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Abstract 
Assessing treatment effectiveness in longitudinal, observational data can be complex because in 
observational treatment patients can change medications at any time. In addition to the need to 
control for selection bias at baseline due to the lack of randomization, time-varying confounders 
can influence treatment changes over time and, thus, affect treatment group effectiveness 
comparisons. One approach to producing causal treatment effect estimates—even in the presence 
of treatment switching, missing data, and time-varying confounders—is to use marginal structural 
models. To illustrate, simulated data based on an observational schizophrenia study were 
analyzed using a marginal structural model approach. SAS code for performing the analysis is 
provided, and output using data from the schizophrenia study is examined. 

9.1 Introduction 
Assessing the causal effect of medications in longitudinal, observational (naturalistic) data 
presents analytical challenges—including the need to address selection bias; missing data; and 
switching, stopping, and augmenting medications. Addressing the issue of selection bias is 
critical because treatment groups likely differ in aspects other than treatment choice, and 
adjustment in the analysis is necessary (Rosenbaum and Rubin, 1983; Grimes and Schulz, 2002; 
Haro et al., 2006). In addressing data that are both longitudinal and observational, the issue of 
selection bias also extends to treatment switching over time (Robins et al., 2000, Hernán et al., 
2000) as patients may switch, stop, augment, or otherwise not comply for a variety of reasons. In 
addition, such patient/physician choices are typically based upon stochastic and/or time-varying 
factors that may well differ among treatments. Because of such issues, statistical methods 
commonly used for longitudinal analyses of randomized clinical trial data, such as intent-to-treat 
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(ITT) last observation carried forward (LOCF) or repeated measures models, may not be 
appropriate. 

ITT analyses group patients based only on their initial treatment assignment and ignore all 
information on other medications prescribed or taken. Patient dropout in such studies is often 
addressed by utilizing a LOCF approach. Clearly, such a technique does not directly address 
treatment effectiveness when there has been a substantial amount of switching among treatments. 
ITT analyses certainly have their place in longitudinal, observational research, such as in studies 
to compare policies or treatment strategies where one is not primarily interested in the effects of 
individual medications (Tunis et al., 2006). 

While utilizing repeated measures models with treatment as a time-dependent variable may seem 
to provide a simple solution, Hernán and colleagues (2004, 2005) explain that such an approach 
does not provide estimates with a causal interpretation (see the following) in the presence of time-
dependent confounders (a predictor of subsequent outcome and subsequent treatment) that are 
also affected by prior treatment. For instance, any longitudinal measure of disease severity would 
likely be problematic because it could be associated with the outcome measure, it could predict 
subsequent treatment, and it could have been affected by prior treatment. Thus, even if treatment 
is randomized at the beginning of a study, the result of usual-care treatment over time will 
ultimately result in imbalance in key patient characteristics among treatment groups. To address 
the switching of treatments, one could ignore the data after the medication switch and use 
standard repeated measures mixed models that have proven very useful in longitudinal data 
analyses (Verbeke and Molenberghs, 2000; Mallinckrodt et al., 2003). Such an approach treats 
the data after the switch as missing data but clearly does not make use of the information gathered 
after the medication switch. 

In this chapter, we examine the use of marginal structural models (MSMs) for longitudinal, 
observational data. To explain the potential benefits of the MSM approach, we first must briefly 
review the notions of counterfactual outcomes and causal effect. We will follow the notation 
provided by Hernán and colleagues (2002). Let a denote the treatment history for a patient over a 
period of time (for example, a  = [a(1), a(2), …,a(t)], where a(1) denotes the treatment used at 
time 1). A counterfactual outcome for patient i on treatment sequence a  denotes that patient’s 
outcome if, possibly contrary to fact, the patient received treatment a . It is denoted by )(

,
tY

ia
. 

Each patient has an unknown counterfactual outcome for each treatment he did not receive, plus 
an observed outcome for the treatment actually received. On an individual basis, treatment is said 
to have a causal effect on a patient’s outcome if )()(

,,
tYtY

iaia
 for some time point t and 

treatment patterns a  and 'a . That is, the outcome for the patient differs based on the treatment 
taken. On a population basis, treatment is said to have a causal effect on outcome if the mean 
outcome had all patients followed a particular treatment pattern ( a  for example) differs from the 
mean outcome had all patients followed a different treatment pattern ( a  for example) (that 
is, )]([)]([ tYEtYE

aa
 for some time point and treatment pattern).  

Robins and colleagues (1999) demonstrated that MSMs, under a set of assumptions discussed 
here, produce consistent estimates of the average causal treatment effects—even in the presence 
of treatment changes, time-dependent confounders, and missing at random study dropout. In this 
chapter, we first describe the MSM approach (Section 9.2) and then present the MSM analysis of 
a longitudinal schizophrenia study (Section 9.3). SAS code is provided, and SAS output is 
discussed to allow readers to understand the implementation of the analysis and to modify the 
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code for their own use. Faries and colleagues (2007) also summarize data from this study using a 
variety of methods, including MSMs. Some other applications of MSMs in the literature include 
Hernán and colleagues (2000, 2002), Ko and colleagues (2003), Brumback and colleagues 
(2004), and Cole and colleagues (2005), who examined time to event outcomes for HIV patients;  
and Bodnar and colleagues (2004), Yamaguchi and Ohashi (2004a and 2004b), Mortimer and 
colleagues (2005), Suarez and colleagues (2006), Peterson and colleagues (2007), and 
Vansteeldandt and colleagues (2009), who assessed other applications.  

99.2 MSM Methodology 
An MSM analysis is basically a weighted repeated measures approach – using treatment as a 
time-varying covariate. Weights, based on inverse probability of treatment weighting, control for 
time-dependent confounders and essentially produce a pseudo-population with balance in both 
time-invariant and time-varying covariates allowing for causal treatment comparisons using 
standard repeated measure models. The weighting can also be adjusted to incorporate adjustments 
for missing data—providing validity under missing at random (MAR; missing data may depend 
upon observed but not unobserved measures) and missing completely at random (MCAR; missing 
data does not depend upon observed or unobserved measures) data. 

