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Introduction

Generalized linear models cover a large collection of statistical theories and methods that
are applicable to a wide variety of statistical problems. The models include many of the
statistical distributions that a data analyst is likely to encounter. These include the normal
distribution for continuous measurements as well as the Poisson distribution for discrete
counts. Because the emphasis of this book is on discrete count data, only a fraction of
the capabilities of the powerful GENMOD procedure are used. The GENMOD procedure
is a flexible software implementation of the generalized linear model methodology that
enables you to fit commonly encountered statistical models as well as new ones, such as
those illustrated in Chapters 7 and 8.

You should know the distinction between generalized linear models and log-linear mod-
els. These two similar sounding names refer to different types of mathematical models for
the analysis of statistical data. A generalized linear model, as implemented with GEN-
MOD, refers to a model for the distribution of a random variable whose mean can be ex-
pressed as a function of a linear function of covariates. The function connecting the mean
with the covariates is called the link. Generalized linear models require specifications for
the link function, its inverse, the variance, and the likelihood function. Log-linear models
are a specific type of generalized linear model for discrete valued data whose log-means are
expressible as linear functions of parameters. This discrete distribution is often assumed to
be the Poisson distribution. Chapters 7 and 8 show how log-linear models can be extended
to distributions other than Poisson and programmed in the GENMOD procedure.

This chapter and Chapter 2 develop the mathematical theory behind generalized linear
models so that you can appreciate the models that are fit by GENMOD. Some of this mate-
rial, such as the binomial distribution and Pearson’s chi-squared statistic, should already be
familiar to those of you who have taken an elementary statistics course, but it is included
here for completeness.

This chapter introduces several important probability models for discrete valued data.
Some of these models should be familiar to you and only the most important features
are emphasized for the binomial and Poisson distributions. The multinomial and negative
multinomial distributions are multivariate distributions that are probably unfamiliar to most
of you. They are discussed in Sections 1.4 and 1.5.

All of the discrete distributions presented in this chapter are closely related. Each is
either a limit or a generalization of another. Some can be obtained as conditional or special
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cases of another. A unifying feature of all of these distributions is that when their means
are modeled using log-linear models, then their fitted means will coincide. Specifically, all
of these distributions can easily be fit using the GENMOD procedure.

A brief review of the Pearson chi-squared statistic is given in Section 2.2. More ad-
vanced topics, such as likelihood based inference, are also included in Chapter 2 to provide
a better appreciation of the GENMOD output. The statistical theory behind the likelihood
function of Section 2.6 is applicable to continuous as well as discrete data, but only the
discrete applications are emphasized.

Two additional discrete distributions are derived in later chapters. Chapter 7 derives a
truncated Poisson distribution in which the ‘zero’ frequencies of the usual Poisson distri-
bution are not recorded. A truncated Poisson regression model is also developed in Chap-
ter 7 and programmed with GENMOD. Two forms of the hypergeometric distribution are
derived in Chapter 8 and they are also fitted using GENMOD code provided in that chapter.
A more general reference for these and other univariate discrete distributions is Johnson,
Kotz, and Kemp (1992).

1.2 The Binomial Distribution

The binomial distribution is one of the most common distributions for discrete or count
data. Suppose there are N (N > 1) independent repetitions of the same experiment, each
resulting in a binary valued outcome, often referred to as success or failure. Each experi-
ment is called a Bernoulli trial with probability p of success and 1 — p of failure where
the value of parameter p is between zero and one.

Let Y denote the random variable that counts the number of successes following N
independent Bernoulli trials. A useful example is to let ¥ count the number of the heads
observed in N coin tosses, for which p = 1/2. (An example in which Y is the number of
insects killed in a group of size N exposed to a pesticide is discussed as part of Table 1.1
below.) The valid range of values for Y is 0, 1, ..., N. The random variable Y is said to
have the binomial distribution with parameters N and p. The parameter N is sometimes
referred to as the sample size or the index of the distribution.

The probability mass function of Y is

PrY = j] = (N )pf (1— )N
J

where j = 0,1,..., N. A plot of this function appears in Figure 1.1 where N = 10 and
the values of p are .2, .5, and .8.
The binomial coefficients are defined by

<N>_ N!
i) (N =)

with 0! = 1. Read the binomial coefficient as: ‘N choose j’.

The binomial coefficients count the different orders in which the successes and failures
could have occurred. For example, in N = 4 tosses of a coin, 2 heads and 2 tails could have
appeared as HHTT, TTHH, HTHT, THTH, THHT, or HTTH. These 6 different orderings
of the outcomes can also be counted by

4 41
= — = 6
<2> 212!

The expected number of successes is N p and the variance of the number of successes is
Np(1 — p). The variance is smaller than the mean. A symmetric distribution occurs when
p = 1/2. When p > 1/2 the binomial distribution has a short right tail and a longer left
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tail. Similarly, when p < 1/2 this distribution has a longer right tail. These shapes for
different values of the p parameter can be seen in Figure 1.1. When N is large and p is not
too close to either zero or one, then the binomial distribution can be approximated by the
normal distribution.

