Clinical Graphs Using SAS®

Sanjay Matange
Contents

About This Book............................................................................................................................ ix
About The Author........................................................................................................................ xiii
Acknowledgments ..................................................................................................................... xv
Preface ........................................................................................................................................ xvii

Chapter 1: Introduction to ODS Graphics................................................................. 1
  1.1 A Brief History of ODS Graphics .................................................................................. 1
  1.2 Automatic Graphs from SAS Analytical Procedures ..................................................... 3
  1.3 Create Custom Graphs Using the Graph Template Language (GTL) ......................... 4
  1.4 Create Custom Graphs Using the Statistical Graphics (SG) Procedures ................... 4
  1.5 Create Custom Graphs Using the ODS Graphics Designer Application .................... 5
  1.6 Data Sets and ODS Styles .............................................................................................. 5
  1.7 Color and Grayscale Graphs ......................................................................................... 6
  1.8 Summary ....................................................................................................................... 6

Chapter 2: A Brief Overview of the SG Procedures ................................................. 9
  2.1 Single-Cell Graph Using the SGPLOT Procedure ......................................................... 10
  2.2 Multi-Cell Classification Panels Using the SGPANEL Procedure ............................... 11
  2.3 Multi-Cell Comparative Scatter Plots Using the SGCATTER Procedure ................... 12
  2.4 Automatic Features ...................................................................................................... 12
  2.5 The SGPLOT Procedure ............................................................................................... 13
    2.5.1 Required Roles ....................................................................................................... 14
    2.5.2 Optional Data Roles .............................................................................................. 14
    2.5.3 Plot Options .......................................................................................................... 14
  2.6 Plot Layering .................................................................................................................. 15
  2.7 SGPANEL Procedure .................................................................................................... 16
    2.7.1 Layout PANEL ...................................................................................................... 18
    2.7.2 Layout LATTICE .................................................................................................. 19
    2.7.3 Layout COLUMNLATTICE ............................................................................... 20
    2.7.4 Layout ROWLATTICE ....................................................................................... 21

2.8 Combining Statements ......................................................................................................... 22
2.9 Annotation ............................................................................................................................. 23
2.10 Styles and Their Usage ....................................................................................................... 24
2.11 Summary .............................................................................................................................. 25

Chapter 3: Clinical Graphs Using the SAS 9.3 SGPLOT Procedure .......... 27
3.1 Box Plot of QTc Change from Baseline .......................................................... 29
  3.1.1 Box Plot of QTc Change from Baseline with Outer Risk Table ............... 29
  3.1.2 Box Plot of QTc Change from Baseline with Inner Risk Table ............... 33
  3.1.3 Box Plot of QTc Change from Baseline in Grayscale ............................. 35
3.2 Mean Change in QTc by Week and Treatment ......................................................... 38
  3.2.1 Mean Change of QTc by Week and Treatment with Outer Table .......... 38
  3.2.2 Mean Change of QTc by Week and Treatment with Inner Table ......... 41
  3.2.3 Mean Change in QTc by Visit in Grayscale ......................................... 43
3.3 Distribution of ASAT by Time and Treatment ......................................................... 45
3.4 Median of Lipid Profile by Visit and Treatment ......................................................... 47
  3.4.1 Median of Lipid Profile by Visit and Treatment on Discrete Axis .......... 47
  3.4.2 Median of Lipid Profile by Visit and Treatment on Linear Axis in Grayscale...... 48
3.5 Survival Plot ......................................................................................................................... 50
  3.5.1 Survival Plot with External "Subjects At-Risk" Table ............................... 50
  3.5.2 Survival Plot with Internal "Subjects At-Risk" Table ............................... 52
  3.5.3 Survival Plot with Internal "Subjects At-Risk" Table in Grayscale .......... 53
3.6 Simple Forest Plot ............................................................................................................. 55
  3.6.1 Simple Forest Plot ......................................................................................... 55
  3.6.2 Simple Forest Plot with Study Weights ...................................................... 59
  3.6.3 Simple Forest Plot with Study Weights in Grayscale .............................. 60
3.7 Subgrouped Forest Plot ................................................................................................. 62
3.8 Adverse Event Timeline by Severity ............................................................................. 64
3.9 Change in Tumor Size ................................................................................................. 67
3.10 Injection Site Reaction ............................................................................................... 70
3.11 Distribution of Maximum LFT by Treatment ......................................................... 72
  3.11.1 Distribution of Maximum LFT by Treatment with Multi-Column Data ...... 72
  3.11.2 Distribution of Maximum LFT by Treatment Grayscale with Group Data .... 73
3.12 Clark Error Grid ............................................................................................................. 75
  3.12.1 Clark Error Grid ......................................................................................... 75
  3.12.2 Clark Error Grid in Grayscale ................................................................. 76
3.13 The Swimmer Plot ............................................................................................................... 77
   3.13.1 The Swimmer Plot for Tumor Response over Time .................................................... 77
   3.13.2 The Swimmer Plot for Tumor Response in Grayscale ............................................. 80
3.14 CDC Chart for Length and Weight Percentiles ................................................................. 82
3.15 Summary .............................................................................................................................. 86