Conducting an MSM analysis is a two-step process. First, one estimates two weights for each 
observation (patient visit): one adjusting for treatment selection and one adjusting for study 
discontinuation. Computation of these estimated weights can incorporate time-independent and 
time-dependent factors. The stabilized weight is recommended by Hernán (2002), and we use the 
notation from that manuscript (here for the treatment selection weight), 

t

k kLkAkAf

VkAkAf
SW

0 )](),1()([

]),1()([

where A(k) represents the treatment at time k and )1(kA  represents the treatment history prior 
to time k, V represents a vector of time-independent variables (baseline covariates), and 

)(kL represents a vector of time-varying covariates through time k—which includes baseline 
variables V. The numerator of the weight is the probability a patient is on the observed treatment 
at time k, given the prior treatment history and baseline covariates. The denominator is basically 
the same factor, except it incorporates time-varying covariates as predictors. Thus, one can see 
that observations where the time-varying factors are strong predictors of the current treatment 
selection are down-weighted in the analyses (because such observations are over-represented in 
the observed data). 

To incorporate adjustment for early patient dropout, the same stabilized weight approach is 
used—except the outcome is not treatment selection but a flag variable denoting whether the 
patient remained in the study. The final weight for each patient’s observation is obtained by 
multiplying the treatment selection weights and the censoring weights. 

For the second step of the MSM analysis, one simply conducts a weighted repeated measures 
model analysis using generalized estimating equations. In this second stage, time-dependent 
confounders are not included in the repeated measures model—as their effects have been 
incorporated into the weights. Treatment is included as a time-dependent factor, and time-
invariant covariates may also be included as appropriate (just as in a cross-sectional analysis 
where variables may be included in a propensity model and in the analysis model). 
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As mentioned previously, MSMs can produce consistent estimates of the average causal 
treatment effects—even in the presence of treatment changes, time-dependent confounders, and 
missing at random study dropout. The assumptions necessary for causal inference from an MSM 
correspond to the same assumptions necessary for common cross-sectional bias control methods 
such as propensity scoring: 

1. no unmeasured confounders—that is, all variables that relate to treatment assignment and 
outcome were collected and utilized in the analysis; called conditional exchangeability; 
formally: )(),1()()1( kLkAkAtY

a
, for all a and .kt  

2. positivity—there is a positive probability of each treatment for each set of covariates (no 
perfect confounding); formally 0)](),1()([0)](),1([ klkakafklkaf . 

3. use of the correct models (weighting and analysis models). 
 

As strong assumptions are necessary, assessing the appropriateness of the assumptions and 
performing sensitivity analyses are critical to a quality analysis. The no unmeasured confounders 
and correct models assumptions can never be fully proven and are discussed here. The positivity 
assumption basically says that all treatment options are possible given any combination of 
covariate values. Mortimer and colleagues (2005) recommended assessing this by computing 
predicted probabilities of treatment selection using the covariates from the models across the 
entire study (looking for 0 or 1 predicted probabilities). Mortimer and colleagues (2005) also 
provide an example of assessing the correctness of the models used in an MSM analysis using test 
and training data sets. 

To limit the possibility of unmeasured confounding, every effort should be made to identify and 
collect data on potential confounders by searching the literature, examining relevant data, having 
discussions with experts, and utilizing potential confounding variables in the analysis. Such 
diligence will still never allow one to completely conclude no bias is unaccounted for, but an 
analyst first needs to make sure that all known confounders are addressed. Robins and colleagues 
(1999) and Brumback and colleagues (2004) have also provided a more formal method to study 
the sensitivity of an MSM analysis to unmeasured confounding. They quantify such confounding 
through a sensitivity parameter (alpha) and confounding function and assess the amount of 
unmeasured confounding that can be present before inferences would change. The confounding 
function (or alpha itself when a simple constant function is used) represents the difference in 
potential outcomes between patients in the different treatment groups. We use a simple constant 
function in our analysis, referring the reader to Brumback and colleagues (2004) for more 
options. 

9.3 Example: MSM Analysis of a Simulated Schizophrenia  
 Trial 

9.3.1  Study Description 
To illustrate the implementation of an MSM analysis, we simulated data based on a study of the 
effectiveness of medications for patients with schizophrenia in usual-care settings. A brief 
description of the design for the actual study follows, though the reader is referred to Tunis and 
colleagues (2006) for details. This was a one-year study of patients with schizophrenia, 
schizoaffective disorder, or schizophreniform disorder who were randomized to one of three 
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different treatment regimens. After randomization, the remainder of the study was observational 
in the sense that physicians/patients were allowed to stop or switch medications as deemed 
necessary in usual practice. Data on a variety of domains were captured at five post-baseline 
visits (approximately 2 weeks and 2, 5, 8, and 12 months post-baseline). The outcome measure of 
interest for this analysis was the Brief Psychiatric Rating Scale (BPRS) total score, a measure of 
schizophrenia symptom severity where lower scores indicate lesser symptom severity. For 
demonstrative purposes, we simulated data for this analysis (see Tunis et al., 2006, for actual data 
results) maintaining the design and data structure and focused the final comparison between two 
groups rather than three. These groups are referred to as treatment and control during this 
example analysis. However, each treatment is considered as a separate treatment in the analytical 
steps until the final model to demonstrate how one can handle more than two groups with the 
MSM approach. 