Figure 1.1
The binomial distribution of Y where N = 10 and the values of parameter p are .2, .5, and .8.
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One useful feature of the binomial distribution relates to sums of independent binomial
counts. Let X and Y denote independent binomial counts with parameters (N1, p1) and
(N2, p2) respectively. Then the sum X 4 Y also behaves as binomial with parameters
N1 + N> and p; only if p; = p». This makes sense if one thinks of performing the same
Bernoulli trial N + N, times.

This characteristic of the sum of two binomial distributed counts is exploited in Chap-
ter 8 where the hypergeometric distribution is derived. The hypergeometric distribution is
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that of Y conditional on the sum X + Y. If p; # p> then X 4 Y does not have a binomial
distribution or any other simple expression. Section 8.4 discusses the distribution of X +Y
when p; # pa.

The remainder of this section on the binomial distribution contains a brief introduction
to logistic regression. Logistic regression is a popular and important method for providing
estimates and models for the p parameter in the binomial distribution. A more lengthy dis-
cussion of this technique gets away from the GENMOD applications that are the focus of
this book. For more details about logistic regression, refer to Allison (1999); Collett (1991);
Stokes, Davis, and Koch (2001, chap. 8); and Zelterman (1999, chap. 3).

The following example demonstrates how the binomial distribution is modeled in prac-
tice using the GENMOD procedure. Consider the data given in Table 1.1. In this table six
binomial counts are given and the problem is to mathematically model the p parameter for
each count. Table 1.1 summarizes an experiment in which each of six groups of insects
were exposed to a different dose x; of a pesticide. The life or death of each individual in-
sect represents the outcome of an independent, binary-valued (success or failure) Bernoulli

trial. The number N; in the ith group was fixed by the experimenters (i = 1,...,6). The
number of insects that died Y; in the ith group has a binomial distribution with parameters
N; and p;.

TABLE 1.1 Mortality of Tribolium castaneum beetles at six different concentrations of the insecticide
y-benzene hexachloride. Concentrations are measured in log;,(mg/10 cm?) of a 0.1% film. Source:
Hewlett and Plackett, 1950.

Concentration x;

1.08 1.16 1.21 1.26 1.31 1.35
Number killed y; 15 24 26 24 29 29
Number in group N; 50 49 50 50 50 49
Fraction killed .300 490 520 480 .580 592
Fitted linear .350 427 475 523 572 .610
Fitted logit 353 427 475 524 572 .610
Fitted probit 352 4217 475 524 572 .610

The statistical problem is to model the binomial probability p; of killing an insect in
the ith group as a function of the insecticide concentration x;. Intuitively, the p; should
increase with x; but notice that the empirical rates in the ‘Fraction killed’ row of Table 1.1
are not monotonically increasing. A greater fraction are killed at the x = 1.21 pesticide
level than at the 1.26 level. There is no strong biological theory to suggest that the model
for the binomial probabilities p; is anything other than a monotone function of the dose
x;. Beyond the requirement that p; = p(x;) be a monotone function of the dose x; there is
no mathematical form that must be followed, although some functions are generally better
than others as you will see.

A simple approach is to model the binomial probabilities p(x;) as linear functions of
the dose. That is

pi =pxi) =a+ Bx

as in the usual model with linear regression. As you will see, there are much better choices
than a linear model for describing binomial probabilities.

Program 1.1 fits this linear model for the binomial probabilities with the MODEL state-
ment in the GENMOD procedure:

model y/n=dose / dist=binomial link=identity obstats;

The notation y/n is the way that the index N; is specified as corresponding to each bino-
mial count ¥;. The dist=binomial specifies the binomial distribution to the GENMOD



Program 1.1

Chapter 1  Discrete Distributions 5

procedure. The link=identity produces a linear model of the binomial p parameter.
The OBSTATS option prints a number of useful statistics that are more fully described in
Chapter 2. Among the statistics produced by OBSTATS are the estimates of the linear fit-
ted p; parameters that are given in Table 1.1. Output 1.1 provides the estimated parameters
for the linear model of p. The estimated parameter values with their standard errors are
@ = —0.6923 (SE = 0.3854) and B = 0.9648 (SE = 0.3128).

