113–114
printing 105
reading 105
storing 105
suspending error checking for unknown

114–116

Index 241

working with nonstandard forms
111–112

dfPower Studio 213–216
DISTINCT option, SELECT clause (SQL)

 122–123
DO loops 101, 103
double entry and verification

data sets with selected variables 161–163
data sets with unequal observations

159–160
defined 149
two data sets 150–159

DOWNLOAD procedure 187
DROP= data set option 6
DROP statement 59, 199
duplicate ID numbers

checking with SQL procedure 173
detecting 123–129
eliminating 117–123

duplicate observations
detecting 123–126
eliminating 117
identifying subjects with 130–133
selecting patients with 129–130

E

EDA (exploratory data analysis) 86
error handling

audit trail data and 199
describing named input 182–184
hardcoding corrections 181–182
suspending for unknown dates 114–116
UPDATE statement and 184–186

error reports
listing invalid values 57–60
reading invalid dates 108–109

ERROR variable 56, 115–116
errors, adding to data sets 65
ERRORS= system option 109
%EVAL function 43, 46
exploratory data analysis (EDA) 86
extreme observations, listing 34–37

F

files, multiple
See multiple files

filtering invalid values with informats 68–70
FIRST. temporary variable 123–125, 130
FIRSTOBS= data set option 48
foreign keys

adding names to child data sets 207–208
deleting primary keys 205–206
referential constraints and 202–203,

208–212
FORMAT= option, TABULATE procedure

 25
FORMAT procedure 18

invalid values with informats 69
INVALUE statement 18–19, 21, 69

formats
checking for invalid values 15–18,

66–68
printing dates 105

FREQ procedure
checking invalid values 1–6
counting missing values 93–96
detecting duplicates 126–129
identifying subjects with n observations

132–133
listing character variable values 1–6
listing invalid values 15–16
listing variable names 104
MISSING option 94
TABLES statement 4, 6, 16, 94,

126–127
FROM clause, SQL procedure 166, 171
FSEDIT procedure 186
FULL JOIN operation 174–177
fuzzy sorts 215

G

Gaussian distribution 34
general integrity constraints

adding to data sets 189–191

242 Index

general integrity constraints (continued)
defined 187, 202
types of 188

GROUP BY clause, SQL procedure 166, 173
GROUPS= option, RANK procedure 44, 46,

 73

H

hardcoding corrections 181–182
HAVING clause, SQL procedure 169, 173
high values

finding by percentage 37–47
listing highest ten 35–37, 47–52
UNIVARIATE procedure 32, 35–43

HISTOGRAM statement, UNIVARIATE
 procedure 33

horizontal bar charts 33

I

IC CREATE statement, DATASETS
 procedure 190–191

ID checking
in each of n files 138–143
in multiple files 135–138, 174–176
macro for 140–143

ID numbers
See duplicate ID numbers

ID statement
COMPARE procedure 152, 159–160
UNIVARIATE procedure 38

ID variables
as BY variable 135–138
checking with SQL procedure 175

IF statement
checking character variable values 13
checking date order 148
checking ranges for dates 106

IN= data set option 127, 135–138, 142
IN operator 8
INFILE statement 4
informats 18

?? modifier 114–116

checking for invalid dates 108–111
filtering invalid values 68–70
in INPUT function 18, 21–22
in INPUT statement 19
in INVALUE statement (FORMAT)

 18–19
reading dates 105
removing invalid values 18–22

INITIATE option, AUDIT statement
 (DATASETS) 195

INPUT function
?? informat modifier 114–116
checking for invalid dates 110
checking for missing values 91
checking values of numeric variables 59
informats in 18, 21–22
PUT function comparison 18

INPUT statement
?? informat modifier 114–116
ERROR variable 56
informats in 19

integrity constraints
See also general integrity constraints
See also referential integrity constraints
adding user messages 194–195
audit trail data sets and 193–200
Check 188
creating 190
data sets and 187–191, 202
defined 187–188
deleting 193
demonstrating 189–190, 202–205
involving multiple variables 200–202
Not Null 188
Primary Key 188
reporting violations 197–198
types of 187–188
Unique 188

interquartile range 33, 86–88
invalid dates, checking for 108–111
invalid values

checking with DATA step 7–13
checking with formats 15–18, 66–68

Index 243

checking with FREQ procedure 1–6
checking with SQL procedure 166–168
filtering with informats 68–70
identifying missing values versus 55–57
listing in error report 57–60
listing with DATA step 15, 17
listing with FREQ procedure 15–16
listing with PRINT procedure 13–15,

