SAS | The Power to Know
cq5dam.thumbnail.319.319
White Paper

When One Size No Longer Fits All - Electric Load Forecasting with a Geographic Hierarchy

About this paper

Utility forecasters cannot assume that one methodology will provide the best forecast from one year to the next. To improve forecast performance, reduce uncertainties and generate value in the new data-intensive environment, they must be able to decide which models, or combinations of models, are best. And they must be able to determine more indicators of the factors that affect load. This paper uses a case study to illustrate how utility forecasters can take advantage of hourly or sub-hourly data from millions of smart meters by using new types of forecasting methodologies. It investigates how a number of approaches using geographic hierarchy and weather station data can improve the predictive analytics used to determine future electric usage. It also demonstrates why utilities need to use geographic hierarchies, and why their solutions should allow them to retrain models multiple times each year.

Sobre o SAS

SAS é o líder de mercado em Analytics. Por meio de soluções analíticas inovadoras, voltadas para a inteligência do negócio e gerenciamento de dados, a companhia ajuda seus clientes em mais de 75.000 localidades a tomarem decisões de forma rápida e assertiva. Desde 1976, o SAS fornece aos clientes ao redor do mundo THE POWER TO KNOW® (O Poder do Conhecimento).

Já tem um Perfil SAS? Realize o preenchimento automático deste formulário. Entrar

*
*
*
*
 
*
*
 
 

Back to Top