This example fits the linear, logistic, and probit models to the insecticide data of
Table 1.1. Some of the output from this program is given in Output 1.1. In general, logistic
regression should be performed in the LOGISTIC procedure.

titlel ’Beetle mortality and pesticide dose’;
data beetle;
input y n dose;

label
y = ’number killed in group’
n = ’number in dose group’

dose = ’insecticide dose’ ;

datalines;
15 50 1.08
24 49 1.16
26 50 1.21
24 50 1.26
29 50 1.31
29 49 1.35

run;

proc print;
run;

title2 ’Fit a linear dose effect to the binomial data’;
proc genmod;

model y/n=dose / dist=binomial link=identity obstats;
run;

title2 ’Logistic regression’;
proc genmod;

model y/n=dose / dist=binomial obstats;
run;

title2 ’Probit regression’;
proc genmod;

model y/n=dose / dist=binomial link=probit obstats;
run;

The following is selected output from Program 1.1.
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Fit a linear dose effect to the binomial data

The GENMOD Procedure
Analysis Of Parameter Estimates
Wald 95 %
Standard | Confidence
Parameter | DF | Estimate Error Limits Chi-Square | Pr > ChiSq
Intercept 1 -0.6923 0.3854 | -1.4476 | 0.0630 3.23 0.0724
dose 1 0.9648 0.3128 | 0.3516 | 1.5779 9.51 0.0020
Scale 0 1.0000 0.0000 | 1.0000 | 1.0000
NOTE: The scale parameter was held fixed.
Logistic regression
The GENMOD Procedure
Analysis Of Parameter Estimates
Wald 95 %
Standard | Confidence
Parameter | DF | Estimate Error Limits Chi-Square | Pr > ChiSq
Intercept 1 -4.8098 1.6210 | -7.9870 | -1.6327 8.80 0.0030
dose 1 3.8930 1.3151 | 1.3153 | 6.4706 8.76 0.0031
Scale 0 1.0000 0.0000 | 1.0000 | 1.0000
NOTE: The scale parameter was held fixed.
Probit regression
The GENMOD Procedure
Analysis Of Parameter Estimates
Wald 95 %
Standard | Confidence
Parameter | DF | Estimate Error Limits Chi-Square | Pr > ChiSq
Intercept 1 -3.0088 1.0054 | -4.9793 | -1.0383 8.96 0.0028
dose 1 2.4351 0.8158 | 0.8362 | 4.0340 8.91 0.0028
Scale 0 1.0000 0.0000 | 1.0000 | 1.0000

NOTE: The scale parameter was held fixed.

The o and B parameters of the linear model are fitted by GENMOD using maximum
likelihood, a procedure described in more detail in Section 2.6. Maximum likelihood is a
more general method for estimating parameters than the method of least squares, which you
might already be familiar with from the study of linear regression. Least square estimation
is the same as maximum likelihood for modeling data that follows the normal distribution.
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The problem with modeling the binomial probability p as a linear function of the dose
x is that for some extreme values of x the probability p(x) might be negative or greater
than one. While this poses no difficulty in the present data example, there is no protection
offered in another setting where it might result in substantial computational and inter-
pretive problems. Instead of linear regression, the probability parameter of the binomial
distribution is usually modeled using the logit, or logistic, transformation.

The logit is the log-odds of the probability

logit(p) = log{p/(1 — p)} .

(Logs are always taken base e = 2.718...)
The logistic model specifies that the logit is a linear function of the risk factors. In the
present example, the logit is a linear function of the pesticide dose

log{p/(1 = p)}=pn+6x (1.1)

for parameters (i, 6) to be estimated. When 0 is positive, then larger values of x corre-
spond to larger values of the binomial probability parameter p.
Solving for p as a function of x in Equation 1.1 gives the equivalent form

p(x) =exp(u+0x)/{l +exp(n+0x)}.

This logistic function p(x) always lies between zero and one, regardless of the value
of x. This is the main advantage of logistic regression over linear regression for the p
parameter. The fitted function p(x) for the beetle data is a curved form plotted in Figure 1.2.

Figure 1.2

Fitted logistic, probit (dashed line), and linear regression models for the data given in
Table 1.1. The ¢ marks indicate the empirical mortality rates at each of the six levels of
concentration of the insecticide.
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The logistic regression model for p(x) is fitted by GENMOD in Program 1.1 using the
statements

proc genmod;
model y/n=dose / dist=binomial obstats;
run;
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The GENMOD procedure fits p(x) by estimating the values of parameters u and 6 in
Equation 1.1. There is no need to specify the LINK= option here because the logit link
function and logistic regression are the default for binomial data in GENMOD. The fitted
values of p(x) are given in Table 1.1 and are obtained by GENMOD using maximum
likelihood. The estimated parameter values for Equation 1.1 are given in Output 1.1. These
are t = —4.8098 (SE = 1.6210) and 6§ = 3.8930 (SE = 1.3151).

Another popular method for modeling p(x) is called the probit or sometimes, probit
regression. The probit model assumes that p(x), properly standardized, takes the functional
form of the cumulative normal distribution. Specifically, for regression coefficients y and
& to be estimated, probit regression is the model

y+Ex
p(x) = / (1) di

—00

where ¢ (-) is the standard normal density function. If £ is positive, then larger values of x
correspond to larger values of p(x).

The probit model is specified in Program 1.1 using 1ink=probit. The fitted values and
a portion of the output appear in Output 1.1. The estimated parameter values for the probit
model are y = —3.0088 (SE = 1.0054) and/&‘\ = 2.4351 (SE = 0.8158).

