
Cody’s Collection of Popular
SAS® Programming Tasks

and How to Tackle Them

Ron Cody

Contents

List of Programs .. ix

About This Book.. xv

About The Author ... xix

Acknowledgments ... xxi

Chapter 1 Tasks Involving Conversion: Character to Numeric,
 Specific Values to Missing, and Changing Case 1

Introduction .. 1

Task: Converting character values to numeric values .. 2

Task: Converting character values to numeric values using a macro 3
Task: Converting a specific value such as 999 to a missing value for

 all numeric variables in a SAS data set .. 5
Task: Converting a specific value such as 'NA' to a missing value for all

 character variables in a SAS data set .. 7
Task: Changing all character values to either uppercase, lowercase,

 or proper case ... 8
Task: Reading a numeric value that contains units such as Lbs. or Kgs.

 in the value .. 9

Task: Solving part of the previous task using a Perl regular expression 10

Conclusion ... 11

Chapter 2 Grouping Data .. 13

Introduction .. 13

Task: Grouping values using IF-THEN-ELSE statements ... 13

Task: Grouping values using user-defined formats .. 14

From Cody's Collection of Popular SAS® Programming Tasks and
How to Tackle Them. Full book available for purchase here.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19615

iv Contents

Task: Creating groups using PROC RANK ... 15

Conclusion ... 19

Chapter 3 Summarizing Data .. 21

Introduction .. 21
Task: Using PROC MEANS to create a data set containing summary

 information .. 22
Task: Computing the mean of a variable broken down by values of another

 variable: Using a BY variable ... 23
Task: Computing the mean of a variable broken down by values of another

 variable: Using a CLASS statement .. 24
Task: Have PROC MEANS name the variables in the output data set

 automatically (the AUTONAME option) .. 25
Task: Creating multiple output data sets from PROC MEANS, each with a

 different combination of CLASS variables ... 26
Task: Combining summary information (a single mean) with detail data:

 Using a conditional SET statement ... 29
Task: Combining summary information (a single mean) with detail data:

 Using PROC SQL ... 31
Task: Combining summary information (a single mean) with detail data:

 Using PROC SQL without using PROC MEANS .. 32
Task: Combining summary information (a single mean) with detail data:

 Using a macro variable ... 33
Task: Combining summary data with detail data—for each category of a

 BY variable ... 34

Conclusion ... 36

Chapter 4 Combining and Updating SAS Data Sets .. 37

Introduction .. 37

Task: Concatenating two SAS data sets—Using a SET statement 38

Task: Concatenating two SAS data sets—Using PROC APPEND 40
Task: Concatenating two SAS data sets with character variables of

 different lengths .. 40
Task: Concatenating two SAS data sets that contain character variables of

 different lengths and controlling the length of the character variables 42

Contents v

Task: Developing a macro to concatenate two SAS data sets that
 contain character variables of different lengths ... 43

Task: Updating a SAS data set using a transaction data set ... 47
Task: Using a MODIFY statement to update a master file from a transaction file 50
Task: Updating several variables using a transaction file created with

 an INPUT method called named input .. 50
Task: Matching names from two SAS data sets where the names may

 not be spelled the same (fuzzy merge) ... 53

Conclusion ... 56

Chapter 5 Creating Formats from SAS Data Sets ... 57

Introduction .. 57
Task: Using a SAS data set to create a format (by creating a control data set) 57

Task: Adding new format values to an existing format .. 62

Conclusion ... 63

Chapter 6 Table Lookup Techniques .. 65

Introduction .. 65

Task: Performing a one-way table lookup using a MERGE statement 65

Task: Performing a one-way table lookup using user-defined informats 67

Task: Creating an INFORMAT using a control data set .. 69

Task: Performing a one-way table lookup using a temporary array 70

Task: Performing a two-way table lookup using a temporary array 71

Conclusion ... 73

Chapter 7 Restructuring (Transposing) SAS Data Sets 75

Introduction .. 75
Task: Converting a data set with one observation per subject into one

 with multiple observations per subject (using a DATA step) 76
Task: Converting a data set with one observation per subject into one

 with multiple observations per subject (using PROC TRANSPOSE) 77
Task: Converting a data set with multiple observations per subject into

 one with one observation per subject (using a DATA step) 79

vi Contents

Task: Converting a data set with multiple observations per subject into
 one with one observation per subject (using PROC TRANSPOSE) 80

Conclusion ... 81

Chapter 8 Tasks Involving Dates .. 83

Introduction .. 83

Task: Computing a person’s age, given his or her date of birth 83
Task: Computing a SAS date given a month, day, and year (even if the day
 value is missing).. 84