Chapter 4: Clinical Graphs Using the SAS 9.4 SGPLOT Procedure ...................... 87
4.1 Box Plot of QTc Change from Baseline ........................................................................... 89
   4.1.1 Box Plot of QTc Change from Baseline ................................................................. 89
   4.1.2 Box Plot of QTc Change from Baseline with Inner Risk Table and Bands .......... 91
   4.1.3 Box Plot of QTc Change from Baseline in Grayscale ............................................ 93
4.2 Mean Change in QTc by Visit and Treatment ................................................................. 94
   4.2.1 Mean Change in QTc by Visit and Treatment ......................................................... 94
   4.2.2 Mean Change in QTc by Visit and Treatment with Inner Table of Subjects ......... 96
   4.2.3 Mean Change in QTc by Visit and Treatment in Grayscale ............................... 97
4.3 Distribution of ASAT by Time and Treatment ................................................................. 98
   4.3.1 Distribution of ASAT by Time and Treatment ......................................................... 98
   4.3.2 Distribution of ASAT by Time and Treatment in Grayscale ............................... 100
4.4 Median of Lipid Profile by Visit and Treatment ............................................................... 101
   4.4.1 Median of Lipid Profile by Visit and Treatment on Discrete Axis ....................... 101
   4.4.2 Median of Lipid Profile by Visit and Treatment on Linear Axis in Grayscale ....... 102
4.5 Survival Plot ....................................................................................................................... 104
   4.5.1 Survival Plot with External "Subjects At-Risk" Table ............................................. 104
   4.5.2 Survival Plot with Internal "Subjects At-Risk" Table ........................................... 105
   4.5.3 Survival Plot with Internal "Subjects At-Risk" Table in Grayscale ..................... 106
4.6 Simple Forest Plot ............................................................................................................. 107
   4.6.1 Simple Forest Plot ............................................................................................... 107
   4.6.2 Simple Forest Plot with Study Weights ............................................................... 108
   4.6.3 Simple Forest Plot with Study Weights in Grayscale ........................................ 110
4.7 Subgrouped Forest Plot .................................................................................................. 111
4.8 Adverse Event Timeline by Severity ............................................................................. 113
4.9 Change in Tumor Size ...................................................................................................... 117
4.10 Injection Site Reaction .................................................................................................... 120
   4.10.1 Injection Site Reaction ......................................................................................... 120
   4.10.2 Injection Site Reaction in Grayscale ................................................................. 121
Chapter 6: A Brief Review of the Graph Template Language .......... 157

6.1 Getting Started .................................................................................................................... 158
6.2 A Simple GTL Graph ........................................................................................................... 159
6.3 GTL Graphs and Terminology ............................................................................................ 161
6.4 GTL Plot Statements ........................................................................................................... 163
   6.4.1 Basic Plots ................................................................................................................. 163
   6.4.2 Categorical Plots ....................................................................................................... 164
   6.4.3 Distribution Plots ..................................................................................................... 164
   6.4.4 Fit Plots ..................................................................................................................... 164
   6.4.5 Parametric Plots ...................................................................................................... 164
   6.4.6 3-D Plots .................................................................................................................. 165
   6.4.7 Other Plots ................................................................................................................. 165
6.5 GTL Layout Statements ...................................................................................................... 165
   6.5.1 The Graph Container .............................................................................................. 165
   6.5.2 Single-Cell Layouts ............................................................................................... 165
   6.5.3 Multi-cell Ad Hoc Layouts ..................................................................................... 166
   6.5.4 Multi-Cell Classification Panels .......................................................................... 166
6.6 GTL Title, Footnote, and Entry Statements ...................................................................... 167
6.7 GTL Legend Statements ..................................................................................................... 167
6.8 GTL Attribute Maps .......................................................................................................... 167
6.9 GTL Dynamic Variables and Macro Variables ................................................................. 167
6.10 GTL Expressions and Conditionals .................................................................................. 168
6.11 GTL Draw Statements ...................................................................................................... 168
6.12 GTL Annotate .................................................................................................................... 168
6.13 Summary ............................................................................................................................ 169

Chapter 7: Clinical Graphs Using SAS 9.3 GTL ......................... 171

7.1 Distribution of ASAT by Time and Treatment ................................................................. 173
7.2 Most Frequent On-Therapy Adverse Events Sorted by Relative Risk .......................... 176
7.3 Treatment Emergent Adverse Events with Largest Risk Difference with NNT ............ 179
7.4 Butterfly Plot of Cancer Deaths by Cause and Gender ................................................... 182
7.5 Forest Plot of Impact of Treatment on Mortality by Study ............................................. 186
7.6 Forest Plot of Hazard Ratios by Patient Subgroups ......................................................... 191
7.7 Product-Limit Survival Estimates ...................................................................................... 197
7.8 Bivariate Distribution Plot ............................................................................................... 203
7.9 Summary ............................................................................................................................ 208
4.3 Distribution of ASAT by Time and Treatment

The graphs below consist of three sections. The main body of the graph contains the display of ASAT by Week and Treatment in the middle. A table of subjects in the study by treatment is at the bottom, and the number of subjects with value > 2 by treatment is at the top of the graph.

4.3.1 Distribution of ASAT by Time and Treatment

The values of ASAT by week and treatment are displayed using a box plot. The x-axis type is linear.

