Intel’s newest dual-core processor for dual processor (DP) servers and workstations delivers a new level of energy-efficient performance from the innovative Intel® Core™ microarchitecture, optimized for low-power, dual-core, 64-bit computing.

The 64-bit Dual-Core Intel® Xeon® processor 5100 series enables next-generation platforms that can drive energy-efficient infrastructures to optimize data center density, reduce total cost of ownership (TCO), and improve business continuity, redefining what DP servers and workstations should deliver to help businesses be more efficient, dependable, and agile.

The Dual-Core Intel Xeon processor 5100 series is ideal for intense computing environments, 32-bit and 64-bit business-critical applications and high-end workstations. Combined with the Intel® 5000 chipset family and Fully Buffered DIMM (FBDIMM) technology, the new Dual-Core Intel Xeon processor 5100 series-based platforms are expected to deliver up to 3 times the performance and over 3 times the performance/watt of previous-generation single-core Intel® Xeon® processors. The new Dual-Core Intel Xeon processor 5100 series-based platforms are expected to deliver up to 2 times the performance and over 2 times the performance/watt of previous-generation dual-core Intel Xeon processors.
Intel® Core™ microarchitecture delivers industry-leading performance and helps build energy-efficient infrastructures with Dual-Core Intel® Xeon® Processor 5100 series

New Intel Core microarchitecture is an innovative microarchitecture, enabling you to build industry-leading dual-core performance and performance-per-watt server and workstation platforms for the data center. This new microarchitecture integrates a more efficient pipeline and memory architecture design for greater processor throughput with power management technologies that reduce power consumption without impeding performance.

Platforms based on the Dual-Core Intel Xeon processor 5100 series also support many new Intel® advanced server technologies that help companies enhance operations, reduce costs, and improve business continuity:

• Intel® Virtualization Technology³ provides hardware assistance for software-based virtual environments to support new capabilities, including 64-bit operating systems (OSs) and applications.

• Intel® I/O Acceleration Technology⁴ (Intel I/OAT), hardware- and software-supported I/O acceleration that improves data throughput.

Confidently deliver more services with hardware-assisted virtualization and enhanced reliability in a 64-bit, dual-core platform

The Dual-Core Intel Xeon processor 5100 series matched with Intel advanced server technologies help IT operations deliver more services in the same power envelope and work more efficiently. Enhanced processor reliability, PCI Express® and FBDIMM memory technology reliability features, and virtualization hardware assistance from Intel Virtualization Technology let you confidently build effective virtual environments. Enhanced virtualization and density optimization allow businesses to concentrate more services in less space and fewer systems.

Proven 64-bit computing of the Dual-Core Intel Xeon processor 5100 series gives you additional application headroom, memory flexibility, and increased security. By supporting larger data sets and both 32- and 64-bit applications, new Dual-Core Intel® Xeon® processor-based servers and workstations allow the smooth migration of your business to 64-bit applications. And, with millions of 64-bit processors already shipped, you know you can depend on Intel’s proven track record to help you make a smooth transition to the next-generation of computing.
For more information on performance, please visit www.intel.com/performance/server/xeon

For more information on Intel® Core™ microarchitecture, please visit www.intel.com/technology/architecture/coremicro
Intel Xeon Processor 5100 Series Overview

Dual processor servers and workstations based on the Dual-Core Intel Xeon processor 5100 series deliver energy-efficient performance, reliability, versatility, and low ownership costs at a variety of price-points.

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual-core processing</td>
<td>• Significant performance headroom, especially for multi-threaded applications, helps boost system utilization through virtualization and application responsiveness.</td>
</tr>
<tr>
<td>Intel® Core™ microarchitecture</td>
<td>• Better performance on multiple application types and user environments at a substantially reduce power envelope.</td>
</tr>
<tr>
<td>Majority of SKUs at 65W</td>
<td>• Significantly lower power (compared to previous generation) helps improve data center density and power/thermal operating costs.</td>
</tr>
<tr>
<td>Ultra-dense, ultra low-power SKUs at 40W</td>
<td>• Low-voltage SKU available at reduced power envelopes will deliver even higher performance per watt — helps reduce power/thermal operating costs and improve data center density.</td>
</tr>
<tr>
<td>4 MB shared L2 cache</td>
<td>• Increases efficiency of L2 cache-to-processor data transfers, maximizing main memory to processor bandwidth and reducing latency. • Entire L2 cache can be allocated to one core.</td>
</tr>
<tr>
<td>1066 and 1333 MHz system bus</td>
<td>• Faster system bus speeds than previous generations for increased throughput.</td>
</tr>
<tr>
<td>Intel® Virtualization Technology™</td>
<td>• New processor hardware enhancements that support software-based virtualization, enabling migration of more environments — including 64-bit OSs and applications — to virtual environments.</td>
</tr>
<tr>
<td>Intel® Extended Memory 64 Technology (Intel® EM64T)™</td>
<td>• Flexibility for 64-bit and 32-bit applications and operating systems.</td>
</tr>
<tr>
<td>Demand-Based Switching (DBS) with Enhanced Intel SpeedStep® technology</td>
<td>• Helps reduce average system power consumption and potentially improves system acoustics.</td>
</tr>
</tbody>
</table>
What is the 5000 Sequence?