Conclusion ... 85

Chapter 9 Data Cleaning Tasks .. 87

Introduction .. 87

Task: Looking for possible data errors using a given range .. 88

Task: Demonstrating a macro to report on outliers using fixed ranges 89

Task: Demonstrating a macro that performs automatic outlier detection 92

How the macro works ... 94

Conclusion ... 96

Chapter 10 Reading Data with User-Defined INFORMATS 97

Introduction .. 97

Task: Reading a combination of character and numeric data ... 97

Conclusion ... 100

Chapter 11 Tasks Involving Multiple Observations per Subject 101

Introduction .. 101
Task: Using PROC SORT to detect duplicate BY values or duplicate
 observations (records) ... 102

Task: Extracting the first and last observation in a BY group .. 106

Task: Detecting duplicate BY values using a DATA step ... 108

Task: Identifying observations with exactly 'n' observations per subject 109

Task: Computing differences between observations (for each subject) 110

Contents vii

Task: Computing the difference between the first and last observation
 for each subject .. 112

Conclusion ... 114

Chapter 12 Miscellaneous Tasks .. 115

Introduction .. 116
Task: Determining the number of observations in a SAS data set

 (using the NOBS= SET option) ... 116
Task: Determining the number of observations in a SAS data set

 and assigning the value to a macro variable ... 117
Task: Determining the number of observations in a SAS data set

 (using library tables) ... 118
Task: Determining the number of observations in a SAS data set

 (using SAS functions) ... 119

Task: Counting the number of a specific response in a list of variables 120

Task: Computing a moving average .. 122

Task: Presenting a macro to compute a moving average .. 124
Task: Replacing the first eight digits of a credit card number with

 asterisks ... 126

Task: Sorting within an observation (using the ORDINAL function) 127

Task: Sorting within an observation (using CALL SORTN) ... 128

Task: Computing the average of the 'n' highest scores ... 129
Task: Extracting the first and last name (and possibly a middle name) from a

 variable containing the first and last name (and possibly a middle name)
 in a single variable .. 130

Index ... 133

From Cody's Collection of Popular SAS® Programming Tasks and How to Tackle Them by Ron Cody.
Copyright © 2012, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19615

Chapter 1: Tasks Involving Conversion: Character
 to Numeric, Specific Values to Missing,
 and Changing Case

Introduction .. 1

Task: Converting character values to numeric values 2

Task: Converting character values to numeric values using a macro 3
Task: Converting a specific value such as 999 to a missing value for
 all numeric variables in a SAS data set.. 5
Task: Converting a specific value such as 'NA' to a missing value for all
 character variables in a SAS data set .. 7
Task: Changing all character values to either uppercase, lowercase,
 or proper case ... 8
Task: Reading a numeric value that contains units such as Lbs. or Kgs.
 in the value .. 9

Task: Solving part of the previous task using a Perl regular expression10

Conclusion ..11

Introduction
This chapter contains programs to perform character-to-numeric conversion, one of the most common
tasks you will face as a SAS programmer. You will see a sample program as well as a useful macro that
accomplishes this goal.

Another task that you will probably face is converting a specific numeric value such as 999 or a specific
text value such as 'NA' to a SAS missing value.

In this chapter, you will also see how to convert every character variable to a specific case, such as
uppercase.

From Cody's Collection of Popular SAS® Programming Tasks
and How to Tackle Them. Full book available for purchase here.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19615

2 Cody’s Collection of Popular SAS Programming Tasks and How to Tackle Them

The last task in this chapter demonstrates how to read data values that contain units, such as 100Lbs. or
50Kgs. and create a numeric variable with all of the values using the same units.

Task: Converting character values to numeric values

Keywords
Character-to-numeric conversion

Swap and Drop

How many times have you been given a SAS data set with variables such as Height or Weight but,
instead of being numeric variables, they are stored as character? The following example describes how
to convert these character variables to numeric variables, maintaining the original variable names.

For this example, you start out with a SAS data set called Char_values. Here is a listing:

Age Weight Gender DOB
23 150 M 10/21/1983

67 220 M 09/12/2001

77 101 F 05/06/1977

If you run PROC CONTENTS on this data set, you see that Age and Weight are character variables.
The following program performs the conversion:

Program 1.1: Converting character values to numeric values

*Converting character values to numeric;

data Num_Values;
 set Char_Values(rename=(Age = C_Age

Weight = C_Weight));
 Age = input(C_Age,best12.);
 Weight = input(C_Weight,best12.);
 drop C_:;
run;

The “trick” here is to rename the variables as they are read from the input data set. This allows you to
use the original variable names for the resulting numeric variables. The character-to-numeric
conversion is performed using the INPUT function. You don’t have to worry if the INFORMAT used in
the INPUT function represents more digits than you need—unlike an INPUT statement, you can never
read past the end of a character value when using the INPUT function.

Chapter 1: Tasks Involving Conversion 3

Notice the variable list on the DROP statement C_: The colon acts as a wildcard suffix. C_:
represents all variables that begin with the characters C followed by an underscore.