Figure 4.3.1 – Distribution of ASAT by Time and Treatment

This graph is likely one of the most complex displays that can be created using the SGPlot procedure. This graph displays the distribution of ASAT by treatment over time using a grouped
box plot on a linear x-axis. The visit values are scaled correctly on the time axis. The smallest interval between the visits determines the "effective" midpoint spacing used for adjacent placement of the treatment values.

```sas
title 'Distribution of ASAT by Time and Treatment';
proc sgplot data=asat;
  vbox asat / category=week group=drug name='box' nofill;
  xaxistable gt2 / class=drugGT colorgroup=drugGT position=top
      location=inside separator valueattrs=(size=6)
      labelattrs=(size=7);
  xaxistable count / class=drug colorgroup=drug position=bottom
       location=inside separator valueattrs=(size=6)
       labelattrs=(size=7);
  reffline 1 / lineattrs=(pattern=shortdash);
  reffline 2 / lineattrs=(pattern=dash);
  reffline 25 / axis=x;
  xaxis type=linear values=(0 2 4 8 12 24 28) offsetmax=0.05
       valueattrs=(size=7) labelattrs=(size=8);
  yaxis offsetmax=0.1 valueattrs=(size=7) labelattrs=(size=8);
  keylegend 'box' / location=inside position=top linelength=20;
run;
```

An XAXISTABLE statement is used to display the "Number of Subjects" values at the bottom of the graph. A second XAXISTABLE at the top is used to display the count of values above 2.0 by treatment.
4.3.2 Distribution of ASAT by Time and Treatment in Grayscale

The graph in Figure 4.3.2 is the same as above in grayscale. Markers are used in the legend for treatment.

Figure 4.3.2 – Distribution of ASAT by Time and Treatment in Grayscale

Drawing this graph using the Journal style poses a few challenges, mainly in the drawing of the boxes and their representation in the legend. Using the Journal style, the boxes for Drug "B" will get drawn using dashed lines. Because those look odd, I set the STYLEATTRS option to use only solid lines.

ods listing style=journal;
title 'Distribution of ASAT by Time and Treatment';
proc sgplot data=asat2;
  styleattrs datalinepatterns=(solid);
  vbox asat / category=week group=drug nofill;
  scatter x=week y=asat2 / group=drug name='s';
  xaxistable gt2 / class=drugGT colorgroup=drugGT position=top
       location=inside;
  xaxistable count / class=drug colorgroup=drug position=bottom
       location=inside;
  reline 1 / lineattrs=(pattern=shortdash);
  reline 2 / lineattrs=(pattern=dash);
  reline 25 / axis=x;
  xaxis type=linear values=(0 2 4 8 12 24 28) offsetmax=0.05;
  yaxis offsetmax=0.1 valueattrs=(size=8) labelattrs=(size=9);
  keylegend 's' / location=inside position=top linelength=20;
run;
Although this improves the rendering of the boxes, it will put two solid lines in the legend for "A" and "B". It would be better to show the mean markers in the legend instead. To do this, I have to add a scatter plot of asat2 by Week and Drug and include that in the legend. Because values in "asat2" are all missing, no markers are displayed in the graph itself, but the group markers are displayed in the legend. Relevant details are shown in the code snippet above. For full details, see Program 4_3.

4.4 Median of Lipid Profile by Visit and Treatment

This graph displays the median of the lipid values by visit and treatment. The visits are at regular intervals and represented as discrete data.

4.4.1 Median of Lipid Profile by Visit and Treatment on Discrete Axis

The values for each treatment are displayed along with the 95% confidence limits as adjacent groups using GROUPDISPLAY option of "Cluster" and the option CLUSTERWIDTH=0.5. The HTMLBlue style is used.

Figure 4.4.1 – Median of Lipid Profile by Visit and Treatment

```
title 'Median of Lipid Profile by Visit and Treatment';
proc sgplot data=lipid_grp;
    series x=day y=median / lineattrs=(pattern=solid) group=trt name='s' groupdisplay=cluster clusterwidth=0.5 lineattrs=(thickness=2);
    scatter x=day y=median / yerrorlower=lcl yerrorupper=ucl group=trt groupdisplay=cluster clusterwidth=0.5 errorbarattrs=(thickness=1) filledoutlinedmarkers markerattrs=(symbol=circlefilled)
```
This graph displays the median of the lipid data by visit and treatment. The visits are at regular intervals and represented as discrete data. However, they could also be on a time axis with unequal intervals. The values for each treatment are displayed along with the 95% confidence limits as adjacent groups using GROUPDISPLAY=Cluster and CLUSTERWIDTH=0.5.

The values across visits are joined using a series plot. Note, the series plot also uses cluster groups with the same cluster width. The lengths of the line segments in the legends are reduced using the LINELENGTH option. Markers with fill and outlines are used with specific fill attributes.

Relevant details are shown in the code snippet above. For full details, see Program 4.4.

### 4.4.2 Median of Lipid Profile by Visit and Treatment on Linear Axis in Grayscale

This graph displays the median of the lipid data by treatment in grayscale on a linear x-axis.