9.3.2  Data Analysis 

9.3.2.1  Data Overview 
Before conducting the MSM analysis, we provide a brief summary of the simulated data 
pertaining to medication changes and the steps taken to prepare the data set for analysis. The 
treatment groups were balanced with respect to demographics and baseline patient characteristics 
due to the randomization. After randomization, study discontinuation was similar across the 
treatment groups though rates of switching medication differed, with almost half (47.7%) of the 
control group (treatment C) switching medications during the study with a lower rate for the 
treatment group (treatment groups A and B pooled; 20.4%). At each visit, patients were 
considered to be on a particular medication if they had been treated with that medication for at 
least the previous 14 days. Given this definition, on 41.6% of the 2,548 patient visits during the 
study, patients were taking treatment A, 25.1% were taking treatment B, 23.8% were taking 
treatment C, 4.8% were taking both A and C, and 4.8% were not taking any antipsychotic 
medication. A total of 17 patient visits were excluded from the analysis due to small sample sizes 
for certain treatment combinations (A and B n=16; A and B and C n=1). In addition, 
approximately 4% of the patient visits had missing covariate information (see the list of 
covariates later) that was imputed using a LOCF approach. Outcome data were not imputed, only 
covariate data and only when the outcome measure was available. The analysis data set, INPDS, 
used a one observation per patient per visit format. A description of the key variables follows.   

Table 9.1  Description of Key Variables in MSM Analysis 

Variable Description  Variable Description 
INVSC Investigator number  BPRS BPRS at this visit 
PATSC Patient number  GAFC GAF at this visit 
AGEYRS Age in years  EVNT Events during visit 
GENDER Gender  HOSP Hosp. during visit 
ORIGIN2 Race  PR1TRTA Trt A previous visit 
THERAPY Randomized trtmnt  PR1TRTB Trt B previous visit 
VIS Visit number  PR1TRTC Trt C previous visit 
BAVAR Baseline BPRS total  PR1BPRS Previous vis BPRS 
BGAF Baseline GAF score  PR1GAF Previous vis GAF 
BEVNT Baseline adv events  PR1EVNT Previous vis event 
BHOSP Baseline hospitaliz.  PR1HOSP Previous vis hosp 

                                                                                                                                                 (continued) 
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Table 9.1  (continued) 

Variable Description  Variable Description 
TRTA On Trt A during vis    
TRTB On Trt B during vis    
TRTC On Trt C during vis    
TRT Treatment during vis    

9.3.2.2  Computation of Inverse Weights 
Step one in conducting the MSM analysis requires estimation of the treatment selection and 
censoring weights (using the formula for stabilized weights [SW] from Section 9.2). For 
estimating the treatment selection weights, separate multinomial models for the numerator and 
denominator were implemented using PROC LOGISTIC with the LINK= GLOGIT option (see 
Program 9.1). Treatment was the dependent variable for both models and the GLOGIT option 
was used because the treatment choice at each visit had five potential outcomes (three individual 
treatments, no treatment, and one combination). Output from the LOGISTIC procedure contains 
the predicted probabilities of treatment selection (data sets PREDTRT0 and PREDTRT1). In 
addition to previous treatment, the following time-varying covariates were included in this model: 

 BPRS total 
 global assessment of functioning (GAF)  
 events (the presence or absence of at least one moderate or severe adverse event) 
 hospitalization  

 
These variables were chosen a priori to cover the domains of symptom severity, functioning, 
tolerability, and resource utilization. Time-independent variables included in this initial model 
included age, gender, ethnicity, and baseline value for each of the time-dependent variables. 
Macro variables could be utilized to input all model parameters at the beginning of the code; 
however, we chose to simplify the understanding of the process by simply showing the models 
directly in the LOGISTIC statements. In addition, output from the weight models is suppressed 
for simplification of the output. However, one can easily remove the restriction to evaluate the 
weight model in more detail.  

PROC GENMOD was used to compute the estimated stabilized weights to adjust for censoring 
using a logistic regression model (see Program 9.1). The dependent variable for the censoring 
weight model was a binary flag for remaining in the study. The independent variables for this 
model were the same as for the treatment selection weight model—though the time-varying 
covariates were offset by one visit due to the structure of the data as censoring looked forward 
(did the patient return for a following visit?) relative to treatment (what was the treatment 
assigned in the previous time period?). The Logit LINK function was used here because the 
outcome measure was binomial. The GENMOD approach could be used for both weight 
calculations in studies where only two treatment groups are assessed.  

Partial output from the multinomial and logistic regression denominator weights models is 
provided in the Output from Program 9.1. Previous treatment was the strongest predictor of 
present treatment. None of the time-varying covariates were strong predictors of treatment 
changes—suggesting bias in treatment selection over time may not be particularly strong in these 
data. Along with previous treatment, higher (time-varying) symptom severity was found to be a 
predictor of censoring. Patients with more severe symptoms were more likely to discontinue from 
the study.  
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Program 9.1  Computing Treatment Selection and Censoring Weights 
/* This section of code computes the treatment selection and censoring 
weights. This is accomplished in 4 steps:      
1) multinomial model to compute numerator of treatment selection weights;    
2) multinomial model to compute denominator of treatment selection weights;   
3) binomial model to compute numerator of censoring adjustment weights;  
4) binomial model to compute denominator of censoring adjustment weights.*/ 
 
/* treatment selection weights:  numerator calculation  
(probability of treatment using only baseline covariates) */ 
PROC LOGISTIC DATA = INPDS; 
  CLASS VIS THERAPY PR1TRTA PR1TRTB PR1TRTC GENDER ORIGIN2 BHOSP BEVNT;  
  MODEL TRT = VIS THERAPY PR1TRTA PR1TRTB PR1TRTC GENDER ORIGIN2 BHOSP 
  BEVNT AGEYRS BGAF BBPRS  
    /LINK=GLOGIT; 
  OUTPUT OUT=PREDTRT0(WHERE=(TRT=_LEVEL_)) PRED=PREDTRT0; 
run; 
 
