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What is Intra-Patient Variability

• The fluctuations in biomarker measurements over time.

• Fluctuations typically occur without clear cause.

• High Intra-Patient Variability is associated with poor long-term outcome.
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Today

• Clinical Trials rely on point estimates throughout the trial.

– Usually compare a BASELINE estimate to a FINAL estimate

• At best, a clinical trial could have up to 60 measurements of a particular 
biomarker

• Problem

– Intra-Patient Variability is not captured

– Is the measured baseline value the normal value or an abnormal reading for any given subject…now 
what about for 1,000?

– How can researchers truly determine efficacy of a product when Intra-Patient Variability was NOT 
accounted for?
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Contributing Factors

• Data limitations

• Technology limitations

• Methodology limitations
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Why Now?

• New (acceptable) sources of data

• New technology

• New methods
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Who Cares?
Transplant Recipients

van Gelder, T. A new method to calculate intra-patient variability in tacrolimus concentrations. Br J Clin Pharmacol. 2022; 88( 6): 2581- 2582. 
doi:10.1111/bcp.14865



Copyr ight © SAS Inst i tute Inc.  Al l  r ights reserved.

…and more
• Patients with Breast Cancer Lymph Node Metastases

– Diest, P., Fleege, J., Matze-Cok, E. and Baak, J. (1992), Intra-patient variation between breast cancer axillary lymph node 
metastases using quantifiable features. Histopathology, 21: 257-262. https://doi.org/10.1111/j.1365-
2559.1992.tb00384.x

• Patients with Breakthrough Cancer Pain

– Intra-and inter-patient variability of baseline pain intensity scores during breakthrough pain in cancer. Allen W, 
Burton, Marilene Filbet, Ravi Tayi, Michael Sidney Perelman, and Alastair D. Knight. Journal of Clinical 
Oncology 2012 30:15_suppl, e19578-e19578

• Patients with Diabetes

– F. Iacono, L. Magni and C. Toffanin, "Personalized LSTM models for glucose prediction in Type 1 diabetes subjects," 2022 
30th Mediterranean Conference on Control and Automation (MED), 2022, pp. 324-329, doi: 
10.1109/MED54222.2022.9837153.

• Patients with Parkinson’s Disease

– Wu G, Baraldo M, Furlanut M. Inter-patient and intra-patient variations in the baseline tapping test in patients with 
Parkinson's disease. Acta Neurol Belg. 1999 Sep;99(3):182-4. PMID: 10544726.

• Patients with COPD

– Sapey E, Bayley D, Ahmad A, et alInter-relationships between inflammatory markers in patients with stable COPD with 
bronchitis: intra-patient and inter-patient variabilityThorax 2008;63:493-499.

https://doi.org/10.1111/j.1365-2559.1992.tb00384.x
https://doi.org/10.1111/j.1365-2559.1992.tb00384.x
https://ascopubs.org/doi/abs/10.1200/jco.2012.30.15_suppl.e19578
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The Concept

Interpatient 
Variability

Intra-patient 
Variability
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Methods

• ANCOVA

• Chi Square

• Mann-Whitney U

• Linear Regression

• Dynamic structural equation modeling

• Deep learning (image analytics)

• Co-efficient of Variation

• Edge computing

• Machine Learning (ML)

• Artificial Intelligence (AI)

• Deep Learning (DL)

Previous “Novel”
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Example: Glycemic Variability

Guillermo E. Umpierrez, Boris P. Kovatchev, Glycemic Variability: How to Measure and Its Clinical Implication for Type 2 Diabetes, Am J of the Med Sci, 
Volume 356, Issue 6, 2018, 518-527, ISSN 0002-9629, https://doi.org/10.1016/j.amjms.2018.09.010.
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Glycemic Variability

Guillermo E. Umpierrez, Boris P. Kovatchev, Glycemic Variability: How to Measure and Its Clinical Implication for Type 2 Diabetes, Am J of the Med Sci, Volume 356, 
Issue 6, 2018, 518-527, ISSN 0002-9629, https://doi.org/10.1016/j.amjms.2018.09.010.
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Methods

• Ketone bodies were modelled using 
a random effects model

• Intra- and inter-subject variability 
were characterized using a population 
intraclass correlation coefficient.