**Figure 4.4.2 – Median of Lipid Profile by Visit and Treatment on Linear Axis**

```sas
proc sgplot data=lipid_Liner_grp;
    styleattrs dataspaces=(circlefilled trianglefilled squarefilled diamondfilled);
    series x=n y=median / group=trt groupdisplay=cluster
```
clusterwidth=0.5;
scatter x=n y=median / yerrorlower=lcl yerrorupper=ucl group=trt
groupdisplay=cluster clusterwidth=0.5
errorbarattrs=(thickness=1) filledoutlinedmarkers
markerattrs=(size=7) name='s'
markerfillattrs=(color=white);
keylegend 's' / title='Treatment' linelength=20;
yaxis label='Median with 95% CL' grid;
xaxis display=(nolabel) values=(1 4 8 12 16);
run;

The visits are not at regular intervals and are displayed at the correct scaled location along the x-axis. The visits are at week 1, 2, 4, 8, 12, and 16. These values are formatted to the strings shown on the axis. "Visit 1" collides with "Baseline", causing alternate tick values to be dropped, so I removed "1" from the tick value list.

As you can see, the group values are displayed as clusters, and the "effective midpoint spacing" is the shortest distance between the values. The markers are reduced in size to show the clustering. This can be adjusted by setting marker SIZE=7. Four filled markers are assigned to the list of markers.

Relevant details are shown in the code snippet above. For full details, see Program 4_4.
4.5 Survival Plot

The survival plot is one of the most popular graphs that users want to customize to their own needs. Here I have run the LIFETEST procedure to generate the data for this graph. The output is saved into the "SurvivalPlotData" data set. For more information about the LIFETEST procedure, see the SAS/STAT documentation.

4.5.1 Survival Plot with External "Subjects At-Risk" Table

The survival plot shown below in Figure 4.5.1 has the traditional arrangement where the table of Subjects At-Risk is displayed at the bottom of the graph, below the x-axis.

Figure 4.5.1 – Survival Plot with External "Subjects At-Risk" Table

A step plot of survival by time by strata displays the curves. A scatter overlay is used to draw the censored values, and an XAXISTABLE statement is used to display the at-risk values at the bottom of the graph. Relevant details are shown in the code snippet above. For full details, see Program 4_5.

```sas
ods output SurvivalPlot=SurvivalPlotData;
proc lifetest data=sashelp.BMT plots=survival(atrisk=0 to 2500 by 500);
  time T * Status(0);
  strata Group / test=logrank adjust=sidak;
run;

title 'Product-Limit Survival Estimates';
title2 h=0.8 'With Number of AML Subjects at Risk';
proc sgplot data=SurvivalPlotData;
  step x=time y=survival / group=stratum
```

A step plot of survival by time by strata displays the curves. A scatter overlay is used to draw the censored values, and an XAXISTABLE statement is used to display the at-risk values at the bottom of the graph. Relevant details are shown in the code snippet above. For full details, see Program 4_5.
lineattrs=(pattern=solid) name='s';
scatter x=time y=censored / markerattrs=(symbol=plus) name='c';
scatter x=time y=censored / markerattrs=(symbol=plus) GROUP=stratum;
xaxistable atrisk/x=tatrisk location=outside class=stratum
colorgroup=stratum;
keylegend 'c' / location=inside position=topright;
keylegend 's';
run;

4.5.2 Survival Plot with Internal "Subjects At-Risk" Table

The graph shown here is mostly similar to the graph in Section 4.5.1, with the difference that the "Subjects At-Risk" table is moved above the x-axis, close to the rest of the data. Bringing all the data closer makes it easy to align the values with the data, and that improves the effectiveness of the graph.

Figure 4.5.2 – Survival Plot with Internal "Subjects At-Risk" Table

title 'Product-Limit Survival Estimates';
title2 h=0.8 'With Number of AML Subjects at Risk';
proc sgplot data=SurvivalPlotData;
  step x=time y=survival / group=stratum lineattrs=(pattern=solid) name='s';
  scatter x=time y=censored / markerattrs=(symbol=plus) name='c';
  scatter x=time y=censored / markerattrs=(symbol=plus) GROUP=stratum;
xaxistable atrisk / x=tatrisk location=inside class=stratum
  colorgroup=stratum separator valueattrs=(size=7 weight=bold)
  labelattrs=(size=8);
keylegend 'c' / location=inside position=topright;
keylegend 's';
run;

All this graph needs is to simply specify LOCATION=Inside for the XAXISTABLE statement. In addition to that, we have switched on the separator that draws the horizontal line between the table and the curves.

Relevant details are shown in the code snippet above. For full details, see Program 4.5.

### 4.5.3 Survival Plot with Internal "Subjects At-Risk" Table in Grayscale

Displaying the survival plot in a grayscale medium presents some challenges.

Here we cannot use colors to identify the strata. Normally, the Journal style uses line patterns to identify the groups. Although line patterns work well for curves, they are not so effective with step plots because of the frequent breaks. So, it is preferable to use solid lines for all the levels of the step plot and to use markers to identify the strata.