/* treatment selection weights:  denominator calculation  
(probability of treatment with baseline covariates and time-dependent 
covariates) */ 
PROC LOGISTIC DATA = INPDS; 
  CLASS VIS THERAPY PR1TRTA PR1TRTB PR1TRTC GENDER ORIGIN2 BHOSP BEVNT 
        PR1EVNT PR1HOSP;  
  MODEL TRT = VIS THERAPY PR1TRTA PR1TRTB PR1TRTC GENDER ORIGIN2 BHOSP 
     BEVNT AGEYRS BGAF BBPRS PR1EVNT PR1HOSP PR1BPRS PR1GAFC  
    /LINK=GLOGIT; 
  OUTPUT OUT=PREDTRT1(WHERE=(TRT=_LEVEL_)) PRED=PREDTRT1; 
run; 
 
/* censoring adjustment weights:  numerator calculation  
(probability of censoring using only baseline covariates) */ 
ODS LISTING EXCLUDE OBSTATS; 
PROC GENMOD DATA = INPDS; 
  CLASS PATSC   VIS THERAPY TRTA TRTB TRTC GENDER ORIGIN2 BHOSP BEVNT; 
  MODEL CFLAG = VIS THERAPY TRTA TRTB TRTC GENDER ORIGIN2 BHOSP BEVNT  
                AGEYRS BGAF BBPRS  
    /DIST = BIN LINK = LOGIT TYPE3 OBSTATS; 
  REPEATED SUBJECT = PATSC / TYPE = EXCH; 
  ODS OUTPUT OBSTATS = PREDCEN0(RENAME=(PRED=PREDCEN0)); 
run; 
ODS LISTING SELECT ALL; 
 
/* censoring adjustment weights:  denominator calculation  
(probability of censoring using baseline covariates and time-dependent 
covariates) */ 
ODS LISTING EXCLUDE OBSTATS; 
PROC GENMOD DATA = INPDS; 
  CLASS PATSC VIS THERAPY TRTA TRTB TRTC GENDER ORIGIN2 BHOSP BEVNT 
  EVNT HOSP; 
  MODEL CFLAG = VIS THERAPY TRTA TRTB TRTC GENDER ORIGIN2 BHOSP BEVNT 
          EVNT HOSP AGEYRS BGAF BBPRS BPRS GAFC  
    /DIST = BIN LINK = LOGIT TYPE3 OBSTATS; 
  REPEATED SUBJECT = PATSC / TYPE = EXCH; 
  ODS OUTPUT OBSTATS = PREDCEN1(RENAME=(PRED=PREDCEN1)); 
run; 
ODS LISTING SELECT ALL; 
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Output from Program 9.1 
                          weight denominator model: treatment weights 
 
                                 Type 3 Analysis of Effects 
 
                                                   Wald 
                          Effect       DF    Chi-Square    Pr > ChiSq 
 
                          VIS          16      124.2743        <.0001 
                          THERAPY       8       11.8349        0.1587 
                          PR1TRTA       4      229.7185        <.0001 
                          PR1TRTB       4      100.6526        <.0001 
                          PR1TRTC       4      269.8939        <.0001 
                          GENDER        4        3.3971        0.4937 
                          ORIGIN2       8       10.4911        0.2322 
                          BHOSP         4        0.4611        0.9772 
                          BEVNT         4        3.0900        0.5429 
                          AGEYRS        4        1.4473        0.8359 
                          BGAF          4        1.9736        0.7406 
                          BBPRS         4        2.2390        0.6919 
                          PR1EVNT       4        7.5905        0.1078 
                          PR1HOSP       4        4.6487        0.3253 
                          PR1BPRS       4        2.5962        0.6275 
                          PR1GAFC       4        2.5983        0.6271 
 
 
                        weight denominator model: censoring weights 
 
                           Score Statistics For Type 3 GEE Analysis 
 
                                                    Chi- 
                          Source           DF     Square    Pr > ChiSq 
 
                          VIS               4      13.21        0.0103 
                          THERAPY           2       9.04        0.0109 
                          TRTA              1       3.95        0.0468 
                          TRTB              1       3.74        0.0532 
                          TRTC              1       0.39        0.5346 
                          GENDER            1       0.15        0.6964 
                          ORIGIN2           2       0.99        0.6087 
                          BHOSP             1       0.88        0.3473 
                          BEVNT             1       0.93        0.3338 
                          EVNT              1       0.61        0.4338 
                          HOSP              1       0.05        0.8163 
                          AGEYRS            1       4.89        0.0270 
                          BGAF              1       0.04        0.8431 
                          BBPRS             1       0.67        0.4115 
                          BPRS              1      12.21        0.0005 
                          GAFC              1       0.32        0.5726 
 

                        

To produce the overall weights for each observation (patient visit) in this analysis, the inverse 
probability weights for treatment selection and censoring computed here were multiplied together 
cumulatively in a DATA step based on the formula for SW in Section 9.2 (see Program 9.2). In 
the SAS code, the SQL procedure gathers data from the four output data sets from the treatment 
selection and weight models (PREDTRT0, PREDTRT1, PREDCENS0, and PREDCENS1) and 
produces the stabilized weights. Variable STABWT is the final estimate of SW. Output from 
Program 9.2 displays the distribution of the final weights across all patient visits in box plot form. 
The mean is near 1 (mean = 1.002, SD = 0.1555), as would be expected from the average of 
weights, and no major outliers were noted in the box plot.  
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Program 9.2  Merging Output from Program 9.1 
/* This section of code performs the steps necessary to merge the output 
from the weight models (Program 9.1) to allow for computation of a single 
adjustment for each observation in the analysis data set (stabilized 
weight). This is followed by code to produce summaries of the final 
weights.   */ 

PROC SQL; 
  /*ratio of probabilities for treatment*/ 
  CREATE TABLE PREDTRT AS 
    SELECT *,PREDTRT0/PREDTRT1 AS PREDTRT 
    FROM PREDTRT1(KEEP=PATSC VIS PREDTRT1) 