52–54
listing with WHERE statement 13–15
looking for outliers 24–34
removing with informats 18–22
setting to missing 19

INVALUE statement, FORMAT procedure
filtering invalid values with informats 69
informats in 18–19
UPCASE keyword 21

IS MISSING keyword 167, 170
IS NULL keyword 167

J

JOIN operations 174–179

K

KEEP= data set option 48, 64
KEYLABEL statement, TABULATE

 procedure 26
keypunch machine, verifier 149

L

LAG function 98
LAG2 function 98
LAST. temporary variable 123–125, 130
LEFT JOIN operation 177–178
LENGTH statement 183
%LET statement 64, 76
LISTBASE option, COMPARE procedure

 159–160
LISTCOMP option, COMPARE procedure

 159–160
log

?? modifier 115
inspecting missing values 91–93

reading invalid dates 108–109
low values

finding by percentage 37–47
listing lowest ten 35–37, 47–52
UNIVARIATE procedure 32, 35–43

lowercase, converting to uppercase 9
LRECL= option, INFILE statement 4

M

%MACRO statement 41
macro variables 41, 102
macros

automating range checking 60–62
checking range based on interquartile

range 86–88
checking ranges for several variables

 62–66
defined 41
detecting outliers based on trimmed

statistics 76–80
ID checking 140–143
listing highest/lowest percentage 40–41,

 44–47
listing highest/lowest values 50–52
listing outliers of several variables

82–86
named parameters 41
searching for specific numeric 102–104
selecting patients with duplicate

observations 129–130
semi-colons and 43

MAX option, MEANS procedure 24
MAXDEC= option, MEANS procedure 24
MDY function 105, 111–114
MEAN summary function 169
MEANS procedure

checking range based on interquartile
range 86, 88

counting missing values 93–96
detecting outliers based on 24–25, 71–76
MAX option 24
MAXDEC= option 24
MIN option 24

244 Index

MEANS procedure (continued)
N option 24, 26, 94
NMISS option 24, 94
VAR statement 94
WHERE statement 74

%MEND statement 41
MERGE statement 137, 176
MERGENOBY ERROR system option 137
MERGENOBY NOWARN system option

 137
MERGENOBY system option 137
MERGENOBY WARN system option 137
MESSAGE= option, DATASETS procedure

 194
messages, and integrity constraints 194–195
MIN option, MEANS procedure 24
MISSING function 11, 96
MISSING option

FREQ procedure 94
TABLES statement (FREQ) 16, 94

missing values
checking with INPUT function 91
checking with SQL procedure 170–171
counting 93–100
identifying invalid values versus 55–57
inspecting SAS log 91–93
named input method and 183
removing from listings 110–111
searching for specific numeric 100–104
setting invalid values to 19

MMDDYY10. format 107–109
MONYY informat 113
MPRINT system option 42
MSGTYPE=USER option, DATASETS

 procedure 194
multiple files

checking date order 147–148
checking IDs in 135–138, 174–176
checking IDs in each of "n" 138–143
complicated rules 143–147, 176–179

N

$n. informat 109

N option
KEYLABEL statement (TABULATE)

26
MEANS procedure 24, 26, 94

named input method 182–184
named parameters 41
names

adding to child data sets 207–208
obtaining for output objects 34

NEXTROBS= option, UNIVARIATE
 procedure 35–37

NEXTRVALS= option, UNIVARIATE
 procedure 35–37

NMISS option
KEYLABEL statement (TABULATE)

26
MEANS procedure 24, 94

NOBOS= option, SET statement 48
NOCUM option, TABLES statement (FREQ)

 4
NODUPKEY option, SORT procedure

 118–120, 137
NODUPRECS option, SORT procedure 118,

 120–123
NOLIST option, DATASETS procedure 43
NOPERCENT option, TABLES statement

 (FREQ) 4
NOPRINT option, UNIVARIATE procedure

 38, 81
normal distribution 34
normal probability plots 34
Not Null integrity constraint 188
NOT operator 8
NOTDIGIT function 12–13, 59

identifying missing values 98
NULL reserved data set name 7
NUMERIC keyword 101
numeric macros, searching for specific