The resulting data set has exactly the same variables as the original data set except the two variables Age
and Weight are now numeric. A partial listing from PROC CONTENTS confirms this:

Alphabetic List of Variables and
Attributes

Variable Type Len Format

3 Age Num 8

2 DOB Num 8 MMDDYY10.

1 Gender Char 1

4 Weight Num 8

Task: Converting character values to numeric values using a macro

Keywords
Character-to-numeric conversion

Conversion macro

Because character-to-numeric conversion is required in so many situations, this chapter offers you a
macro that performs the conversion automatically. As in the previous program, the resulting data set
uses the same variable names as in the original data set that contains the character variables. Here is the
macro, followed by an explanation:

Program 1.2: Presenting a macro to perform character-to-numeric conversion

*Macro to convert selected character variables to
 numeric variables;
%macro char_to_num(In_dsn=, /*Name of the input data set*/

Out_dsn=, /*Name of the output data set*/
Var_list= /*List of character variables that you

want to convert from character to
numeric, separated by spaces*/);

 /*Check for null var list */
 %if &var_list ne %then %do;
 /*Count the number of variables in the list */
 %let n=%sysfunc(countw(&var_list));
 data &Out_dsn;
 set &In_dsn(rename=(
 %do i = 1 %to &n;

4 Cody’s Collection of Popular SAS Programming Tasks and How to Tackle Them

 /* break up list into variable names */
%let Var = %scan(&Var_list,&i);

 /*Rename each variable name to C_ variable name */
&Var = C_&Var

 %end;
));

 %do i = 1 %to &n;
 %let Var = %scan(&Var_list,&i);
 &Var = input(C_&Var,best12.);
 %end;
 drop C_:;
 run;
 %end;
%mend char_to_num;

The calling arguments in this macro are the names of the input and output data sets and a list of the
variables that you wish to convert from character to numeric. You enter the names of each variable in
this list, separated by spaces.

The first task of the macro is to rename each of the original variable names by appending the prefix C_
to each of the names. To determine how many variable names there are in &Var_list, you use the
COUNTW function. This function computes the number of words in a string. To obtain each of the
variable names, you use the %SCAN macro function. This functions works in the same way as the
regular non-macro SCAN function. The first argument is the list of variable names. The second
argument specifies which “word” you want in the string. The macro uses a %DO loop to extract each of
the individual variable names.

The next %DO loop performs the character-to-numeric conversion using the INPUT function. Notice
that the first argument of the INPUT function is the original variable name with the C_ prefix added.
Finally, a DROP statement deletes all of the C_ variables.

To test the macro, you can use the original data set Char_values and enter Age and Weight as the
argument of Var_List. Here is the code:

Program 1.3: Testing the character-to-numeric conversion macro

*Test the macro;
%char_to_num(In_dsn=char_values, Out_dsn=Num_values,

Var_list=Age Weight)

After you run the macro, the output data set (Num_values) is identical to the one created by the
previous program.

Chapter 1: Tasks Involving Conversion 5

Task: Converting a specific value such as 999 to a missing value for all
 numeric variables in a SAS data set

Keywords
Numeric variables
numeric

Array

You will find numerous occasions where you need to perform an operation on all numeric (or character)
variables in a SAS data set. For example, you may have a SAS data set where specific values, such as
999 or 9999, were used to represent a missing value. In the character domain, you may want to convert
all character values to uppercase or convert a specific value such as ‘NA’ to a SAS missing value. The
approach to all of these tasks is the same. You create an array of all numeric or character variables.
Once you do this, you can then use a DO loop to perform any operation you desire on all of the
variables in the array.

This first example converts a value of 999 to a SAS missing value for all the numeric variables in data
set Demographic.

A listing of data set Demographic is shown here:

Subj Score Weight Heart_Rate DOB Gender Party

1 70 999 76 04NOV1955 Male NA

2 26 160 62 08APR1955 NA NA

3 71 195 71 20JUL1955 male na

4 40 132 74 08JAN1955 Male Republican

5 999 181 62 15AUG1951 Female Democrat

6 62 71 52 24JAN1950 Male democrat

7 24 136 72 26NOV1950 Female democrat

8 5 174 71 08NOV1950 Female democrat

9 5 172 47 28DEC1951 Male Democrat

10 94 173 999 06MAY1953 Male republican

11 99 170 63 27FEB1950 na NA

12 10 133 63 18MAR1954 Male democrat

13 6 131 60 26MAR1951 Female republican

6 Cody’s Collection of Popular SAS Programming Tasks and How to Tackle Them

Subj Score Weight Heart_Rate DOB Gender Party

14 999 140 79 01OCT1950 NA na

15 999 124 999 12OCT1950 NA na

16 44 194 72 31DEC1952 Female republican

17 62 196 68 09MAR1951 Female democrat

18 57 133 72 15SEP1951 Female Democrat

19 45 137 86 16NOV1951 NA Republican

20 90 170 80 01OCT1951 Female Republican

You will use this data set for several of the tasks in this chapter. For this example, notice that there are
several values of 999 for the variables Score, Weight, and Heart_Rate.