At Intel, our processor series numbers help differentiate processor features beyond front-side bus speed and brand name. New advancements in our processors — other than bus speed — like architecture, cache, power dissipation, and embedded Intel technologies, contribute significantly to performance, power efficiency, and other end-user benefits. Our processor sequences will help developers decide on the best processor for their platform designs, and help end-users understand all the characteristics that contribute to their overall experience.

Intel offers four processor number sequences for server applications

<table>
<thead>
<tr>
<th>Processor Sequence¹</th>
<th>Used For</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel® Pentium® 4/Pentium® D processor</td>
<td>Small business, entry, or first server</td>
</tr>
<tr>
<td>Dual-Core Intel® Xeon® processor 5000 sequence</td>
<td>Volume DP servers/workstations based on the Intel Xeon processor</td>
</tr>
<tr>
<td>Dual-Core Intel® Xeon® processor 7000 sequence</td>
<td>Greater scalability than DP platforms with MP enterprise servers based on the Intel Xeon processor MP</td>
</tr>
<tr>
<td>Intel® Itanium® 2 processor 9000 sequence</td>
<td>Maximum performance and scalability for RISC replacement usage</td>
</tr>
</tbody>
</table>

Dual-Core Intel Xeon processor 5100 series

<table>
<thead>
<tr>
<th>Processor Number¹</th>
<th>Speed</th>
<th>Cache Size</th>
<th>Front-Side Bus</th>
<th>Total Dissipated Power</th>
<th>Virtualization Technology¹</th>
<th>Extended Memory 64 Technology¹</th>
<th>Demand-Based Switching</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual-Core Intel® Xeon® processor 5160</td>
<td>3.00 GHz</td>
<td>4M</td>
<td>1333 MHz⁶</td>
<td>80W</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>LGA 771</td>
</tr>
<tr>
<td>Dual-Core Intel® Xeon® processor 5150</td>
<td>2.66 GHz</td>
<td>4M</td>
<td>1333 MHz</td>
<td>65W</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>LGA 771</td>
</tr>
<tr>
<td>Dual-Core Intel® Xeon® processor LV 5148</td>
<td>2.33 GHz</td>
<td>4M</td>
<td>1333 MHz</td>
<td>40W</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>LGA 771</td>
</tr>
<tr>
<td>Dual-Core Intel® Xeon® processor 5140</td>
<td>2.33 GHz</td>
<td>4M</td>
<td>1333 MHz</td>
<td>65W</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>LGA 771</td>
</tr>
<tr>
<td>Dual-Core Intel® Xeon® processor 5130†</td>
<td>2.00 GHz</td>
<td>4M</td>
<td>1333 MHz</td>
<td>65W</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>LGA 771</td>
</tr>
<tr>
<td>Dual-Core Intel® Xeon® processor 5120</td>
<td>1.86 GHz</td>
<td>4M</td>
<td>1066 MHz</td>
<td>65W</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>LGA 771</td>
</tr>
<tr>
<td>Dual-Core Intel® Xeon® processor 5110</td>
<td>1.60 GHz</td>
<td>4M</td>
<td>1066 MHz</td>
<td>65W</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>LGA 771</td>
</tr>
</tbody>
</table>

¹Available in boxed version only
Superior Performance and Performance Per Watt with New Dual-Core Intel® Xeon® Processor 5100 Series

Benchmark Description for SPECWeb2005: SPECweb2005 evaluates the performance of World Wide Web Servers. SPECweb2005 consists of three separate, distinct workloads: Banking, Ecommerce, and Support. The result is the geometric mean of the three submetrics, normalized to a reference platform score.

Configuration Details: Data Source–Published/Submitted results as of May 23, 2006.