• Associations between changes in 
serum ketone bodies and changes in 
other measurements were assessed 
using a stepwise regression model.

• Manual process

Polidori, D, Iijima, H, Goda, M, Maruyama, N, Inagaki, N, Crawford, PA. Intra- and inter-subject variability for increases in serum ketone 
bodies in patients with type 2 diabetes treated with the sodium glucose co-transporter 2 inhibitor canagliflozin. Diabetes Obes
Metab. 2018; 20: 1321– 1326. https://doi.org/10.1111/dom.13224

https://doi.org/10.1111/dom.13224
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Imagine
We could connect to the whole person in real time

Leverage connections to Electronic Medical Records and devices

Leverage cloud storage repository and computing

Extract measures

Analyze variability and patterns

Decide
Alert Care Team

Flag data point
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Today
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Data and Architecture

• Real World Data 
– EHR, Devices, and IoT, etc.

– Interoperability (SMART, FHIR, API, etc.)

– Digital endpoints (SMART watches, phones, sensors, etc.)

– Electronic Patient Reported Outcomes (ePRO) and Electronic Data Capture (EDC) integration

– Internet of Medical Things (IoMT)

• Scalable and Flexible Cloud computing
– In-memory distributed processing

– High compute engines

– Massive Parallel Processing

– Cloud-based Data Management

– Expanding ecosystems
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Advanced Analytics

• Advanced analytics

– Machine Learning

– Artificial Intelligence

– Automatically Inferred Clusters for bootstrapping personalization of supervised detection methods

– Supervised and unsupervised ML to detect context and infer proximal outcomes

– Improved digital extraction and computational phenotyping and interpretability

– Deep Learning

– Edge Computing

– Event Stream Processing
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Active community

Flexible, powerful architecture

Rapid Innovation

No lock-in

Reliability – Security – Scalability

Integrated analytics hub

In stream, in memory, in database, in cloud 
options

One place for data, analytics, and deployment

High agility

Open 
Source

New algorithms being released frequently

SAS 

Monitor, manage as much data & models as you need 

Ability to “fail fast” and to do prototyping

Rapid model creation / many 
techniques

Vetted algorithms

Open to users with varying 
technical background

Ongoing technical support

Low cost barrier to entry

Ability to start small

Business analysts, executives, data scientists, etc.

Access to a network of experts Provides multiple ways to solve a problem

Free to download and start using

Many websites with contributing users

Switch between technologies as needed

An integration of the two technologies, SAS and open source, unlocks a whole spectrum 
of analytics to different user backgrounds, stimulating the democratization of analytics.

Benefits of SAS and Open Source
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Working with the language of your choice – interoperability is key
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Digital Transformation

• Trial Design

– Micro-randomization

– Multi-modal patient engagement 

– Trial optimization

– Address disparities

– Decentralized/Individualized trials

Natural and ethical evolution
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Current Application -Methods

• Leveraged Synthea data- SyntheticMass

• Connected to data using API connections

• Leveraged FHIR adaptors across sources

• Queried patient records directly through API connection

• Evaluated validity criteria and pulled final patient cohort

• Visually analyzed geographic distribution of demographic characteristics and all 
SDOH variables 

• Can now assess all patient level data and calculate intra-patient and interpatient 
variability, identify level of DEI achieved, and even apply to External/Synthetic 
Control Arms
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Conclusion

• Study designs could accommodate and account for more precise measurement of 
a primary or secondary variable with better access to novel data sources, more 
sophisticated methods and technology accommodating intra-patient variability.

• The natural and ethical evolution of efficacy assessment warrants researchers to 
capitalize and leverage novel methods that are no longer a theory but available 
and have already been put into practice. 

• We can impact the accuracy and precision of efficacy evaluation

• We can shorten clinical trial duration and lower cost leveraging RWD.
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Thank you !
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