**Figure 4.5.3 – Survival Plot with Internal "Subjects At-Risk" Table in Grayscale**

```
title 'Product-Limit Survival Estimates';
title2 h=0.8 'With Number of AML Subjects at Risk';
proc sgplot data=SurvivalPlotData;
    step x=time y=survival / group=stratum lineattrs=(pattern=solid)
        name='' s' curveLabel curveLabelattrs=(size=6) splitchar='-';
    scatter x=time y=censored / name=''c''
        markerattrs=(symbol=circlefilled size=4);
    xaxistable atrisk / x=tatrisk location=inside class=stratum
```
In this case, markers are also used to identify the censored observations. So, I have chosen to use the CURVELABEL option with the SPLITCHAR option to identify the curves. This results in a clean and effective graph, without the need for a legend for the strata.

Relevant details are shown in the code snippet above. For full details, see Program 4.5.

Note: This short excerpt was taken from a chapter in the published book.
Index

A
Adverse Event Timeline, by severity 64–67, 113–116
analytical procedures, automatic graphs from 3
annotations 23–24, 161, 168
ARROW function 24
ASAT, distribution of by time and treatment 45–47, 173–176
attribute maps
  about 25
  GTL 160, 167
ATTRPRORITY 151
automatic graphs, from analytical procedures 3
axes
  defined 11, 163
  in GTL 160
AXIS statement 15
AXISEXTENT option 113
AXISEXTENT=DATA option 109, 122
AXISTABLE statement 210, 211, 212, 224, 227, 228, 233

B
BAND statement 93
bands
  box plot of QTc change from baseline with 91–92
  lab test panel with 147–148
BARCHART statement 210
baseline
  box plot of QTc change from 29–37, 89–94
  panel of LFT shifts from to maximum by treatment 139–141
basic plots 22, 163
bivariate distribution plot 203–207, 236–240
BLOCK statement 142
BLOCKPLOT statement 199
box plot
  lab test panel with 147–148
  of QTc change from baseline 29–37, 89–94
BOXPLOT statement 210
butterfly plot, of cancer deaths by cause and gender 182–186, 218–222

C
categorical plots 164
categorization plots 22
cause, butterfly plot of cancer deaths by 182–186, 218–222
CDC chart, for length and weight percentiles 82–86, 132–136
cell 11, 162
Clark Error Grid 75–77, 125–127
COLAXIS statement 140, 146, 148
COLN() function 223
color graphs 6
COLORGROUP=DRUG option 90
COLORMODEL option 167
COLUMNLATTICE layout 20, 153, 154, 155
COLUMNWEIGHTS option 228
combining statements 22
COMPARE statement 10
conditional statements (GTL) 160
conditionals (GTL) 168
custom graphs
  creating using Graph Template Language (GTL) 4
  creating using ODS Graphics Designer application 5
  creating using Statistical Graphics (SG) procedures 4

d data sets, ODS styles and 5
DATALABEL option 187
DATA LATTICE layout 166
DATAPANEL layout 166
DATATRANSPARENCY option 223
discrete axis, median of lipid profile by visit and treatment on 47–48, 101–102
DISCRETEATTRMAP statement 167, 229
DISCRETEATTRVAR statement 229
INDEX

DISCRETELEGEND statement 178, 215

distribution
  of maximum LFT by treatment 72–74, 122–125

distribution plots 22, 164
draw statements 168
DRAWARROW statement 168
DRAWLINE statement 168
DRAWRECTANGLE statement 168
DRAWTEXT statement 168, 188, 189, 194, 199, 224, 225, 229, 233
DROPLINE statement 123
DYNAMIC statement 168
dynamic variables (GTL) 160, 167–168
dynamic variables (GTL) 160, 167–168

E

END statement 177, 214
ENDGRAPH statement 177, 214
ENDLAYOUT statement 177, 214
entries (GTL) 160
ENTRY statement 168, 188–189, 192, 204, 224, 228, 238
entry statements (GTL) 167
ENTRYTITLE statement 159
expressions (GTL) 160, 168
external "Subjects At-Risk" table, survival plot with 50–52, 104–105
eye irritation, over time by severity and treatment 153–154

F

fit plots 22, 164
footnotes (GTL) 160, 167
forest plots
  of hazard ratios by patient subgroups 191–197, 226–231
  of impact of treatment on mortality by study 186–190, 222–226
functions
  See specific functions

G

gender, butterfly plot of cancer deaths by 182–186, 218–222
Graph Template Language (GTL)
  See also 9.3 GTL
  See also 9.4 GTL
  about 1, 157–158
annotate 168
attribute maps 167
conditionals 168
creating custom graphs using 4
draw statements 168
dynamic variables 167–168
entry statements 167
expressions 168
footnote statements 167
getting started 158–159
graphs and terminology 161–163
layout statements 165–166
legend statements 167
macro variables 167–168
plot statements 163–165
simple graph 159–161
title statements 167

graphs
  defined 11, 162
  GTL 161–163
  simple GTL 159–161
grayscale
  about 6
  box plot of QTc change from baseline in 35–37, 93–94
  Clark Error Grid in 76–77, 126–127
distribution of ASAT by time and treatment in 100–101
distribution of maximum LFT treatment in 124–125
immunology panel in 143–144
injection site reaction in 121–122
mean change in QTc by visit and treatment in 97–98
mean change in QTc by visit in 43–44
median of lipid profile by visit and treatment in linear axis in 102–103
median of lipid profile by visit and treatment on linear axis in 48–49
simple forest plot with study weights in 60–61, 110–111
survival plot with internal "Subjects At-risk" table in 53–54, 106–107
swimmer plot for tumor response in 80–81
swimmer plot for tumor response over time in 130–131
vital statistics for patient over time in 154
GRIDDED layout 166
group data, distribution of maximum LFT treatment in grayscale with 124–125
GROUPDISPLAY option 101–102
GROUPDISPLAY=CLUSTER option 90, 95