- Dual-Core Intel® Xeon® Processor 5160-based platform details: IBM System x3650® Server platform with two Dual-Core Intel Xeon Processor 5160, 3.00 GHz with 4 MB L2 Cache, 1333 MHz system bus, 2x4 GB (1x2x2 GB) FB-DIMM memory, 64-bit Red Hat Enterprise Linux® 3, Update 3, Intel® Embench, Intel Linpack 2.1.2
- Dual-Core Intel® Xeon® Processor 5160-based platform details: Intel preproduction software development platform with two Dual-Core Intel Xeon Processor 5160, 3.00 GHz with 4 MB L2 Cache, dual 1333 MHz system bus, B 8 G B (x8 1x8 G B) 667 MHz FBDIMM memory, Red Hat Enterprise Linux® 4, Update 2, Intel® Embench, Intel Linpack 3.0.1

Benchmark Description for SPECint_rate_base2000*: SPECint_rate_base2000 is a compute-intensive benchmark that measures the integer throughput performance of a computer system carrying out a number of parallel tasks.

Configuration Details: Data Source–Published/Submitted results as of May 19, 2006.

- Dual-Core Intel® Xeon® Processor 2.80 GHz-based platform details: Intel preproduction software development platform with two Dual-Core Intel® Xeon® processors 2.80 GHz with 2x2 MB L2 Cache and 800 MHz system bus and B 8 G (x1 2 G B) DDR2-400 memory, Red Hat Enterprise Linux® 3, Update 3, Intel® Embench, Intel Linpack 2.1.2
- Dual-Core Intel® Xeon® Processor 5160-based platform details: Intel preproduction customer reference board with two Dual-Core Intel Xeon Processor 5160, 3.00 GHz with 4 MB L2 Cache, dual 1333 MHz system bus, B 8 G B (x8 1x8 G B) 667 MHz FBDIMM memory, Red Hat Enterprise Linux® 4, Update 2, Intel® Embench, Intel Linpack 3.0.1

Benchmark Description for SPECfp_rate_base2000*: SPECfp_rate_base2000 is a compute-intensive benchmark that measures the floating point throughput performance of a computer system carrying out a number of parallel tasks.

Configuration Details: Data Source–Published/Submitted results as of May 23, 2006.

- Dual-Core Intel® Xeon® Processor 2.80 GHz-based platform details: Dell PowerEdge® 2850 server platform with Two Dual-Core Intel® Xeon® processors 2.80 GHz with 2x2 MB L2 Cache and 800 MHz system bus and B 8 G (x8 1x8 G B) 667 MHz FBDIMM memory, Red Hat Enterprise Linux® 4, Update 3, Intel® Embench, LS-DYNA mpp970.5434a*
- Dual-Core Intel® Xeon® Processor 5160-based platform details: Intel preproduction customer reference board with two Dual-Core Intel Xeon Processor 5160, 3.00 GHz with 4 MB L2 Cache, dual 1333 MHz system bus, B 8 G B (x8 1x8 G B) 667 MHz FBDIMM memory, Red Hat Enterprise Linux® 4, Update 2, Intel® Embench, LS-DYNA mpp970.5434a*

Benchmark Description for SPECint2000* and SPECfp2000*: SPECint2000* and SPECfp2000* is a compute-intensive benchmark that measures the integer throughput performance of a computer system carrying out a number of parallel tasks.

Configuration Details: Data Source–Published/Submitted results as of May 23, 2006.

- Dual-Core Intel® Xeon® Processor 2.80 GHz-based platform details: Intel preproduction software development platform with two Dual-Core Intel® Xeon® processors 2.80 GHz with 2x2 MB L2 Cache and 800 MHz system bus and B 8 G (x8 1x8 G B) 667 MHz FBDIMM memory, Red Hat Enterprise Linux® 3, Update 3, Intel® Embench, LS-DYNA mpp970.5434a*
Platform Solutions

The following chipsets are optimized for the Dual-Core Intel Xeon Processor 5100 series. Compared to previous-generation chipsets, they deliver higher throughput with dual independent buses, faster memory and I/O bandwidth, and FBDIMM support. In addition, support for Intel® Active Server Manager® and Intel I/OAT help improve overall system performance and manageability.

DP server-supported chipsets

Two chipset versions enable server configuration flexibility for unique business needs and market segments.

• Intel® 5000P chipset: For performance and volume server platforms, this chipset supports dual independent buses for dual-processor applications, 1066 and 1333 MHz system bus speeds, three PCI Express® x8 links (each configurable as two x4 links), FBDIMM 533 and 667 technology, point-to-point connection for Intel® 6321 ESB I/O Controller Hub at 2 GB/s, and Intel® 6700PXH 64-bit PCI hub.

• Intel® 5000V chipset: For value platforms, this chipset supports dual independent buses for dual-processor applications, 1066 and 1333 MHz system bus speeds, one PCI Express x8 link (configurable as two x4 links), FBDIMM 533 and 667 technology, point-to-point connection for Intel 6321 ESB I/O Controller Hub at 2 GB/s, and Intel 6700PXH 64-bit PCI hub.