Here is the code that performs the conversion:

Program 1.4: Converting a specific value such as 999 to a missing value for all numeric variables
 in a SAS data set

*Converting a specific value such as 999 to a missing value for
 all numeric variables in a SAS data set;

data Num_missing;
 set Demographic;
 array Nums[*] _numeric_;
 do i = 1 to dim(Nums);
 if Nums[i] = 999 then Nums[i] = .;
 end;
 drop i;
run;

The key to this program, as well as several programs to follow, is to create an array using the keyword
NUMERIC. When used in a DATA step, _NUMERIC_ represents all the numeric variables that have
been defined up to that point in the DATA step. Since the ARRAY statement follows the SET
statement, the Nums array contains all of the numeric variables in data set Demographic (Subj, Score,
Heart_Rate, and DOB). To make this important point clear, had you placed the ARRAY statement
before the SET statement, the array Nums would not contain any variables.

You certainly do not want to have to count all the numeric variables in a large data set. Therefore, you
use an asterisk in the brackets following the array name. When you do this, SAS will count the number
of variables for you. But, what value do you use in the DO loop? You can use the DIM (dimension)
function to determine how many variables are in the array. Your work is almost finished. All you need to
do now is to check for values of 999 and convert them to a SAS numeric missing value. Don’t forget to
drop the DO loop counter.

Chapter 1: Tasks Involving Conversion 7

The first five observations in data set Num_missing are shown next, to demonstrate that the program
worked as expected:

Subj Score Weight Heart_Rate DOB Gender Party

1 70 . 76 04NOV1955 Male NA

2 26 160 62 08APR1955 NA NA

3 71 195 71 20JUL1955 male na

4 40 132 74 08JAN1955 Male Republican

5 . 181 62 15AUG1951 Female Democrat

Task: Converting a specific value such as 'NA' to a missing value for
 all character variables in a SAS data set

Keywords
Character variables

character_Array

This task is similar to the previous task. The difference is that you want to convert a specified character
value to a SAS character missing value. All you need to do is use the SAS keyword _CHARACTER_ to
create an array of all character variables. Here is the program:

Program 1.5: Converting a specific value such as ‘NA’ to a missing value for all character variables
 in a SAS data set

*Converting a specific value such as "NA" to a missing value for all
 character variables in a SAS data set;
data Char_missing;
 set Demographic;
 array Chars[*] _character_;
 do i = 1 to dim(Chars);
 if Chars[i] in ('NA' 'na') then Chars[i] = ' ';
 end;
 drop i;
run;

Array Chars contains all the character variables in data set Demographic (in this case, Gender and
Party). As in the previous task, the DIM function returns the number of variables in the array. To make
the program more general, it looks for uppercase or lowercase values of 'NA'. Here is a listing of the
first five observations in data set Char_missing:

8 Cody’s Collection of Popular SAS Programming Tasks and How to Tackle Them

Subj Score Weight Heart_Rate DOB Gender Party

1 70 999 76 04NOV1955 Male

2 26 160 62 08APR1955

3 71 195 71 20JUL1955 male

4 40 132 74 08JAN1955 Male Republican

5 999 181 62 15AUG1951 Female Democrat

Task: Changing all character values to either uppercase, lowercase, or
 proper case

Keywords
Uppercase
Lowercase

Proper case
character

In a similar manner to the previous program, you can use an array of all your character variables to
convert them all to a unified case: uppercase, lowercase, or proper case. Please refer to the previous
program if you would like an explanation of this program. As you can see, this program is converting
all the character values in the Demographic data set to uppercase. The two other functions that convert
character values to lowercase or proper case are LOWCASE and PROPCASE, respectively. Here is the
program:

Program 1.6: Changing case for all character variables in a SAS data set

*Converting all character values to uppercase (or lower- or proper-
case);
 data Upper;
 set Demographic;
 array Chars[*] _character_;
 do i = 1 to dim(Chars);
 Chars[i] = upcase(Chars[i]);
 end;
 drop i;
run;

If the character variables you are dealing with represent names and addresses, after you have converted
all the values to a consistent case, you may want to take the additional step and use the COMPBL
function to convert all multiple blanks to a single blank, to help standardize the names and addresses.