NATURAL FULL JOIN 
PREDTRT0(KEEP=PATSC VIS PREDTRT0) 

    ORDER PATSC,VIS 
  ; 
  /*ratio of probabilities for censoring*/ 
  CREATE TABLE PREDCEN AS 
    SELECT *,PREDCEN0/PREDCEN1 AS PREDCEN 
    FROM (SELECT INPUT(PATSC,BEST.) AS PATSC, INPUT(VIS,BEST.) AS VIS, 
PREDCEN0 FROM PREDCEN0) 

NATURAL FULL JOIN 
(SELECT INPUT(PATSC,BEST.) AS PATSC, INPUT(VIS,BEST.) AS VIS, 

PREDCEN1 FROM PREDCEN1) 
    ORDER PATSC,VIS; 
QUIT; 

/*calculate stabilized weight*/ 
PROC SORT DATA=INPDS OUT=WEIGHTS; 
  BY PATSC VIS; 
RUN; 

DATA WEIGHTS; 
  MERGE WEIGHTS PREDTRT PREDCEN;  
  BY PATSC VIS; 
  VWT=PREDTRT*PREDCEN; 
  IF FIRST.PATSC THEN STABWT=VWT;    

ELSE STABWT=VWT*DUM; 
  RETAIN DUM; 
  DROP DUM; 
  DUM=STABWT; 
RUN; 

/*diagnostic plot for weights*/ 
DATA GRPH; 
  SET WEIGHTS; /*assignment of months to visits is study-specific*/ 
  IF VIS = 3 THEN MONTH = 0.5; 
  IF VIS = 4 THEN MONTH = 2; 
  IF VIS = 5 THEN MONTH = 5; 
  IF VIS = 6 THEN MONTH = 8; 
  IF VIS = 7 THEN MONTH = 12; 

  IF MONTH = 0.5 THEN DELETE; /*simplify plot by focusing on months  
     with greater switching and thus greatest variability in weights */ 
RUN; 

PROC SORT DATA = GRPH;  
  BY MONTH;  
RUN; 
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ODS RTF FILE="%SYSFUNC(PATHNAME(WORK))\FIG1.RTF"; 

FILENAME FIGURE "%SYSFUNC(PATHNAME(WORK))\SASGRAPH.EMF"; 

GOPTIONS RESET=ALL TARGET=SASEMF DEVICE=SASEMF FTEXT=DUPLEX HTEXT=.75 
 CBACK=WHITE XMAX=6IN XPIXELS=1200 YMAX=5IN YPIXELS=1000  

   GSFNAME=FIGURE GSFMODE=REPLACE; 

SYMBOL1 COLOR=BLACK INTERPOL=JOIN 
WIDTH=2 VALUE=SQUARE 
HEIGHT=1; 

AXIS1 MINOR = NONE COLOR = BLACK LABEL=("STABILIZED WEIGHT" ANGLE=90 
ROTATE=0); 

PROC BOXPLOT DATA=GRPH; 
  PLOT STABWT*MONTH / CFRAME = WHITE    

CBOXES = DAGR 
CBOXFILL = WHITE 
VAXIS = AXIS1; 

  TITLE "SUMMARY OF VISITWISE WEIGHT VALUES"; 
  TITLE2 "(box and whiskers: min, 1st quartile, median, 3rd quartile, max; 
square: mean)"; 
RUN; 

GOPTIONS RESET=ALL; 

ODS RTF CLOSE; 

Output from Program 9.2  



Chapter 9  Analysis of Longitudinal Observational Data Using Marginal Structural Models   221 

9.3.2.3  Treatment Effectiveness Analysis Model 
The final step of the MSM analysis is to estimate causal treatment effects using a weighted 
repeated measures model with generalized estimating equations (PROC GENMOD—see 
Program 9.3) and an exchangeable correlation matrix. Change from baseline BPRS total score 
was the dependent measure in the analysis model. Independent variables for the analysis model 
were investigational site, age, gender, race, baseline BPRS, visit, time-varying treatment, and the 
treatment-by-visit interaction. The WEIGHT statement in PROC GENMOD incorporates the 
inverse probability weighting, which allows for the causal treatment effect estimates. The 
ESTIMATE statement utilized in PROC GENMOD pooled individual treatments together and 
produced estimated mean group differences for pooled groups (as opposed to comparing 
individual treatment groups). This portion of the code is not necessary for many applications. 
Output from Program 9.3 displays a summary of the final model results and a figure displaying 
the least squares means at each visit. Results showed a statistically significant treatment 
difference favoring the treatment group (pooled treatments A and B) relative to the control group, 
with an estimated average treatment difference in BPRS changes of 1.8 [0.4, 3.2], p=.015 across 
the 1-year period. Though treatment differences grew numerically over time, the treatment-by-
visit interaction term was not statistically significant (p=.158).  

Program 9.3  Running Final Analysis Model 
/* This section of code runs the final analysis model using a weighted 
repeated measures approach. The results are presented graphically using 
PROC GPLOT.*/ 

/*final analysis model*/ 
PROC GENMOD DATA = WEIGHTS; 
  CLASS VIS PATSC GENDER ORIGIN2 INVSC TRT; 
  WEIGHT STABWT; 
  MODEL CAVAR = INVSC BAVAR VIS AGEYRS GENDER ORIGIN2 TRT VIS*TRT 

/ DIST=NORMAL LINK=ID TYPE3; 
  REPEATED SUBJECT = PATSC / TYPE=EXCH; 
  LSMEANS TRT VIS*TRT / PDIFF; 
  TITLE 'MSM FINAL ANALYSIS MODEL'; 
  ESTIMATE 'A+B VS C'  
    TRT 0 .5 .5 -1 0; 
  ESTIMATE 'A+B VS C AT VIS 3'  
    TRT 0 .5 .5 -1 0 
    VIS*TRT 0 .5 .5 -1 0     0 0 0 0 0     0 0 0 0 0    