The fitted models for the linear, probit, and logistic models are plotted in Figure 1.2.
The empirical rates for each of the six different dose levels are indicated by ‘¢’ marks in
this figure. All three fitted models are in close agreement and are almost coincident in the
range of the data. Beyond the range of the data the linear model can fail to maintain the
limits of p between zero and one. The fitted probit and logistic curves are always between
zero and one regardless of the values of the dose x.

The probit and logistic models will generally be in close agreement except in the ex-
treme tails of the fitted models. If the logit and probit models are extrapolated beyond the
range of this data then the logit model usually has longer tails than does the probit. That
is, the logit will tend to provide larger estimates than the probit model for p(x) when p
is much smaller than 1/2. The converse is also true for p > 1/2. Of course, it is impos-
sible to tell from this data which of the logit or probit models is correct in the extreme
tails or whether they are appropriate at all beyond the range of the data. This is a danger
of extrapolating beyond the range of the observed data that is common to all statistical
methods.

The LOGISTIC procedure in SAS is specifically designed for performing logistic re-
gression. The statements

proc logistic;
model y/n = dose / iplots influence;
run;

are the parallel to the logistic GENMOD code in Program 1.1. The LOGISTIC procedure
also has options to fit the probit model. In general practice, logistic and probit regressions
should be performed in the LOGISTIC procedure because of the large number of special-
ized diagnostics that LOGISTIC offers through the use of the IPLOTS and INFLUENCE
options.

1.3 The Poisson Distribution

Another important discrete distribution is the Poisson distribution. This distribution has
several close connections to the binomial distribution discussed in the previous section.
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The Poisson distribution with mean parameter A > 0 has the mass function
P[Y = jl=e* A/ /j! (1.2)

and is defined for j =0, 1, ....

The mean and variance of the Poisson distribution are both equal to A. That is, the mean
and variance are equal for the Poisson distribution, in contrast to the binomial distribution
for which the variance is smaller than the mean. This feature is discussed again in Sec-
tion 1.5 where the negative binomial distribution is described. The variance of the negative
binomial distribution is larger than its mean.

The probability mass function (Equation 1.2) of the Poisson distribution is plotted in
Figure 1.3 for values .5, 2, and 8 of the mean parameter A. For small values of A, most of

Figure 1.3
The Poisson distribution where the values for A are .5, 2, and 8.
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the probability mass of the Poisson distribution is concentrated near zero. As A increases,
both the mean and variance increase and the distribution becomes more symmetric. When
A becomes very large, the Poisson distribution can be approximated by the normal distri-
bution.

Models for Poisson data can be fit in GENMOD using dist=Poisson in the MODEL
statement. Examples of modeling Poisson distributed data make up most of the material in
Chapters 2 through 6. The Poisson distribution is a good first choice for modeling discrete
or count data if little is known about the sampling procedure that gave rise to the observed
data. Multidimensional, cross-classified data is often best examined assuming a Poisson
distribution for the count in each category. Examples of multidimensional, cross-classified
data appear in Sections 2.2 and 2.3.

The most common derivation of the Poisson distribution is from the limit of a binomial
distribution. If the binomial index N is very large and p is very small such that the binomial
mean, N p, is moderate, then the Poisson distribution with . = Np is a close approximation
to the binomial. As an example of this use of the Poisson model, consider the distribution
of the number of lottery winners in a large population. This example is examined in greater
detail in Sections 2.6.2 and 7.5. The chance (p) of any one ticket winning the lottery is
very small but a large number of lottery tickets (V) are sold. In this case the number of
lottery winners in a city should have an approximately Poisson distribution.

Another common example of the Poisson distribution is the model for rare diseases in
a large population. The probability (p) of any one person contracting the disease is very
small but many people (N) are at risk. The result is an approximately Poisson distributed
number of cases appearing every year. This reasoning is the justification for the use of the
Poisson distribution in the analysis of the cancer data described in Section 5.2.

Methods for fitting models of Poisson distributed data using GENMOD and log-linear
models are given in Chapters 2 through 6 and are not described here. Chapter 2 covers
most of the technical details for fitting and modeling the mean parameter of the Poisson
distribution to data. Chapters 3 through 6 provide many examples and programs. A special
form of the Poisson distribution is developed in Chapter 7. In this distribution, only the
positive values (that is, 1, 2, .. .) of the Poisson variate are observed. The remainder of this
section provides useful properties of the Poisson distribution.

The sum of two independent Poisson counts also has a Poisson distribution. Specifically,
if X and Y are independent Poisson counts with respective means Ay and Ay, then the sum
X +Y is a Poisson distribution with mean A x + Ay. This feature of the Poisson distribution
is useful when combining rates of different processes, such as the rates for two different
diseases.

In addition to the Poisson distribution being a limit of binomial distributions, there is
another close connection between the Poisson and binomial distributions. If X and Y are
independent Poisson counts, as above, and the sum of X + Y = N is known, then the
conditional distribution of Y is binomial with index N and the probability parameter

p=Xiy/(Ax +Ay) .