GTL (Graph Template Language)
   See Graph Template Language (GTL)

H
hazard ratios, forest plot of by patient subgroups 191–197, 226–231
HIGHCAP option 66, 115
HIGHFLOW statement 42
HIGHLABEL option 193
HIGHLOW plot statement 62
HIGHLOWPLOT statement 193, 194
history, of ODS Graphics 1–2

I
IMAGE function 24
immunology profile, by treatment 142–144
INDENT option 112
injection site reaction 70–71, 120–122
in-line draw, in GTL 161
inner risk table, box plot of QTc change from baseline with 33–35, 91–92
inner table
   mean change in QTc by visit and treatment with 96–97
   mean change of QTc by week and treatment with 41–43
INNERMARGIN statement 227, 228
inset line name, lab test panel with 147–148
INSET statement 15, 86, 136, 148, 152
insets 11
INTERMARGIN statement 212
ITEMSIZE option 220

K
KEYLEGEND statement 15, 90, 95
Kopicko, Jeff 179, 216

L
LATTICE layout 19, 150, 151, 155, 166
layering plots 15–16
LAYOUT LATTICE statement 172, 173–174, 177, 183, 187, 192, 198, 204, 210, 214
LAYOUT OVERLAY statement 172, 173–174, 177, 201, 210, 212, 214
layout statements
   defined 163
   GTL 165–166
   layouts in GTL 160
   multi-cell ad hoc 166
   single-cell 165–166
legend statements (GTL) 167
   defined 11, 163
   GTL 160
length percentiles, CDC chart for 82–86, 132–136
LFT safety panel, baseline versus study 144–145
LFT shifts, panel of from baseline to maximum by treatment 139–141
LIFETEST procedure 3, 50–51, 198, 231–232
LINE function 24, 31
linear axis
   median of lipid profile by visit and treatment in 102–103
   median of lipid profile by visit and treatment on 48–49
LINELENGTH option 90, 102, 151
lipid profile, median of by visit and treatment 47–49
LOCATION=INSIDE option 93, 97, 106
LOCATION=OUTSIDE option 90, 95
LOWLABEL option 43, 66, 115, 193

M
macro variables (GTL) 160, 167–168
MARKERCHAR statement 42, 57, 62, 77, 172
MARKERCHARACTER option 174, 175, 180, 184, 187–188, 189, 194
MATRIX statement 10
maximum LFT by treatment, distribution of 72–74
mean change
   in QTc by visit and treatment 94–98
   in QTc by week and treatment 38–44
median, of lipid profile by visit and treatment 47–49, 101–103
%MODSTYLE() macro 25, 43, 49, 56, 68, 70, 77
multi-cell ad hoc layouts 166
multi-cell classification panels 11–12, 166
multi-cell comparative scatter plots 12
multi-column data, distribution of maximum LFT by treatment with 122–123

N
N() function 168
9.3 GTL
   See also Graph Template Language (GTL)
   See also SGPLOT procedure
   about 171–172
bivariate distribution plot 203–207
butterfly plot of cancer deaths by cause and gender 182–186
distribution of ASAT by time and treatment 173–176
forest plot of hazard ratios by patient subgroups 191–197
forest plot of impact of treatment on mortality by study 186–190
most frequent on-therapy adverse events sorted by relative risk 213–215
product-limit survival estimates 231–236
treatment emergent adverse events with largest risk difference with NNT 216–218
9.4 SGPLOT procedure
See also SGPLOT procedure
about 88
Adverse Event Timeline by severity 113–116
box plot of QTc change from baseline 29–37
CDC chart for length and weight percentiles 82–86
change in tumor size 67–69
Clark Error Grid 75–77
distribution of ASAT by time and treatment 45–47
distribution of maximum LFT by treatment 72–74
injection site reaction 70–71
mean change in QTc by week and treatment 38–44
median of lipid profile by visit and treatment 47–49
simple forest plot 55–61
subgrouped forest plot 62–64
survival plot 50–54
swimmer plot 77–81
9.4 GTL
See also Graph Template Language (GTL)
about 209–210
bivariate distribution plot 236–240
butterfly plot of cancer deaths by cause and gender 218–222
distribution of ASAT by time and treatment 211–212
forest plot of hazard ratios by patient subgroups 226–231
forest plot of impact of treatment on mortality by study 222–226
most frequent on-therapy adverse events sorted by relative risk 213–215
product-limit survival estimates 231–236
treatment emergent adverse events with largest risk difference with NNT 216–218
NOHEADER option, PANELBY statement 148, 152
ODS Graphics
about 1
history of 1–2
ODS Graphics Designer application
about 1
creating custom graphs using 5
ODS LISTING statement 36
ODS OUTPUT statement 198, 232
ODS styles, data sets and 5
OFFSETMAX option 189, 225
options
See specific options
outer risk table, box plot of QTc change from baseline with 29–32
outer table, mean change of QTc by week and treatment with 38–40
OVAL function 24, 31
OVERLAY layout 165
OVERLAYED layout 166
OVERLAYEQUATED layout 165