Chapter 1: Tasks Involving Conversion 9

Task: Reading a numeric value that contains units such as Lbs. or
 Kgs. in the value

Keywords
Character-to-numeric conversion
Removing units from a value

Extracting digits from a string
COMPRESS function

SCAN function

Data set Units contains a character variable called Weight that includes units such as Lbs. and Kgs.
(pounds and kilograms). To add insult to injury, the variable Height also contains units and it is
expressed in feet and inches (sometimes the inches value is missing (when the inches value is zero). A
listing of data set Units is shown here:

Subj Weight Height

001 80kgs 5ft 3in

002 190lbs 6' 1"

003 70KG. 5ft 11in

004 177LbS. 5' 11"

005 100kgs 6ft

Notice that the Weight units are not always in the same case and some of the units end in periods. For
Height, the abbreviation 'ft' or 'in' is used; sometimes a single quote and double quote represent feet and
inches.

You would like to create two new variables (Weight_Lbs and Height_Inches) that are numeric variables
and are equal to the weight in pounds and the height in inches, respectively. Here is the program:

Program 1.7: Reading data values that contain units

*Reading data values that contain units;
 data No_Units;
 set Units;
 Weight_Lbs = input(compress(Weight,,'kd'),12.);
 if findc(Weight,'k','i') then Weight_lbs = Weight_lbs*2.2;
 Height = compress(Height,,'kds');
 Feet = input(scan(Height,1,' '),12.);
 Inches = input(scan(Height,2,' '),12.);

10 Cody’s Collection of Popular SAS Programming Tasks and How to Tackle Them

 if missing(Inches) then Inches = 0;
 Height_Inches = 12*Feet + Inches;
 drop Feet Inches;
run;

You start by extracting the digits from Weight using the COMPRESS function with the modifiers 'kd'
(keep digits). It is important to include two commas following the first argument of the COMPRESS
function so that the function interprets 'kd' as modifiers and not the second argument to the
COMPRESS function that is used to list the characters you want to compress from a string. Since the
result of the COMPRESS function is a character value, you use the INPUT function to perform the
character-to-numeric conversion. All you need to do is test the original variable (Weight) to see if it
contains a 'K' in uppercase or lowercase. Use the FINDC function with the 'i' modifier (ignore case) to
do this. If you find a 'K', you multiply by 2.2 to convert from kilograms to pounds.

The Height variable presents more of a challenge. You first use the COMPRESS function with three
modifiers, 'kds' (keep digits and space characters). The variable Height now contains two sets of digits
(or only a single digit if there are zero inches) and can use the SCAN function to extract the feet and inch
values. The SCAN function returns a missing value for Inches if Height only contains a single number
(feet). You can now add 12 times the feet plus the number of inches to obtain the height in inches. Here
is the listing of the data set No_Units:

Subj Weight Height Weight_Lbs Height_Inches

001 80kgs 5 3 176 63

002 190lbs 6 1 190 73

003 70KG. 5 11 154 71

004 177LbS. 5 11 177 71

005 100kgs 6 220 72

Solving this task without the COMPRESS and SCAN functions would certainly be a challenge—with
these functions, it’s a snap.

Task: Solving part of the previous task using a Perl regular expression

Keywords
Removing units from a value
Extracting digits from a string

Perl regular expression

Chapter 1: Tasks Involving Conversion 11

My younger son, who is a wizard at programming, suggested I solve this problem using a Perl regular
expression. This solution is not simpler than the previous solution, but it demonstrates the versatility of
regular expressions.

You start by using PRXPARSE to compile the regular expression:

/^(\d+)(\D)/

This regex (this is what Perl programmers call regular expressions) is looking for one or more digits
followed by a non-digit. The ^ in the beginning of the expression says to start the search at the beginning
of the string. The digit and non-digit values will be placed in capture buffers because each of these
expressions is in a set of parentheses. You use the PRXMATCH function to search for the pattern of a
number followed by a non-number. The PRXPOSN function extracts the values in each of the capture
buffers. The INPUT function performs the character-to-numeric conversion as in the previous task.

If the value in the second capture buffer is a 'K', you perform the kilogram to pound conversion.

Program 1.8: Using a Perl regular expression to extract the digit and units part of a character value

*Solution using Perl Regular expressions;
data No_Units;
 set Units(drop=Height);
 if _n_ = 1 then do;
 Regex = "/^(\d+)(\D)/";
 re = prxparse(Regex);
 end;
 retain re;
 if prxmatch(re,Weight) then do;
 Weight_Lbs = input(prxposn(re,1,Weight),8.);
 Units = prxposn(re,2,Weight);
 if upcase(Units) = 'K' then Weight_Lbs = Weight_Lbs*2.2;
 end;
 keep Subj Weight Weight_Lbs;
run;

The resulting data set contains values for Weight_Lbs that are identical to the values in the previous
task.

Conclusion
It is quite likely that you will need to perform one or more of the tasks described in this chapter on a
regular basis. Since the character-to-numeric conversion is one of the most common tasks, you may
choose to store the conversion macro in your macro library.