0  0  0  0 0     0 0 0 0 0; 
  ESTIMATE 'A+B VS C AT VIS 4'  
    TRT 0 .5 .5 -1 0 
    VIS*TRT 0 0 0 0 0      0 .5 .5 -1 0  0 0 0 0 0    

0 0 0 0 0       0  0  0  0 0; 
  ESTIMATE 'A+B VS C AT VIS 5'  
    TRT 0 .5 .5 -1 0 
    VIS*TRT 0 0 0 0 0 0 0 0 0 0 0 .5 .5 -1 0 

0 0 0 0 0 0 0 0 0 0; 
  ESTIMATE 'A+B VS C AT VIS 6'  
    TRT 0 .5 .5 -1 0 
    VIS*TRT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0    

0 .5 .5 -1 0 0 0 0 0 0; 
  ESTIMATE 'A+B VS C AT VIS 7'  
    TRT 0 .5 .5 -1 0 
    VIS*TRT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0    

0 0 0 0 0 0 .5 .5 -1 0; 
  ODS OUTPUT LSMEANS=LSMEANS; 
RUN; 
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/*LS means plot for the final model*/ 
DATA LSMEANS2; 
  SET LSMEANS; 
  WHERE TRT IN ('A__','_B_','__C'); 
  IF TRT IN ('A__','_B_') THEN TRT2='A+B'; 
                          ELSE TRT2='C  '; 
RUN; 
 
PROC SQL; 
  CREATE TABLE LSMEANS3 AS 
    SELECT TRT2 AS TRT, VIS, MEAN(ESTIMATE) AS ESTIMATE 
    FROM LSMEANS2 
    GROUP TRT2, VIS; 
QUIT; 
 
ODS RTF FILE="%SYSFUNC(PATHNAME(WORK))\FIG2.RTF"; 
 
FILENAME FIGURE "%SYSFUNC(PATHNAME(WORK))\SASGRAPH.EMF"; 
 
GOPTIONS RESET=ALL TARGET=SASEMF DEVICE=SASEMF FTEXT=DUPLEX HTEXT=.75 
CBACK=WHITE  
         XMAX=6IN XPIXELS=1200 YMAX=5IN YPIXELS=1000 GSFNAME=FIGURE 
GSFMODE=REPLACE; 
 
AXIS1 MINOR = NONE COLOR = BLACK LABEL=(ANGLE=90 ROTATE=0 "CHANGE IN BPRS 
TOTAL SCORE"); 
 
SYMBOL1 I=JOIN W=2 L=1 C=RED   V=SQUARE; 
SYMBOL2 I=JOIN W=2 L=2 C=BLACK V=CIRCLE; 
 
PROC GPLOT DATA=LSMEANS3; 
  PLOT ESTIMATE*VIS=TRT/VAXIS=AXIS1; 
  TITLE "MSM ESTIMATED MEAN CHANGE FROM BASELINE BPRS SCORES"; 
  LABEL VIS="VISIT"; 
  LABEL TRT="TREATMENT"; 
RUN; 
 
GOPTIONS RESET=ALL; 
 
ODS RTF CLOSE; 
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Output from Program 9.3 
 
                                 MSM FINAL ANALYSIS MODEL 
                           Score Statistics For Type 3 GEE Analysis 
 
                                                    Chi- 
                          Source           DF     Square    Pr > ChiSq 
 
                          INVSC            19      84.25        <.0001 
                          BAVAR             1      71.12        <.0001 
                          VIS               4      37.69        <.0001 
                          AGEYRS            1       0.80        0.3725 
                          GENDER            1       0.09        0.7624 
                          ORIGIN2           2       0.86        0.6500 
                          TRT               4      11.70        0.0197 
                          VIS*TRT          16      21.57        0.1576  
 
 
                                   Contrast Estimate Results 
 
                              Standard                                Chi- 
Label               Estimate   Error   Alpha  Confidence Limits   Square   Pr > ChiSq 
 
A+B VS C            -1.7852   0.7321    0.05   -3.2201   -0.3504    5.95       0.0147 
A+B VS C AT VIS 3   -0.7336   0.9615    0.05   -2.6181    1.1509    0.58       0.4455 
A+B VS C AT VIS 4   -1.1225   0.9417    0.05   -2.9682    0.7232    1.42       0.2333 
A+B VS C AT VIS 5   -1.7746   1.2532    0.05   -4.2307    0.6815    2.01       0.1567 
A+B VS C AT VIS 6   -2.1785   1.2752    0.05   -4.6778    0.3208    2.92       0.0876 
A+B VS C AT VIS 7   -3.1169   1.3185    0.05   -5.7012   -0.5327    5.59       0.0181 
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9.3.2.4  Sensitivity Analysis  
To assess the robustness of the findings, one should evaluate the plausibility of the three main 
assumptions for causality (no unmeasured confounding, positivity, correct model) as well as 
implementing other statistical methods that are based on different assumptions. Regarding the 
unmeasured confounding assumption, effort was made to collect and incorporate information 
from experts and the literature on potential confounders prior to the analysis. The variables 
included in the model were selected in order to cover the domains of symptom severity, 
functioning, tolerability, and resource use burden. To assess the potential impact of unmeasured 
confounding on the results, we implemented a simple, unmeasured confounding function (we 
chose a constant function alpha) based on Brumback and colleagues (2004). Using this function, a 
missing confounder resulting in a shift of 0.45 (in BPRS total score) in potential outcomes on the 
BPRS scale favoring patients with high probability of being in the treatment group would result 
in a loss of the statistically significant finding. In other words, our finding of a significant 
difference between groups depends upon the assumption that such a confounder (or a group of 
confounders combining to have the same effect) does not exist. Multiple constants were evaluated 
using the ALPHA=c statement in the SAS code (see Program 9.4). The value of 0.45 was retained 
because this was the smallest value producing a p-value of approximately 0.05. While it is 
challenging to interpret the implications of a particular alpha, such an effect (<1 point on BPRS) 
does not appear to be extremely large, and the existence of such a confounder is certainly possible 
in an actual application. However, it is greater than the observed confounding (the difference 
between unweighted and weighted analyses) of 0.29 in the opposite direction observed in this 
study. Regardless of the sensitivity analysis results, one can simply not dismiss the possibility of 
unaccounted for factors that would result in this analysis failing to produce an estimate of a causal 
treatment effect. Thus, one must view the results with some caution. Different sensitivity 
functions can easily be tested using the provided SAS code by altering the calculation of the 
variables CAVAR_SENS and SAPT. 