P
PAD option 30, 39
PANEL layout 18, 155
PANELBY statement, NOHEADER option 148, 152
parametric plots 164
PATTERN option 223
plot attributes, in GTL 161
PLOT statement 10
plot statements
  defined 11, 162
  GTL 163–165
plots
  basic 163
  categorical 164
  categorization 22
  confidence 22
  distribution 22, 164
  fit 22, 164
  forest 186–190, 191–197, 222–226, 226–231
  in GTL 160
  layering 15–16
  parametric 164
  3-D 165
POLYGON function 24, 88
POLYLINE function 24
product-limit survival estimates 197–202, 231–236
PROTOTYPE layout 166

Q
QTc
  box plot of change from baseline 29–37
  mean change in by week and treatment 38–44

R
RANGEATTRMAP statement 167
RECTANGLE function 24
REFERENCELINE statement 188, 193, 194, 223
REFLINE statement 34, 58, 73, 113, 140, 141, 148
REGION layout 166
relative risk, most frequent on-therapy adverse events sorted by 176–178, 213–215
ROWAXIS statement 140
ROWHEIGHTS option 198
ROWLATTICE ;layout 21, 155
ROWWEIGHTS option 232
RUN statement 177, 214

S
SCATTERPLOT statement 108, 174, 178, 180, 184, 188, 189, 194, 210, 223
SEPARATOR option 97
SERIES statement 38, 95
severity
  adverse event timeline by 64–67
  Adverse Event Timeline by 113–116
  eye irritation over time by 153–154
SG
See Statistical Graphics (SG) procedures
SGANNO option 23, 30, 39, 46, 51
SGPANEL procedure
  about 4, 10, 137–138
  COLUMNLATTICE layout 20
  eye irritation over time by severity and treatment 153–154
  immunology profile by treatment 142–144
  lab test for patient over time 148–150
  lab test panel 146–148
  LATTICE layout 19
  LFT safety panel, baseline versus study 144–145
  multi-cell classification panels using 11–12
  PANEL layout 18
  panel of LFT shifts from baseline to maximum by treatment 139–141
  ROWLATTICE layout 21
  syntax for 16–17
  vital statistics for patient over time 150–152
SGPLOT procedure
  See also 9.3 SGPLOT procedure
  See also 9.4 SGPLOT procedure
  about 4, 10
  optional data roles for 14
  plot options for 14
  required roles for 14
  single-cell graph using 10–11
  syntax for 13
SGRENDER procedure 1, 158, 160, 167–168, 205, 239
SGSCATTER procedure
  about 4, 10
  multi-cell comparative scatter plots using 12
SIDEBAR statement 227
simple forest plot 55–61, 107–111
single-cell graph, using SG PLOT procedure 10–11
single-cell layouts 165–166
SPLITCHAR option 107
statements, combining 22
See also specific statements
StatGraph templates 4, 158, 165, 172
Statistical Graphics (SG) procedures
about 1, 9–10
annotation 23–24
automatic features 12–13
combining statements 22
creating custom graphs using 4
plot layering 15–16
SG PANEL 16–21
SG PLOT 13–14
styles 24–25
study days, lab test values by subject with 148–149, 149–150
study weights, simple forest plot with 59–61, 108–109, 110–111
STYLEATTRS statement 15, 25, 94, 98, 100, 109, 113, 118, 121, 122, 126, 143–144, 153
styles
GTL 161
SG (Statistical Graphics) procedures 24–25
subgrouped forest plot 62–64, 111–113
survival plot 50–54, 104–107
swimmer plot 77–81, 128–131
SYMBOLCHAR statement 15
SYMBOLIMAGE statement 15
T
TEMPLATE procedure 1, 4, 25, 157, 160, 172, 177, 210, 214
terminology (GTL) 161–163
TEXT statement 24, 31, 88, 108
3-D plots 165
TICKVALUEALIGN option 224
TICKVALUEPRIORITY option 228
time
eye irritation over by severity and treatment 153–154
lab test for patient over 148–150
swimmer plot for tumor response over 77–79, 128–130, 130–131
vital statistics for patient over 150–152
titles (GTL) 160, 167
treatment
distribution of maximum LFT by 72–74, 122–125
eye irritation over by 153–154
forest plot of impact of on mortality by study 186–190
immunology profile by 142–144
mean change in QTc by 38–44, 94–98
mean of lipid profile by 47–49
median of lipid profile by 101–103
panel of LFT shifts from baseline to maximum by 139–141
tumor size, change in 67–69, 117–119
U
UNISCALE option 155
V
VALUES option 90
VALUESDISPLAY option 142
VBAR statement 69, 70, 119, 120
VBAR PARM statement 69, 119
VBOX statement 34, 45, 72–73, 90, 123
visit
mean change in QTc by 94–98
mean of lipid profile by 47–49
median of lipid profile by 101–103
W
week, mean change in QTc by 38–44
weight percentiles, CDC chart for 82–86, 132–136
X
XAXIS statement 34, 45, 90
XAXISTABLE statement 88, 89, 90, 93, 95, 97, 99, 104, 106
XERRORLOWER option 228
XERRORUPPER option 228
Y
Y2AXIS statement 42, 43, 85, 135
YAXIS statement 34, 42, 85, 135, 136
YAXISOPTS 175, 189, 212, 225
YAXISTABLE statement 88, 108, 109, 112, 130
About This Book

Purpose
SAS users in the Health and Life Sciences industry need to create complex graphs so that biostatisticians and clinicians can use them for analysis of the data. The graphs are also used for submissions to FDA for drug approvals. These graphs have specific requirements and must be designed to deliver the data accurately and clearly without distractions. Many users do not have the skills with SAS graphics tools such as Statistical Graphics (SG) procedures and the Graph Template Language (GTL) to create such graphs. This book provides the know-how and the code to create the graphs that are commonly used in this industry.