 102–104
numeric missing values, searching for specific

 100–104
numeric variables

checking for missing values 170

Index 245

checking for out-of-range values 54–55
checking ranges based on interquartile

range 86–88
checking ranges with algorithm 71–72
checking values with INPUT function 59
computing trimmed statistics 80–86
counting missing values 93–96
creating range checking macro 60–62
detecting outliers based on standard

deviation 73–76
detecting outliers based on trimmed

statistics 73–80
filtering invalid values with informats

68–70
finding highest/lowest values by

percentage 37–47
formats to check invalid values 66–68
identifying invalid versus missing values

55–57
listing extreme values 34–37
listing highest/lowest ten values 47–52
listing invalid values 52–54, 57–60
looking for outliers 24–34
range checking for multiple variables

62–66
searching for specific 100–102

O

observations
See also duplicate observations
comparing data sets with unequal

observations 159–160
listing extreme observations 34–35

ODS (Output Delivery System) 80–86
ODS LISTING statement 81
ODS OUTPUT statement 81–82
ODS SELECT statement 34–35
operators 8, 53
OR operator 53
ORDER BY clause, SQL procedure 166
OTHER keyword 19
out-of-range values

checking for 54–55, 66–68

listing 52–54
OUT= option

OUTPUT statement (UNIVARIATE) 38
SORT procedure 118
TABLES statement (FREQ) 126–127

outliers
box plot example 33
checking with SQL procedure 168
detecting based on standard deviation

71–76
detecting based on trimmed mean 73–76
detecting based on trimmed statistics

76–80
listing outliers of several variables

82–86
looking for in numeric variables 24–34

Output Delivery System (ODS) 80–86
OUTPUT destination 81
output devices 8, 166
output objects, obtaining names 34
OUTPUT statement, UNIVARIATE

 procedure 38

P

parameters, named 41
parent data sets 202
patients, selecting with duplicate observations

 129–130
PATIENTS.TXT raw data file 2–6
PCTLPRE= option, OUTPUT statement

 (UNIVARIATE) 38
PCTLPTS= option, OUTPUT statement

 (UNIVARIATE) 38
PDV (Program Data Vector) 56
percentage, finding values by 37–47
PLOT option, UNIVARIATE procedure 26
primary key

deleting when foreign key exists
205–206

referential constraints and 202, 208–212
Primary Key integrity constraint 188
PRINT procedure

checking ranges for dates 107

246 Index

PRINT procedure (continued)
listing invalid values 13–15, 52–54
viewing audit trail data 193, 195–198
WHERE statement 13–15, 52–54, 98,

107, 130
printing dates 105
probability plots 34
Program Data Vector (PDV) 56
PUT function 18, 67
PUT statement

checking ranges for dates 106
formats checking for invalid values 67
identifying missing values 96
sending results to output device 8

Q

question mark (?) 114–116
QUOTE function 129

R

range checking
automating 60–62
based on interquartile range 86–88
checking for out-of-range values 54–55,

66–68
for dates 106–107, 172
for multiple variables 62–66
listing out-of-range values 52–54
with algorithm based on standard

deviation 71–72, 169–170
RANK procedure

GROUPS= option 44, 46, 73
highest/lowest values by percentage 37,

43–47
RANKS statement 44, 46
VAR statement 44

RANKS statement, RANK procedure 44, 46
reading data, with DATA step 182
referential integrity constraints

adding names to child data sets 207–208
CASCADE feature 203, 208–210
defined 187–188, 202
deleting 211–212

deleting primary key when foreign key
exists 205–206

demonstrating 202–205
primary key and 202, 208–212
RESTRICT feature 202
SET NULL feature 202, 210–211

REPORT procedure 193, 197–198
RESTRICT feature 202
RIGHT JOIN operation 177
RTSPACE= option, TABLE statement

 (TABULATE) 25

S

SAME keyword 19, 21
SAS Component Language (SCL) 188
SAS dates

See dates
SAS log

See log
SCAN function 142
%SCAN function 142
SCL (SAS Component Language) 188
SELECT clause, SQL procedure 166

asterisk (*) in 171
DISTINCT option 122–123
QUOTE function 129

semi-colon (;) 43
SET NULL feature 202, 210–211
SET statement

adding names to child data sets 207
detecting duplicates 124
example 39, 42
executing once 72
NOBS= option 48