Also keep in mind that using the special keywords _NUMERIC_ and _CHARACTER_ to define an
array can save you immense time when you need to perform an operation on all character or numeric
variables in a data set.

From Cody's Collection of Popular SAS® Programming Tasks and How to Tackle Them by Ron Cody.
Copyright © 2012, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19615

From Cody's Collection of Popular SAS® Programming Tasks
and How to Tackle Them. Full book available for purchase here.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19615

Index
A

age computation using birth date 83–84
ALL sort option 105–106
APPEND procedure 37, 40, 41–42, 56, 90
arrays, temporary 70–73
ARRAY statement 6, 7, 70, 128
ATTRN function 120
Auto_Outlier macro 92–96
automatic outlier detection 92–96
AUTONAME option of MEANS procedure

25–26
average, computing moving 122–123, 124–125
average of 'n' highest scores, computing 129

B

blanks, converting multiple to single 8
BY group, extracting first or last observation

106–107
BY statement 35, 49, 78, 106–107
BY values, detecting duplicate 102–106, 108
BY variables 23, 34–35, 105–106, 109–110

C

CALL SORTN call routine 128–129
CALL SYMPUTX statement 33, 117–118
Cartesian product 31, 53–54
case, changing character values 5, 8, 55, 121
CATS function 121, 126
CHARACTER keyword 7–8, 11
character data

arrays of 7
converting case 5, 8, 55, 121
converting for all variables in data set 5
converting to numeric values 2–4, 5–7, 9–10,

11, 68
converting to specific value 5, 7–8
masking 126
reading with informats 98–100
reading with traditional approach 97–98
replacing in string 126

character variables, creating with PUT function
67

CHARTYPE option of MEANS procedure
26–29

CLASS statement 24, 34–35
CLOSE function 120
CNTLIN= option in FORMAT procedure

59–60, 70
CNTLOUT= option in FORMAT procedure 62
COALESCE function 85
COMPBL function 8
COMPRESS function, to extract Weight digits

10
concatenating data sets 37, 38–40, 42–47
conditional SET statement 29–31, 34
CONTENTS procedure 39, 43, 44
control data sets 57–61, 62–63, 69–70
converting characters

all variables in data set 5
to desired case 5, 8, 55, 121
to numeric values 2–4, 5–7, 9–10, 11, 68
to specific value 5, 7–8

converting macro variables, to numeric values
118

converting numeric variables
all variables in data set 5–7
from character values 2–4, 5–7, 9–10, 11, 68
from macro variables 118

COUNTC function 121–122
counting numeric variables 6
counting specific values in list of variables

120–122
COUNTW function 4
credit card number, masking 126

D

DATA= attribute for TRANSPOSE procedure
78

data cleaning 50–52, 56, 89–91, 92–96
See also data errors

134 Index

data conversion
all numeric variables in data set 5–7
character to numeric 2–4, 5–7, 9–10, 11, 68
macro variables to numeric 118
to desired case 5, 8, 55, 121
to specific value 5, 7–8

data errors 38, 87, 88, 89–91
data sets

adding data to existing 37
concatenating with APPEND procedure 42
concatenating with different character

variable lengths 37, 38
concatenating with different character

variable lengths using APPEND
procedure 40–42

concatenating with different character
variable lengths using macro 43–47

concatenating with different character
variable lengths using SET and LENGTH
statements 42–43

concatenating with SET statement 37, 38–40,
42–43

control 57–61, 62–63, 69–70
correcting data errors 38
restructuring 76–77, 79–80, 81
updating using transaction data set 47–49
updating with new values 38

DATA step
concatenating data sets with different variable

lengths 45
NUMERIC keyword 6, 11
restructuring data sets 76–77, 79–80, 81
stopping 118
summarized data, combining with detail data

34
summarizing data 30, 31

dates 83–85
deciles, dividing values into 15

See also RANK procedure
Delobs variable in library tables 119
differences between observations, computing

110–112
DIF function 111
digits, extracting from strings 9–10, 11
DIM (dimension) function, use in DO loop 6, 7

DO loops 4, 6, 7
DROP= data set option 79
DROP= option in MEANS procedure 28
DROP statement, use of colon in variable list 2,

3
duplicate BY values, detecting 102–106, 108
duplicates 102–106, 108
dynamic naming of variables 128

E

END= option in MERGE statement 45
END= option in SET statement 61, 62
End variable in control data set 58, 69
enhanced numeric informat 99
ERROR MERGENOBY option 44, 45
errors macro for range checking 89–91
%EVAL function 118
EXIST function 120
extracting digits from string 9–10, 11