This connection between the Poisson and binomial distributions can lead to some con-
fusion. It is not always clear whether the sampling distribution represents two independent
counts or a single binomial count with a fixed sample size. Does the data provide one de-
gree of freedom or two? The answer depends on which parameters need to be estimated.
In most cases the sample size N is either estimated by the sum of counts or is taken as a
known, constrained quantity. In either case this constraint represents a loss of a degree of
freedom. That is, whenever you are counting degrees of freedom after estimating param-
eters from the data, treat the data as binomial whether the constraint of having exactly N
observations was built into the sampling or not. Log-linear models with an intercept, for
example, will obey this constraint.
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1.4 The Multinomial Distribution

The two discrete distributions described so far are both univariate, or one-dimensional.
In the previous two sections you saw that independent Poisson or independent binomial
distributions are convenient models for discrete values data. There are also multivariate
discrete distributions. Multivariate distributions are useful for modeling correlated counts.
Two such multivariate distributions are described below.

Two useful multivariate discrete distributions are the multinomial and the negative
multinomial distributions. These two distributions allow for negative and positive depen-
dence among the discrete counts respectively.

An important and useful feature of these two multivariate discrete distributions is that
log-linear models for their means can be fitted easily using GENMOD and are the same
as those obtained assuming independent Poisson counts. In other words, the estimated
expected counts for these discrete univariate and multivariate distributions can be obtained
using dist=Poisson in GENMOD. The interpretation and the variances of these sampling
models can be very different, however.

The multinomial distribution is the generalization of the binomial distribution to more
than two discrete outcomes. Suppose each of N individuals can be independently classi-
fied into one of k (k > 2) distinct, non-overlapping categories with respective probabilities
P1, ..., Pk. The non-negative p; (i = 1, ..., k) sum to one. Of the N individuals so cat-
egorized, the probability that n; fall into the first category, n» in the second, and so on,
is

Pr[n1,...,nk | N,p]:NV p'lll p;lzpzk/nl’nz'nk!

where n1 + - - - 4+ ny = N. This is the probability mass function of the multinomial distri-
bution.

An example of the multinomial distribution is the frequency of votes for office cast for
a group of k candidates among N voters. Each p; represents the probability that any one
randomly selected person chooses candidate i. The ith candidate receives n; votes. If more
voters choose one candidate, then there will be fewer votes for each of the other candidates.
The joint collection of frequencies n; of votes for the candidates are mutually negatively
correlated because of the constraint that there are Y n; = N voters.

The multinomial distribution models counts that are negatively correlated. This is useful
when the total sample size is constrained and a large count in one category is associated
with smaller counts in all of the other cells. The negative multinomial distribution, de-
scribed in the following section, is useful when all of the counts are positively correlated.
A positive correlation might be useful for the data of Table 1.2, for example, for modeling
disease rates in a city where a large number of individuals with one type of cancer would
be associated with high rates in all other types as well.

When k = 2 the multinomial distribution is the same as the binomial distribution. Any
one multinomial frequency n; behaves marginally as binomial with parameters N and p;.
Similarly, each n; has mean Np; and variance Np;(1 — p;). Any pair of multinomial
frequencies has a negative correlation:

Corr(ni, n) = — {pi pj/(1 = p)(1 = pp}'”? (1.3)

The constraint that all multinomial frequencies n; sum to N means that one unusually
large count causes all other counts to be smaller. A useful feature of the multinomial distri-
bution is that fitted means in a log-linear model are the same as those as if you sampled
from independent Poisson distributions.

There is a close connection between the Poisson and the multinomial distributions that
parallels the relationship between the Poisson and binomial distributions. Let X1, ..., Xk
denote independent Poisson random variables with positive mean parameters Ap, ..., Ag
respectively. The distribution of the counts Xji,..., Xy conditional on their sum
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N =" X; is multinomial with parameters N and py, ..., px where
pi =2/ 4+ A

This close connection between the multinomial and Poisson distributions should help
explain why the estimated means are the same for both sampling models. The negative
multinomial distribution, described next, also shares this property.

A small numerical example is in order. In 1866, Gregor Mendel reported his theory
of genetic inheritance and gave the following data to support his claim. Out of 529 gar-
den peas, he observed 126 dominant color; 271 hybrids; and 132 with recessive color. His
theories indicate that these three genotypes should be in the ratio of 1 : 2 : 1. The ex-
pected counts corresponding to these genotypes are then 529/4 = 132.25 dominant color;
529/2 = 264.5 hybrids; and 132.25 recessive color.

The sampling distribution is uncertain and several different lines of reasoning can be
used to justify various models. In one sampling scenario, Mendel must have examined a
large group of peas and this sample was only limited by his time and patience. That is,
his total sample size (N) was not constrained. Each of the three counts was independently
determined, as was the total sample size. In this case the counts are best described by three
independent Poisson distributions.