Program 9.4  Finding Level of Confounding That Would Eliminate Treatment Difference 
/* This section of code examines the sensitivity of the results to 
unmeasured confounding by finding the level of confounding that would 
eliminate the observed treatment difference.*/ 
  
/*sensitivity analysis per Brumback et al. (2004) - constant  
function alpha is used*/ 
DATA WEIGHTSS; 
  SET WEIGHTS;  
  BY PATSC VIS; 
  IF TRT IN ('A__','_B_') THEN SNSTRT = 1; 
                          ELSE SNSTRT = -1; 
  SAVT = -SNSTRT*(1 - PREDTRT1); 
  IF FIRST.PATSC THEN SAPT = SAVT; 
                 ELSE SAPT = SAVT + DUM; 
  RETAIN DUM; 
  DROP DUM; 
  DUM=SAPT; 
  ALPHA = 0.45;  
  CAVAR_SENS = CAVAR - ALPHA*SAPT; 
RUN;  
 
PROC GENMOD DATA = WEIGHTSS; 
  CLASS VIS PATSC GENDER ORIGIN2 INVSC TRT; 
  WEIGHT STABWT; 
  MODEL CAVAR_SENS = INVSC BAVAR VIS AGEYRS GENDER ORIGIN2 TRT VIS*TRT 
                / DIST=NORMAL LINK=ID TYPE3; 
  REPEATED SUBJECT = PATSC / TYPE=EXCH; 
  LSMEANS TRT VIS*TRT / PDIFF; 
  TITLE 'MSM SENSITIVITY ANALYSIS: ALPHA = 0.45'; 
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  ESTIMATE 'A+B VS C'  
    TRT 0 .5 .5 -1 0; 
  ESTIMATE 'A+B VS C AT VIS 3'  
    TRT 0 .5 .5 -1 0 
    VIS*TRT 0 .5 .5 -1 0     0 0 0 0 0     0 0 0 0 0    
            0  0  0  0 0     0 0 0 0 0; 
  ESTIMATE 'A+B VS C AT VIS 4'  
    TRT 0 .5 .5 -1 0 
    VIS*TRT 0 0 0 0 0      0 .5 .5 -1 0  0 0 0 0 0    
            0 0 0 0 0       0  0  0  0 0; 
  ESTIMATE 'A+B VS C AT VIS 5'  
    TRT 0 .5 .5 -1 0 
    VIS*TRT 0 0 0 0 0  0 0 0 0 0  0 .5 .5 -1 0 
            0 0 0 0 0  0 0 0 0 0; 
  ESTIMATE 'A+B VS C AT VIS 6'  
    TRT 0 .5 .5 -1 0 
    VIS*TRT 0 0 0 0 0  0 0 0 0 0  0 0 0 0 0    
            0 .5 .5 -1 0  0 0 0 0 0; 
  ESTIMATE 'A+B VS C AT VIS 7'  
    TRT 0 .5 .5 -1 0 
    VIS*TRT 0 0 0 0 0  0 0 0 0 0  0 0 0 0 0    
            0 0 0 0 0  0 .5 .5 -1 0; 
RUN; 
 

Output from Program 9.4 
                       MSM SENSITIVITY ANALYSIS: ALPHA = 0.45     
    
                                 Contrast Estimate Results 
 
                              Standard                               Chi- 
Label               Estimate   Error  Alpha   Confidence Limits   Square   Pr > ChiSq 
 
A+B VS C             -1.3911  0.7303   0.05    -2.8224    0.0402    3.63       0.0568 
A+B VS C AT VIS 3    -0.6203  0.9615   0.05    -2.5048    1.2642    0.42       0.5188 
A+B VS C AT VIS 4    -0.8879  0.9417   0.05    -2.7335    0.9577    0.89       0.3457 
A+B VS C AT VIS 5    -1.3184  1.2534   0.05    -3.7750    1.1383     1.11       0.292 
A+B VS C AT VIS 6    -1.6479  1.2726   0.05    -4.1422    0.8464    1.68       0.1954 
A+B VS C AT VIS 7    -2.4810  1.3143   0.05    -5.0569    0.0950    3.56       0.0591 

 

To assess the positivity assumption, we followed the ideas of Mortimer and colleagues (2005) 
and estimated the probability of selection of each of the five treatment possibilities using all 
possible covariates across all study visits. The CATMOD procedure is used here in order to 
generate predicted probabilities for all possible treatment options. While theoretically there were 
no issues with the positivity assumption in this study (all patients had the opportunity of being 
switched from and to any combination of treatments at any time), the goal was to assess whether 
any observed set of covariates produced a predicted probability of 0 or 1 for this set of data. This 
was done as shown with Program 9.5 where we computed the predicted probabilities of treatment 
for each observed set of covariates and then summarized the predicted probabilities (summary 
statistics using PROC MEANS by treatment). We observed that the smallest (nonzero but 
<.00015) probabilities were for the theoretical switch from no treatment to the combination of 
treatments A and C at earlier study visits. In general, the smaller probabilities were associated 
with the no treatment and combination treatment groups—as would be expected given their 
observed frequencies. Sensitivity analyses were then performed without the more extreme records 
and then with combination patients re-assigned to the initial randomized single treatment (for 
example, a patient randomized to treatment A but treated with A and C would be counted as 
being treated only with treatment A). No major changes in the inferences were observed from 
these sensitivity analyses and these results are not shown. 
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Program 9.5  Examining Positivity Assumption for Causal Inference 
/* This section of code examines the positivity assumption for causal 
inference by examining the predicted values of all possible treatment 
changes. Summary statistics are presented as well as a listing to allow 
examination of outliers.*/ 