F

file I/O functions 119–120
FINDC function 10
FIRSTOBS= data set option 118
first observation 106–107, 112–113
First. variables 106–107, 108
Fmtname variable in control data set 58, 59
FORCE option, use when combining data sets

with different variable lengths 41–42
FORMAT procedure 59–63, 70, 98–100
formats

See also informats
adding formats to 62–63
creating 57, 68, 99
grouping values 14–15
using control data set 57–61, 69–70

FREQ variable of MEANS procedure 23, 26
fuzzy matches, between two data sets 38, 53–56
fuzzy merge 53–56

G

grand mean 22, 24, 27, 29–31
grouping values 13–17, 19

Index 135

GROUPS= option in RANK procedure 16,
17–18

H

Height variable in Units data set 9–10
HISTOGRAM statement 96
HLO variable in control data set 58, 60–61, 62

I

if-then-else statements, grouping values 13–14
%INCLUDE statement, for concatenating data

sets with different variable lengths
43

inexact matching 38, 53–56
informats 57–61, 67–70, 98–100
INFORMAT statement, in INPUT statement 51
INPUT function

creating informat 68
informats in 67
named input method 50–52, 56
reading past end of character, inability 2
to convert character values to numeric 10, 11

input/output (I/O) functions 119–120
INVALUE statement, to create informat 68, 99

J

Jordan, Mark 33, 85
JUST option, in INVALUE statement 99

K

KEEP= option in RANK procedure 17
KEEP= option of MEANS procedure 22, 23
kilograms, converting to pounds 10

L

Label variable in control data set 58, 61
LAG function 111, 113, 122, 124–125
Langston, Rick 129
last observation 106–107, 112–113
Last. variables 106–107, 108
LENGTH statement 14, 43, 45, 51, 62
%LET statement 90, 118
libnames format 119

library tables, determining number of
observations 118–119

LOWCASE function 8
lowercase, converting characters to 8

M

macros
concatenate data sets with different variable

lengths 43–47
convert character values to numeric 3–4
converting program to 46
moving average 124–125
MPRINT option to view code 125
outlier detection, 92–96
range checking 89–91
reporting 89, 90–91
running, example 4
%SCAN function 4

macro variables 33–34, 117–118
masking characters 126
master file, updating from transaction file 50–52
MDY function 84–85
mean 32–33
MEAN function 32–33, 125, 129
MEANS procedure

automatic naming of variables in output
25–26

BY statement 35
BY variable 23
CLASS statement 24, 34–35
computing mean by values of another variable

24–25
creating multiple output data sets 26–29
options 22, 23, 24–29, 30, 35
OUTPUT statement 22, 25–26
sorting 35
SQL procedure as alternative 32–33
summarizing data 22, 23, 24–29
variables 23, 24, 26–27, 28
VAR statement 22

memname format 119
merge, fuzzy 53–56
MERGENOBY system option 44–45
MERGE statement 30, 34–36, 44–45, 49, 65–67

136 Index

metadata, getting data set 118
MISSING function 14, 85, 122
missing values 5–8, 30, 127
MODIFY statement, updating using transaction

file 50, 52
moving average, computing 122–123, 124–125
MPRINT option to view macro generated code

125
multiple observations per subject 76–81, 101,

110–113

N

named input method 50–52, 56
names, parsing 130–131
NLOBS argument of ATTRN function 120
NOBS= option in SET statement 116–118, 119
"n" observations per subject 109–110
Nobs variable in library tables 119
NODUPKEY option in SORT procedure

102–103
NODUPRECS option in SORT procedure

103–106
NOPRINT option of MEANS procedure 22, 30
NOWARN MERGENOBY option 44–45
number of observations per subject, detecting

109–110, 116–118, 119
NUMERIC keyword 6, 11
numeric informat, enhanced 99
numeric values

converting all variables in data set 5–7
converting from character values 2–4, 5–7,

9–10, 11, 68
converting from macro variables 118
creating with informats 68
extracting from strings 9–10, 11
reading 97–100

numeric variables, counting 6
NVAR argument of ATTRN function 120
NWAY option of MEANS procedure 24–25, 26,

35

O

observations 109–113, 116–120
See also restructuring data sets

ODS OUTPUT statement 94
one-way table lookup, using temporary arrays

70–71
OPEN function 120
ORDINAL function 127–128, 129
OUT= attribute for TRANSPOSE procedure 78
OUT= keyword for MEANS procedure 22, 78
outliers, data 87, 88, 89, 92–96
OUTPUT statement 22, 25–26, 44

P

parsing strings 130–131
PDV (program data vector), effect of observation

processing on 106
Perl regular expressions (regex), to extract digits

11
PREFIX= option for TRANSPOSE procedure

80–81
PRINT procedure, REPORT procedure

compared 60
program data vector (PDV), effect of observation

processing on 106
PROPCASE function 8
proper case, converting characters to 8
PRXMATCH function 11
PRXPARSE function 11
PRXPOSN function 11
PUT function 14–15, 67, 68