In a second reasoning for the appropriate sampling distribution, note that it is impossible
to directly observe the difference between the dominant color and a hybrid. Instead, these
plants must be self-crossed and examined in the following growing season. Specifically,
the ‘grandchildren’ of the pure dominant will all express that characteristic but those of
the hybrids will exhibit both the dominant and recessive traits. In this sampling scheme,
Mendel might have given a great deal of thought to restricting the sample size N to a
manageable number. Using this reasoning, a multinomial sampling distribution might be
more appropriate, or perhaps, the total number of dominant combined with the hybrid peas
should be modeled separately as a binomial experiment.

Finally, note that the determination of pure dominant versus hybrid can only be as-
certained as a result of the conditions during the following two growing seasons, which
will depend on those years’ weather. All of the counts reported may have been greater or
smaller, but in any case, would all be positively correlated. In this setting the negative bi-
nomial sampling model described in the following section may be the appropriate model
for this data.

In each of these three sampling models (independent Poisson, multinomial, or negative
multinomial) the expected counts are the same as given above. Test statistics of goodness
of fit will also be the same since these are only a function of the observed and expected
counts. The interpretations of the variances and correlations of the counts are very different,
however.

1.5 Negative Binomial and Negative Multinomial Distributions

The most common derivation of the negative binomial distribution is through the binomial
distribution. Consider a sequence of independent, identically distributed, binary valued
Bernoulli trials each resulting in success with probability p and failure with probability
1 — p. An example is a series of coin tosses resulting in heads and tails, as described in
Section 1.2. The binomial distribution describes the probability of the number of successes
and failures after a fixed number of these experiments have been conducted.

The negative binomial distribution describes the behavior of the number of failures ob-
served before the cth success has occurred for a fixed, positive, integer-valued parameter c.
That is, this distribution measures the number of failures observed until ¢ successes have
been obtained. Unlike the binomial distribution, the negative binomial distribution does
not have a finite range. In particular, if the probability of success p is small, then a very
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large number of failures will appear before the cth success is obtained. If X is the negative
binomial random variable denoting the number of failures before the cth success, then

x+c—1

Pr[X=x]=( 1

>PC(1 -p° (1.4)
where x = 0, 1, . ... The binomial coefficient in Equation 1.4 reflects that ¢ 4 x total trials
are needed and the last of these is the cth success that ends the experiment.

The expected value of X in the negative binomial distribution is

EX=c(-p)/p
and the variance of X satisfies
VarX = c(1 - p)/p* =EX)/p.

The most useful feature of this distribution is that the variance is larger than the mean.
In contrast, the binomial variance is smaller than its mean, and the Poisson variance is
equal to its mean. Another important feature to note when you are contrasting these three
distributions is that the binomial distribution has a finite range but the Poisson and negative
binomial distributions both have infinite ranges.

In the more general case of the negative binomial distribution, it is not necessary to
restrict the ¢ parameter to integer values. The generalization of Equation 1.4 to any positive
valued c parameter is

PriX =x]=c(c+1)---(c+x—1p°d - p)/x! (1.5)

where x = 1,2, ... and Pr[X = 0] = p°.

The estimation of the ¢ parameter in Equation 1.5 is generally a difficult task and should
be avoided if at all possible. Traditional methods such as maximum likelihood either tend
to fail to converge to a finite value or tend to produce huge confidence intervals for the
estimated value of the variance of X. The likelihood function for log-linear models and
related estimation methods are discussed in Section 2.6. GENMOD offers dist=nb in the
MODEL statement to fit the negative binomial distribution. This option is used in a data
analysis in Section 5.3.

The narrative below suggests a simple method for estimating the ¢ parameter and pro-
ducing confidence intervals. The negative binomial distribution behaves approximately as
the Poisson distribution for large values of ¢ in Equation 1.5. An explanation for the large
confidence intervals in estimates of ¢ is that the Poisson distribution often provides an ad-
equate fit for the data. An example of this situation is given in the analysis of the data in
Table 1.2.

TABLE 1.2 Cancer deaths in the three largest Ohio cities in 1989. The body sites of the primary tumor
are as follows: oral cavity (1); digestive organs and colon (2); lung (3); breast (4); genitals (5); urinary
organs (6); other and unspecified sites (7); leukemia (8); and lymphatic tissues (9). Source: National
Center for Health Statistics (1992, II, B, pp. 497-8); Waller and Zelterman (1997).

Primary cancer site
City 1 2 3 4 5 6 7 8 9

Cleveland 71 1052 1258 440 488 159 523 169 268
Cincinnati 52 786 988 270 337 133 378 107 160
Columbus 41 518 715 190 212 91 254 77 137

Used with permission: International Biometric Society.

The negative binomial distribution is often described as a mixture of Poisson distribu-
tions. If the Poisson mean parameter varies between observations then the resulting distri-
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bution will have a larger variance than that of a Poisson distribution with a fixed parameter.
More details of the derivation of the negative binomial distribution as a gamma-distributed
mixture of Poisson distributions are given by Johnson, Kotz, and Kemp (1992, p. 204).