SORT procedure
eliminating duplicates 117–123
NODUPKEY option 118–120, 137
NODUPRECS option 118, 120–123
OUT= option 118
%SCAN function and 142

sorts, fuzzy 215
SQL procedure 166

as DATA step alternative 165

Index 247

checking for duplicates 173
checking for IDs in multiple files

174–176
checking for invalid character values

166–168
checking for missing values 170–171
checking for outliers 168
checking ranges based on standard

deviation 169–170
CREATE clause 166
FROM clause 166, 171
GROUP BY clause 166, 173
HAVING clause 169, 173
identifying subjects with n observations

174
integrity constraints 187–188
JOIN operations 174–179
multi-file rules 176–179
ORDER BY clause 166
ordering clauses 166
removing duplicate records 122–123
SELECT clause 122–123, 129, 166, 171
selecting patients with duplicate

observations 129–130
WHERE clause 166–167, 170, 176, 191

standard deviation
checking ranges 71–72, 169–170
computing from standard error 82
detecting outliers based on 71–76

standard error 82
STD summary function 169
stem-and-leaf plots 33
subjects, identifying with n observations

 130–133
SUM statement 131
SUSPEND option, AUDIT statement

 (DATASETS) 195
SYMPUT CALL routine 48
SYMPUTX CALL routine 48

T

TABLE statement, TABULATE procedure
 25

TABLES statement, FREQ procedure
CHARACTER keyword 6, 94
listing unique values 4
MISSING option 16, 94
NOCUM option 4
NOPERCENT option 4
OUT= option 126–127

TABULATE procedure
FORMAT= option 25
KEYLABEL statement 26
looking for outliers 25–26
TABLE statement 25
VAR statement 25

temporary variables 123–125, 130
TERMINATE option, AUDIT statement

 (DATASETS) 195
trailing blanks, removing 10, 12
TRANSPOSE option, COMPARE procedure

 156
TRIM function 10, 12

identifying missing values 98
TRIM= option, UNIVARIATE procedure

 80–82
trimmed statistics

computing 72–76, 80–86
detecting outliers based on 73–80
macro example 76–80

TRUNCOVER option, INFILE statement 4
TYPE= data set option 193, 196
TYPE=AUDIT data set option 193

U

Unique integrity constraint 188
unique values 94
UNIVARIATE procedure

highest/lowest values by percentage 32,
35–43

HISTOGRAM statement 33
ID statement 38
listing extreme values 35–37
looking for outliers 24, 26–33
NEXTROBS= option 35–37
NEXTRVALS= option 35–37

248 Index

UNIVARIATE procedure (continued)
NOPRINT option 38, 81
ODS statement support 34
OUTPUT statement 38
PLOT option 26
TRIM= option 80–82

unknown dates, checking for 114–116
UPCASE function 5, 9
$UPCASE informat 9
UPCASE keyword 21
UPDATE statement 184–186
UPLOAD procedure 187
uppercase, converting lowercase to 9
user messages, and integrity constraints

 194–195

V

VAR statement
COMPARE procedure 163
MEANS procedure 94
RANK procedure 44
TABULATE procedure 25

variables
See also character variables
automatic 196–197, 198
BY variables 120, 122–123, 125,

135–138
comparing data sets with selected

variables 161–163
ERROR 56, 115–116
ID variables 135–138, 175
integrity constraints and multiple variables

200–202
listing variable names 104
macro variables 41, 102
range checking for multiple 62–66
temporary 123–125, 130

verifier keypunch machine 149
VERIFY function 9–13
VNAME function 100–103

W

WHERE clause, SQL procedure
checking for invalid character values

166–167
checking for missing values 170
integrity constraints and 191
multi-file rules 176

WHERE= data set option
checking values of numeric variables 46,

48
detecting duplicates 127
multiple files 146

WHERE= option, IC CREATE statement
 (DATASETS) 190–191

WHERE statement
listing invalid values 13–15
MEANS procedure 74
PRINT procedure 13–15, 52–54, 98,

107, 130
whiskers 33

Symbols

& (ampersand) 41, 102
* (asterisk) 171
?? informat modifier 114–116
; (semi-colon) 43

From Cody's Data Cleaning Techniques Using SAS®, Second Edition by Ron Cody. Copyright © 2008,
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19621

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand
and product names are trademarks of their respective companies. © 2013 SAS Institute Inc. All rights reserved. S107969US.0413

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.

Gain Greater Insight into Your
SAS® Software with SAS Books.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR18308

	Contents
	Chapter 1: Checking Values of Character Variables
	Index
	Additional Resources