/*positivity check Mortimer (2005) - generate predicted probabilities*/ 
ODS LISTING CLOSE; 
PROC CATMOD DATA = INPDS; 
  DIRECT AGEYRS BGAF BBPRS PR1BPRS PR1GAFC; 
  MODEL TRT = VIS THERAPY PR1TRTA PR1TRTB PR1TRTC GENDER ORIGIN2 BHOSP 

  BEVNT AGEYRS BGAF BBPRS PR1EVNT PR1HOSP PR1BPRS PR1GAFC  
  /PRED=PROB; 

  ODS OUTPUT PREDICTEDPROBS=PREDTRT1POS(KEEP=VIS TRT THERAPY PR1TRTA 
PR1TRTB PR1TRTC GENDER ORIGIN2 BHOSP BEVNT AGEYRS BGAF  

 BBPRS PR1EVNT PR1HOSP PR1BPRS PR1GAFC  
SAMPLE OBSFUNCTION PREDFUNCTION 
RENAME=(PREDFUNCTION=PREDTRT1)); 

RUN; 
ODS LISTING; 

ODS RTF FILE="%SYSFUNC(PATHNAME(WORK))\FIG3.RTF"; 

FILENAME FIGURE "%SYSFUNC(PATHNAME(WORK))\SASGRAPH.EMF"; 

GOPTIONS RESET=ALL TARGET=SASEMF DEVICE=SASEMF FTEXT=DUPLEX HTEXT=.75  
CBACK=WHITE XMAX=6IN XPIXELS=1200 YMAX=5IN YPIXELS=1000 

GSFNAME=FIGURE GSFMODE=REPLACE; 

PROC UNIVARIATE DATA = PREDTRT1POS; 
  VAR PREDTRT1; 
  HISTOGRAM; 
  PROBPLOT; 
  TITLE 'SUMMARY STATS ON PREDICTED VALUES';  
RUN; 

GOPTIONS RESET=ALL; 

ODS RTF CLOSE; 

PROC MEANS DATA = PREDTRT1POS; 
  CLASS TRT; 
  VAR PREDTRT1; 
  TITLE 'Positivity Check: Summary Stats on Predicted Values by Observed 
Treatment';  
RUN; 

PROC SORT DATA = PREDTRT1POS; 
  BY PREDTRT1;  
RUN; 

PROC PRINT DATA = PREDTRT1POS; 
  TITLE 'Positivity Check: Sorted Listing of Predicted Values';  
RUN; 

* (PROC PRINT output not shown but is used to identify individual
patients with combinations of covariates with extreme values *; 
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Output from Program 9.5 
Positivity Check: Summary Stats on Predicted Values by Observed Treatment 

The MEANS Procedure 

Analysis Variable : PREDTRT1 Predicted: Probability 

 TRT    N Obs       N            Mean         Std Dev         Minimum         Maximum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 A_C     2547    2547 0.0475067 0.1254780 0 0.9758886 

 A__     2547    2547 0.4157827 0.4165088    4.0755123E-7 0.9999826 

 _B_     2547    2547 0.2508929 0.3999598    1.8471036E-8 0.9999993 

 __C     2547    2547 0.2383188 0.3699969    3.4082211E-7 0.9998542 

 ___     2547    2547 0.0474988 0.1179316 0 0.9817690 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

In addition to the assessment of the no unmeasured confounders and positivity assumptions, the 
appropriateness of the models was assessed by adding interactions, quadratic terms, and other 
potential confounder variables to the models. No significant changes to the outcome were noted. 
The model assessment was done by adjusting the appropriate models in the SAS code—which 
could be automated by putting the model variables as macro variables at the top of the code. In 
addition, we analyzed the data using other methods:  an ITT LOCF analysis (using all data), a 
repeated measures model (excluding data after a medication switch) and an epoch analysis (see 
Chapter 8). Analysis of these simulated data using a simple ITT LOCF analysis failed to show a 
significant difference between treated and control groups (estimated difference of 1.16, p=.334). 
The repeated measures mixed model (discarding the data after switching) and epoch analyses 
results were fairly similar to the MSM approach.  The disagreement between the ITT analysis and 
other analyses appears to be a result of ignoring treatment information for the data after a 
treatment switch, as discussed by Faries and colleagues (2007). Switchers from treatment C 
performed well after the switch to treatments A and B, information not attributed to treatments A 
and B in the ITT analysis.  

99.4 Discussion 
This chapter has presented the issue of assessing the effects of treatment in longitudinal, 
observational data—with a focus on addressing treatment switching using MSM. We were 
interested in the performance of MSM because this approach utilizes all of the study data and 
produces consistent estimates of the causal effect of treatments, even when there are treatment 
switching, missing data, and time-varying confounders. Validity of the MSM analysis rests on 
three key assumptions:  

1. no unmeasured confounding
2. positivity
3. correct models

Also, the missing data are assumed to follow a missing completely at random (MCAR) or missing 
at random (MAR) pattern. Thus, well-planned sensitivity analyses are important. This should 
include an assessment of the assumptions supporting the causal effect estimation by the MSM as 
well as use of other methodology supported by differing assumptions. In addition, presentation of 
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results should make it clear to the reader that causal interpretation of the results rests on 
unverifiable assumptions as well as being transparent about which steps were taken to assess the 
robustness of the results. 

In summary, marginal structural models are a promising approach for estimating the causal 
effects of treatment in longitudinal, observational data. Other chapters in this book provide details 
on alternative methodologies.  
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