There are methods for separately modeling the means and the variances of data with
GENMOD using the SCALE parameter. The SCALE parameter might be used, for ex-
ample, to model Poisson data for which the variances are larger than the means. The set-
ting in which variances are larger than what is anticipated by the sampling model is called
overdispersion. Fitting a SCALE parameter with GENMOD is one approach to modeling
overdispersion. Using the VARIANCE statement in GENMOD is another approach and is
illustrated in Chapters 7 and 8.

A useful multivariate generalization of the negative binomial distribution is the nega-
tive multinomial distribution. In this multivariate discrete distribution all of the counts are
positively correlated. This is a useful feature for settings such as models for longitudinal
or spatially correlated data.

An example to illustrate the property of positive correlation is given in Table 1.2. This
table gives the number of cancer deaths in the three largest cities in Ohio for the year 1989
listed by primary tumor. If one type of cancer has a high rate within a specified city, then
it is likely that other cancer rates are elevated as well within that city. We can assume that
the overall disease rates may be higher in one city than another but these rates are not
disease specific. That is, the relative frequencies of the various cancer death rates do not
vary across cities. The counts of the various cancer deaths between cities are independent
but are positively correlated within each city.

Let X = {X1, ..., Xk} denote a vector of negative multinomial random variables. An
example of such a set X is the joint set of cancer frequencies for any single city in Table 1.2.
The joint probability of X taking the non-negative integer values x = {x1, ..., xg} is

c k . Xi
Pr[X:x]:c(c+1)...(c+x+—1)( ¢ )1_[( ad )/xi! (1.6)

ctus) g \et s

where x; = > x;. In Equation 1.6, u+ = >_ u; is used for the sum of the mean pa-
rameters i; > 0. Unlike the multinomial distribution, the observed sample size x is not
constrained.

The expected value of each X; in Equation 1.6 is u;. When k = 1, the negative multi-
nomial distribution in Equation 1.6 coincides with the negative binomial distribution in
Equation 1.5 with parameter value p = ¢/(c + ). The marginal distribution of each X;
in the negative multinomial distribution has a negative binomial distribution. The variance
of each negative multinomial count X; is

VarX; = ;i (1 + pi/c),

which is larger than the mean.
The correlation between any pairs of negative multinomial counts X; and X; where
i #jis

12
v Hi [

These correlations are always positive. Contrast this statement with the correlations be-
tween multinomial counts at Equation 1.3, which are always negative. When the parameter
c in the negative multinomial distribution becomes large, then the correlations in Equa-
tion 1.7 are close to zero. Similarly, for large values of ¢, the negative multinomial counts
X; behave approximately as independent Poisson observations with respective means ;.
Infinite estimates or confidence interval endpoints of the ¢ parameter are indicative of an
adequate fit for the independent Poisson model. An example of this setting is given below.

Estimation of the mean parameters ; is not difficult for the negative multinomial distri-
bution in Equation 1.6. Waller and Zelterman (1997) show that the maximum likelihood
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estimated mean parameters 1z; for the negative multinomial distribution are the same as
those for independent Poisson sampling. In other words, dist=Poisson in the MODEL
statement of GENMOD will fit Poisson, multinomial, and negative multinomial mean pa-
rameters, and all of these estimates coincide.

A method for estimating the ¢ parameter is motivated by the behavior of the chi-squared
goodness of fit statistic. The chi-squared statistic is the readily familiar measure of good-
ness of fit from any elementary statistics course. A discussion of its use is given at Equa-
tion 2.4 in Section 2.2 where it is used in a log-linear model. Chapter 9 describes the use
of chi-squared in sample size and power estimation for planning purposes.

The usual chi-squared statistic

X* = (i — )’ /M
i

will suffer from the overdispersion of the negative binomial distributed counts x; which
tend to have variances that are larger than their means. As a result, the chi-squared statistic
will tend to be larger than is anticipated by the corresponding asymptotic distribution.

The approach taken by GENMOD is to use the SCALE = P or PSCALE options to es-
timate the amount of overdispersion by the ratio of the chi-squared to its df. The numerator
of chi-squared represents the empirical variance for the data. (There is also a correspond-
ing SCALE = D or DSCALE option to rescale all variances using the deviance statis-
tic, described at Equation 2.5, Section 2.2.) Section 5.3 examines a data set that exhibits
overdispersion and illustrates the scale option in GENMOD.

In most settings, the expected value of the chi-squared statistic is equal to its df under
the correct model for the means, without overdispersion. If the value of chi-squared is too
large relative to its df, then values of the ratio chi-squared/df that are much greater than
one provide evidence that the empirical variance of the data is an appropriate multiple of
the mean given in the denominator of the chi-squared statistic.

