White Papers

White Paper Download


Utility forecasters cannot assume that one methodology will provide the best forecast from one year to the next. To improve forecast performance, reduce uncertainties and generate value in the new data-intensive environment, they must be able to decide which models, or combinations of models, are best. And they must be able to determine more indicators of the factors that affect load. This paper uses a case study to illustrate how utility forecasters can take advantage of hourly or sub-hourly data from millions of smart meters by using new types of forecasting methodologies. It investigates how a number of approaches using geographic hierarchy and weather station data can improve the predictive analytics used to determine future electric usage. It also demonstrates why utilities need to use geographic hierarchies, and why their solutions should allow them to retrain models multiple times each year.

Have a SAS profile? Log in to pre-fill the form.

*  First Name
*  Last Name
*  E-mail Address
* Organization/Company
* Industry
* Job Title
*  Country
State/Province/Territory
(Required for Canada and U.S.)
* Business Phone
Yes, I would like to opt-in to receive occasional emails from SAS and its affiliates
about SAS events, free white papers, special offers on training and publications, etc.
All personal information will be handled in accordance with the SAS Privacy Statement.


( * indicates required field )