Is This Book for You?
This book is for the SAS graphics programmer who is responsible for creating sophisticated graphs for the analysis of clinical trials data. Most of these graphs are not automatically created by some analytical procedure, and must be custom built. However, many of these graphs are commonly used in the Health and Life Sciences industry, and there is an effort in the industry to standardize. This book describes how to create such graphs for intermediate and advanced graph programmers.

Prerequisites
Some knowledge of SAS DATA step programming may be required to get the data into the shape needed for the graphs. Knowledge of SG procedures and GTL will be helpful, but is not required.

Scope of This Book
This book includes detailed instructions about how to create some of the standard, commonly used graphs for analysis of data in the Health and Life Sciences industry. The book provides some introductory information on the use of SG procedures and GTL.

However, this book does not cover the features of SG procedures or of GTL in depth. Such comprehensive information is beyond the scope of this book.
**About the Examples**

**Software Used to Develop the Book's Content**
All the graphs shown in this book are generated using SAS 9.4 or SAS 9.3.

**Example Code and Data**
To access the book’s example code and data, visit the author’s page at [http://support.sas.com/publishing/authors](http://support.sas.com/publishing/authors). Select the name of the author. Then, look for the book cover and select Example Code and Data.

If you are unable to access the code through the website, send email to saspress@sas.com.

**SAS University Edition**
If you are using SAS University Edition to access data and run your programs, ensure that the software contains the product or products that you need to run the code: [http://support.sas.com/software/products/university-edition/index.html](http://support.sas.com/software/products/university-edition/index.html).

**Output and Graphics Used in This Book**
All the graphs included in the book are created using the program code shown in the chapters. Some appearance options in the code might have been trimmed to fit the space available on the page. The full programs including the data generation and procedure code are available.

**Additional Help**
Although this book illustrates many analyses regularly performed in businesses across industries, questions specific to your aims and issues may arise. To fully support you, SAS Institute and SAS Press offer you the following help resources:

- For questions about topics covered in this book, contact the author through SAS Press:
  - Send questions by email to saspress@sas.com; include the book title in your correspondence.
  - Submit feedback on the author’s page at [http://support.sas.com/author_feedback](http://support.sas.com/author_feedback).
- For questions about topics in or beyond the scope of this book, post queries to the relevant SAS Support Communities at [https://communities.sas.com/welcome](https://communities.sas.com/welcome).
- SAS Institute maintains a comprehensive website with up-to-date information. One page that is particularly useful to both the novice and the seasoned SAS user is the Knowledge Base. Search for relevant notes in the “Samples and SAS Notes” section of the Knowledge Base at [http://support.sas.com/resources](http://support.sas.com/resources).
- Registered SAS users or their organizations can access SAS Customer Support at [http://support.sas.com](http://support.sas.com). Here you can pose specific questions to SAS Customer Support; under *Support*, click *Submit a Problem*. You will need to provide an email address to which replies
can be sent, identify your organization, and provide a customer site number or license information. This information can be found in your SAS logs.

---

**Keep in Touch**

We look forward to hearing from you. We invite questions, comments, and concerns. If you want to contact us about a specific book, please include the book title in your correspondence.

**Contact the Author through SAS Press**

- Visit the author’s page at [http://support.sas.com/author_feedback](http://support.sas.com/author_feedback).
- Send comments by email to saspress@sas.com

**Purchase SAS Books**

- Phone 1-800-727-0025
- Email: sasbook@sas.com

**Subscribe to the SAS Learning Report**

Receive up-to-date information about SAS training, certification, and publications via email by subscribing to the SAS Learning Report monthly eNewsletter. Read the archives and subscribe today at [http://support.sas.com/community/newsletters/training](http://support.sas.com/community/newsletters/training)!

**Publish with SAS**

SAS is recruiting authors! Are you interested in writing a book? Visit [http://support.sas.com/saspress](http://support.sas.com/saspress) for more information.
About The Author

Sanjay Matange is an R & D Director in the Data Visualization Division at SAS, responsible for the development and support of ODS Graphics. This includes the Graph Template Language (GTL), Statistical Graphics (SG) procedures, ODS Graphics Designer, and other related graphics applications. Sanjay has extensive experience in building complex graphs for all domains including Health and Life Sciences. Sanjay has been with SAS for over 25 years and is coauthor of two patents and the author of three SAS Press books.

Learn more about this author by visiting his author page at http://support.sas.com/matange. There you can download free book excerpts, access example code and data, read the latest reviews, get updates, and more.
Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore for additional books and resources.