Q

questionnaires, counting specific values in list of
variables 120–122

R

range checking 88, 89
RANK procedure 15–18
RANKS statement, in RANK procedure 16, 17
reading data 2, 97–100
regex (Perl regular expressions) 11
removing units from value 9–10, 11
RENAME= data set option 59, 79
renaming variables 2, 3–4

Index 137

report macro for reporting range errors 89,
90–91

REPORT procedure 60
resources on SAS, web site 125
restructuring data sets

multiple observations per subject into one
observation per subject 79–81

need for 75–76
one observation per subject into multiple

observations per subject 76–79
RETAIN statement 59, 106, 112–113

S

SAME keyword in INVALUE statement 99
SAS 9.3, version changes 84
SAS dates, computing with MDY function

84–85
SAS Global Forum 29
SASHELP.VTABLE, getting metadata from

118–119
SAS Users Group International (SUGI) 29
SCAN function 4, 10, 130–131
SELECT statement, for documentation 60
SET statement

adding to existing data sets 37
APPEND procedure compared 56
ARRAY statement with 6
concatenating data sets 37, 38–40, 42–43
conditional 29–31, 34
followed by BY statement 106–107
options 61, 62, 116–118, 119

SET SUMMARY statement 30, 31
single observations per subject

converting from multiple observations per
subject data set to 79–81

converting to multiple observations per
subject data set 76–79

SMALLEST function 127
sorting 35, 66–67, 127–129
SORTN call routine 128–129
SORT procedure 35, 102–106, 108
SPEDIS (spelling distance) function 53, 55
SQL procedure 31–34, 53–54
Start variable in control data set 58, 69

statistical methods, for identifying possible
outliers 87, 92

STOP statement in DATA step 118
strings 9–10, 11, 126, 130–131

See also character data
SUBSTR function 126
SUGI (SAS Users Group International) 29
summarized data, combining with detail data

conditional SET statement 29–31
DATA step 34
macro variable 33–34
MERGE statement 34–36
SQL procedure 31–34

summarizing values
in DATA step 30, 31
macro variable 33–34
MEANS procedure 22, 23, 24–29
SQL procedure 31–33
uses 22

SUM statement 110
swap and drop 2–3
SYMPUTX call statement 33, 117–118

T

table lookup 65–68, 70–73
tables, creating with SQL procedure 31
TABULATE procedure 21
TEMPORARY keyword in ARRAY statement

70
temporary arrays 70–73
transaction data set, updating data sets with

47–49
transaction file, updating master file using

50–52
TRANSPOSE procedure 77–81
transposing data sets

See restructuring data sets
trends, calculating 122–123, 124–125
trimmed statistics for automatic outlier detection

92, 93
trim value for outlier detection 96
two-way table lookup, using temporary arrays

71–73

138 Index

TYPE variable in MEANS procedure 23, 24,
26–27, 28

Type variable in control data set 58, 59

U

units, removing from value 9–10, 11
Units data set 9
UNIVARIATE procedure 21, 92, 96
UPCASE function 8, 55, 121
UPCASE option in INVALUE statement 99
UPDATE statement 49, 52
updating master file 50–52, 56
uppercase, converting characters to 5, 8, 55, 121

V

values, grouping 13–17, 19
VALUE statement, to create formats, 68, 99
variables

macro 33–34, 117–118
naming 2, 3–4, 128
representing groups 13–17, 19

VAR statement in MEANS procedure 22
VAR statement in RANK procedure 16, 17
VAR statement in TRANSPOSE procedure 80
VNAME function 94

W

WARN MERGENOBY option 44, 45
web site, SAS 125
Weight variable in Units data set 9–10
WHERE= data set option 44, 79

Y

YRDIF function 84

From Cody's Collection of Popular SAS® Programming Tasks and How to Tackle Them by Ron Cody.
Copyright © 2012, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19615

About The Author

Ron Cody, EdD, is a retired professor from the Robert Wood
Johnson Medical School who now works as a private consultant
and a national instructor for SAS. A SAS user since 1977,
Ron’s extensive knowledge and innovative style have made
him a popular presenter at local, regional, and national SAS
conferences. He has authored or co-authored numerous
books.

Learn more about this author by visiting his author page at support.sas.com/cody. There you can
download free chapters, access example code and data, read the latest reviews, get updates, and
more.

http://support.sas.com/publishing/authors/cody.html

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies. © 2013 SAS Institute Inc. All rights reserved. S107969US.0613

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.

Gain Greater Insight into Your
SAS® Software with SAS Books.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR18308

	Contents
	Chapter 1: Tasks Involving Conversion: Character to Numeric, Specific Values to Missing, and Changing Case
	Index
	About The Author
	Additional Resources