DP workstation-supported chipset

DP workstations based on the Dual-Core Intel Xeon processor 5100 series are ideal for today's demanding applications in computer aided engineering (CAE), electronic design automation (EDA), digital media, financial analysis, oil and gas exploration, and software engineering. With its large 4M cache size, Dual-Core Intel Xeon processor 5100 series-based workstations provide superior performance for multi-threaded applications.

• Intel® 5000X chipset: For performance and volume workstation platforms, this chipset supports dual independent buses for dual-processor applications, 1066 and 1333 MHz system bus speeds, one PCI Express x8 link (configurable as two x4 links) and one configurable x16 link for graphics support, FBDIMM 533 and 667 technology, point-to-point connection for Intel 6321 ESB I/O Controller Hub at 2 GB/s, and Intel 6700PXH 64-bit PCI hub.

These platform configurations provide flexibility and headroom for future growth in high-end workstations and front-end, small/medium business, enterprise, and high-performance computing (HPC) server deployments, allowing right-sized solutions for today's environments while helping to protect investment in design, integration, and support.

Find out more about Dual-Core Intel® Xeon® processors at www.intel.com/server
continued from page 6

Configuration Details: Data Source: Published/Submitted results as of May 23, 2006.

Dual-Core Intel Xeon Processor 2.80 GHz-based platform details: Fujitsu Siemens Computers PRIMERGY® RX300 S2 server platform: Two Dual-Core Intel® Xeon® processors 2.80 GHz with 2 MB L2 cache and 800 MHz system bus, 4 GB DDR2, Microsoft Windows Server* 2003, Java HotSpot* Server VM (build 1.5.0-0a05) Reference as published at 11,556 bops and 15,886 bops/jvm For more information see http://www.spec.org/spec/jbb2005/results/res2005q4/jbb2005-20051106-000401.html

Benchmark Description for Performance Per Watt Comparison

Benchmark Description for Black-Scholes: The Black Scholes kernel workload is based on a financial modeling algorithm for the pricing of European-style options. The benchmark consists of a kernel that implements a derivative of the Black and Scholes technique.

Intel Xeon Processor 3.60 GHz-based platform details: Intel preproduction Server platform with two 64-bit Intel® Xeon® processors 3.60 GHz with 2 MB L2 Cache and 800 MHz system bus and 8 GB (8x1 GB) DDR2-400 memory, Microsoft Windows Server* x32 Enterprise Edition, Black-Scholes 64-bit version workload.

Dual-Core Intel Xeon Processor 5160-based platform details: Intel preproduction Server platform with two Dual-Core Intel Xeon Processor 5160, 3.00 GHz with 4 MB L2 cache, dual 1333 MHz system bus, 8 GB (8x1 GB) 64-bit server workload.

Benchmark Description for SunGard: SunGard AG® is a financial services application. This workload analyzes a large portfolio of client assets and generates a credit risk evaluation.

Intel Xeon Processor 3.60 GHz-based platform details: Intel preproduction Server platform with two 64-bit Intel® Xeon® processors 3.60 GHz with 2 MB L2 Cache and 800 MHz system bus and 8 GB (8x1 GB) DDR2-400 memory, Microsoft Windows Server* x32 Enterprise Edition, SunGard Adaptiva® Credit Risk 64-bit version workload.

Dual-Core Intel Xeon Processor 5160-based platform details: Intel preproduction Server platform with two Dual-Core Intel Xeon Processor 5160, 3.00 GHz with 4 MB L2 Cache, dual 1333 MHz system bus, 8 GB (8x1 GB) FB-DIMM memory, Microsoft Windows Server* x32 Enterprise Edition, SunGard Adaptiva® Credit Risk 64-bit version workload.

Intel Xeon Processor 3.60 GHz-based platform details: Intel preproduction Server platform with two 64-bit Intel® Xeon® processors 3.60 GHz with 2 MB L2 Cache and 800 MHz system bus and 8 GB (8x1 GB) DDR2-400 memory, Microsoft Windows Server* x32 Enterprise Edition, BEA * JRockit® 5.0 P26.4.0. Result submitted to www.spec.org for review at 96404 bops and 96404 bops/jvm as of May 21, 2006.

Specification and product description at any time, without notice.

License or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability for any direct, indirect, general, special, exemplary, or consequential damages arising out of use of Intel products, including loss of data, or profit, or business interruption, whether or not such damages are foreseen or unforeseen.

Intel technology may require operating systems and/or other software not provided and are sold separately. Third-party software may require additional purchase.

*Other names and brands may be claimed as the property of others.

Printed in USA 0606/KSW/OCG/PP/XK Please Recycle 313481-001US
registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.