Another test statistic for these overdispersed, negative multinomial distributed data, and
a measure of the degree of overdispersion, replaces the denominators with their appropri-
ately modeled larger variances. The test statistic for negative multinomial distributed data
is

X0 =) (i — )/ [ (1 + 7Li/0)] (1.8)

where the denominators are replaced by the negative multinomial variances. Varying the
values of c in x?(c) and matching the values of this statistic with the corresponding asymp-
totic chi-squared distribution provides a simple method for estimating the ¢ parameter. An
application of the use of Equation 1.8 appears in Section 7.4. There are similar methods
proposed by Williams (1982) and Breslow (1984).

The rest of this section discusses the example in Table 1.2 and demonstrates how to use
Equation 1.8 to estimate the overdispersion parameter. Consider the model of independence
of rows and columns in Table 1.2. This model specifies that the relative rates for the various
cancer deaths are the same for each of the three cities. Let x,; denote the number of cancer
deaths of disease site r in city s. The expected counts i, for x,; are

ﬁrs = X4 X5 /N (1.9

where x4 and x, are the row and column sums, respectively, of Table 1.2.

The 1,5 in Equation 1.9 are the usual estimates of counts for testing the hypothesis of
independence of rows and columns. These estimates should be familiar from any elemen-
tary statistics course and are discussed in more detail in Section 2.2. The observed value of
chi-squared is 26.96 (16 df) and has an asymptotic significance level of p = .0419, which
indicates a poor fit, assuming a Poisson model is used for the counts in Table 1.2.
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The ¢ parameter can be estimated as follows. The median of a chi-squared random
variable with 16 df is 15.34. Solving Equation 1.8 with

x2(c) = 15.34

for ¢ yields the estimated value of ¢ = 466.9. Solving this equation is not specific to
GENMOD and can easily be performed using an iterative program or spreadsheet.

The point estimate of ¢ = 466.9 is that value of the ¢ parameter that equates the test
statistic x2(c) to the median of its asymptotic distribution. The corresponding fitted cor-
relation for the city of Cincinnati is given in Table 1.3. The values in this table combine
the expected counts i, in the correlations of the negative multinomial distribution given
at Equation 1.7 and use the estimate ¢ = 466.9. An important property of the negative
multinomial distribution is that all of these correlations are positive.

TABLE 1.3 Estimated correlation matrix of cancer types in Cincinnati using the fitted negative
multinomial model with an estimated value of ¢ equal to 466.9.

Disease 1 2 3 4 5 6 7 8 9

1 1.00 0.25 0.26 0.20 0.21 0.15 0.21 0.14 0.17
2 1.00 0.65 0.49 0.51 0.36 0.53 0.35 0.42
3 1.00 0.51 0.53 0.38 0.55 0.36 0.44
4 1.00 0.40 0.29 0.41 0.28 0.33
5 1.00 0.30 0.43 0.29 0.34
6 1.00 0.31 0.21 0.25
7 1.00 0.30 0.35
8 1.00 0.24
9 1.00

A symmetric 90% confidence interval for the 16 df chi-squared distribution is
(7.96; 26.30) in the sense that outside this interval there is exactly 5% area in both the
upper and lower tails. Separately solving the two equations

x2() =796 and x*(c) =26.30

gives a 90% confidence interval of (125.8; 18,350) for the ¢ parameter. Such wide confi-
dence intervals are to be expected for the ¢ parameter. An intuitive explanation for these
wide intervals is that the independent Poisson sampling model (¢ = +00) almost holds for
this data.

The symmetric 95% confidence interval for a 16 df chi-squared is (6.91; 28.85). Solving
for ¢ in the two separate equations

x2(c) =691 and x2(c) = 28.85

yields the open-ended interval (101.1; +00). This unbounded interval occurs because the
value of x2(c) can never exceed the value of the original x> = 26.96 regardless of how
large ¢ becomes. That is, there is no solution in ¢ to the equation x2(c) = 28.85. We can
interpret the infinite endpoint in the interval to mean that a Poisson model is part of the
95% confidence interval. A 90% confidence interval indicates that the data is adequately
explained by a negative multinomial distribution. Another application of Equation 1.8 to
estimate overdispersion appears in Section 7.4. A statistical test specifically designed to
test Poisson versus negative binomial data is given by Zelterman (1987).

The chi-squared statistic used in the data of Table 1.2 can have two different interpre-
tations: as a test of the correct model for the means of the counts; and also as a test for
overdispersion of these counts. The usual application for the chi-squared statistic is to test
the correct model for the means modeled at Equation 1.9, specifying that the disease rates
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of the various cancers is the same across the three large cities. The use of the Xz(c) statis-
tic here is to model the overdispersion or inflated variances of the counts. The chi-squared
statistic then has two different roles: testing the correct mean and checking for overdisper-
sion. In the present data it is almost impossible to separate these different functions.

Two additional discrete distributions are introduced in Chapters 7 and 8. The Poisson
distribution is, by far, the most popular and important of the sampling models described in
this chapter. The first two sections of Chapter 2 show how the Poisson distribution is the
basic tool for modeling categorical data with log-linear models.
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