RW02 - Addressing industry disruptions in Clinical Trials with Real World Data in lieu of COVID19

Sherrine Eid, Stijn Rogiers, Robert Collins

COVID-19

Impact on Clinical Trials

COVID-19

Impact on Clinical Trials

COVID-19

Impact on Clinical Trials

"... Recruitment and enrolment for most other studies stopped during the early stages of the pandemic..."

"...we must be cognizant that COVID-19 might affect key study outcomes."

These are crucial considerations for study analysis and interpretation.

Potential confounding may be addressed by applying sensitivity analyses.

Synthetic Control Opportunity?

Leveraging Real World Data

Real World Evidence

PHUSE Paper

Using RWE may provide advantages in cost, cohort sizes and ethical considerations.

This PHUSE paper attempts to collate all related information such as sources of RWD (Real-World Data), privacy laws and use cases in one document which can act as a reference point for individuals or companies who wish to design, conduct, and submit studies using RWE (Real-World Evidence).

It includes FDA's current direction and guidance as of the date of this publication.

Ssas

Real World Evidence

Synthetic Control Arms

Save Time and Money in Clinical Trials

Examples in regulatory decision-making

Roche

- European Union coverage requirements for marketing Alecensa (alectinib) in 20 European markets.
- In 2015, Alecensa received <u>accelerated FDA approval</u> as a treatment for a specific form of lung cancer.
- In February 2017 it was conditionally approved in the EU.
- Used a synthetic control arm of 67 patients to provide evidence of relative performance to Ceritinib.
- Advanced coverage of Alecensa by 18 months in 20 European countries.
- **Amgen** <u>accelerated the approval</u> of Blincyto (blinatumomab) for the treatment of a rare form of leukemia.

Synthetic Control Arms - Types

Potential (Pre-COVID) vs. Necessity (Post-COVID)

	External Control Cohort Inception Date	Possible Types of Data Collection	
		Retrospective RWD Collection	Prospective RWD Collection
Contemporaneous External Control	On or after the first patient enrollment in the clinical trial	\odot	(
Historical External Control	Before the first patient enrollment in the clinical trial	\bigcirc	
Hybrid External Control	Varies	\bigcirc	

Example

Theoretical Use Case with **Synthetic** data

Use Case

PARAGLIDE-HF (example)

Use Case

Study Arms and Primary Outcome

Experimental

Patients on Sacubitril/Valsartan

Active Comparator

Patients on Valsartan

Primary Outcome Measures

Proportional change in NT-proBNP from baseline

Use Case

Eligibility Criteria

Inclusion Criteria*

- Patients ≥40 years of age, male or female
- Patients with a diagnosis of acute heart failure
- SBP ≥100mmHg
- Patients will have a NT-proBNP local lab value
- Currently on Valsartan

Exclusion Criteria*

- Currently taking Entresto™
 (sacubitril/valsartan) or any prior use
- Acute coronary syndrome, stroke, transient ischemic attack; cardiac, carotid or other major CV surgery
- COVID-19 diagnosis

Synthea

Real World Data Usage

Disclaimer: For this theoretical use case we used SYNTHETIC patient data.

Identify Synthetic Control Arm

Powered by SAS® Health

SAS® Health Solutions

Cohort Builder

Episode Builder
Data Mapper (e.g. OMOP, CDISC)
Fraud Investigation

SAS® Health Analytic Insight Modules

(aka. SAS® Health App Store)
Payer,
Provider,
Public Health
Life Sciences

SAS® Analytics Platform

Manage Analytical Life Cycle for continuous innovation

https://www.sas.com/en_us/software/health.html

Prepare Data with Programming Interface

SAS & Open Source

Powered by SAS® Health

SAS Viya®: The Python Perspective

SAS Viya®: The R Perspective

https://developer.sas.com/home.html

Define Synthetic Control Arm*

Identify Non-COVID Patients

Enroll Control Arm

Report Baseline Data*

Test Primary Endpoint: NT-proBNP Levels

Test Secondary Endpoint: Myocardial Infarction (MI)

Select the Best Fit Model for Secondary Endpoints

Meet Regulatory Requirements

Submit Code and Logs

Key Considerations

Synthetic Control Arms

- Not universal replacement for conventional control arms
 - Only applicable to well-known, predictable diseases with well-defined Standard of Care
 - RWD information may be difficult to extract or lack quality
 - Design and analytics may not fully control for all systematic issues and biases
- New tools and methodologies are needed to consolidate, organize, and structure RWD to generate research-grade evidence
 - Specific analytical approaches and evolving practices may address some challenges
 - Natural language processing and machine learning can be leveraged in this space.

Quality Checklist for Researchers

Data Sources & Control Methods

External Control Data Sources

- Was the original data collection process similar to that of the clinical trial?
- Was the external control population sufficiently similar to the clinical trial population?
- Did the outcomes definitions of the external control match those of that clinical trial?
- Was the synthetic control data set sufficiently reliable and comprehensive?
- Were there any other major limitations to the dataset?

Synthetic Control Methods

- Did the clinical trial include a concurrent control arm? Is the synthetic control data the only control data?
- How was the synthetic control data matched to the intervention group?
- Were the results robust to sensitivity assumptions and potential biases?
- Were synthetic control comparisons possible for all clinically important outcomes?
- Are the results applicable to your patients?
- Were there any other major limitations to the synthetic control methods?

Next Step

Use real Real World Data...

The COVID-19 research database enables public health and policy researchers to use real-world data to better understand and combat the COVID-19 pandemic.

The database is a pro-bono, cross-industry collaborative, composed of institutions donating technology services, healthcare expertise, and de-identified data. The database is a public-private consortium

Do you want to join our efforts? Let us know!

https://covid19researchdatabase.org/

Any Questions?

https://www.linkedin.com/in/sherrineeid/ Sherrine.Eid@sas.com

https://www.linkedin.com/in/stijnrogiers/ stijn.rogiers@sas.com

https://www.linkedin.com/in/srobertcollins/ Robert.Collins@sas.com

sas.com

Thank you!

sas.com

