ПРОДУКТЫ И РЕШЕНИЯ / Управление аналитическими моделями

Управление аналитическими моделями

SAS® Model Manager: создание, настройка и внедрение аналитических моделей

Аналитические модели представляют собой ценный актив любой организации, поскольку способствуют высокому качеству принимаемых решений, и, как любой другой актив, они требуют управления и администрирования. SAS Model Manager позволяет создать среду для управления полным жизненным циклом аналитических моделей, автоматизирует и ускоряет рутинные операции по их созданию, настройке, контролю и внедрению., Чтобы обеспечить необходимую точность результатов анализа, SAS Model Manager позволяет производить перенастройку и перетренировку моделей, кроме того, при переносе моделей в СУБД для дальнейшего применения SAS Model Manager автоматически проводит их валидацию во избежание ошибок, теоретически возможных при ручном экспорте.

Преимущества

  • Сокращение времени на управление моделями и их внедрение
  • Контроль актуальности и точности моделей
  • Контроль соответствия требованиям регулятора
  • Повышение эффективности работы с аналитическими моделями в организации

Возможности

  • Централизованное и безопасное хранилище моделей
  • Управление бизнес-процессом создания и использования моделей
  • Валидация скорингового кода перед передачей его в промышленное использование
  • Мониторинг работы моделей и отчетность по их производительности в ходе тестирования и промышленного использования
  • Управление полным жизненным циклом аналитической модели

Скриншот

Создавайте задачи по управлению моделями с помощью SAS Workflow Studio.



Преимущества

  • Expedites the management and deployment of "best" models into production. SAS Model Manager provides an efficient and repeatable process for registering, validating, deploying, monitoring and retraining models. Accountability metrics and version control status reports track who changes what, when control is passed from one area to another, etc. Models can be monitored from their creation to deployment into real-time or batch scoring systems until they are retired.
  • Ensures analytical models are up-to-date and accurate. With its iterative framework, SAS Model Manager ensures analytical models are tested and compared, performance benchmarking reports are generated and as models are deployed, performance metrics are pushed to established reporting channels. Modelers can easily collaborate and reuse models, and automated alerts can be set to detect when the scoring results are changing over time, indicating model decay.
  • Enables auditability and compliance to meet regulatory requirements. Unique compliance and validation reporting capabilities in SAS Model Manager are highly sought-after by those facing heightened regulatory requirements. A centralized model repository, lifecycle templates and version control provide visibility into analytical processes and ensure that they can be audited to comply with internal governance and external regulations. In addition, new Basel II risk model validation reports help organizations gain transparency by assessing the soundness of internal credit risk measurement systems, tracking down anomalies and answering regulator inquiries on demand.
  • Streamlines analytical modeling processes to generate consistent and timely results. SAS Model Manager provides an easy-to-access Web-based client (the SAS Workflow Console) that provides an automated and collaborative model management process. Users can track the progress through each step of the modeling project(s), and can create multiple, customized workflows for different types of models. Different users touching or interpreting a model will get a unified view of its current stage with access to meaningful information that will help them take relevant actions.

Возможности

Central, secure repository for managing analytical models
  • Project-based storage of models.
    • Set up and maintain separate versions of champion and challenger models within a project:
      • Champion model is automatically set as a default version. One only champion model is produced per project.
      • Select challenger models to the project champion model.
      • Monitor and publish challenger and champion model packages.
    • Map prerequisite data sources used for model reporting and score code testing.
    • Accounting and auditability:
      • Event logging of all major actions.
      • User-defined notes.
      • Ability to attach documents (Microsoft Word documents, Microsoft Excel spreadsheets, HTML files, etc.), and add version control.
  • Prebuilt templates for registering standard data mining models, including prediction, segmentation, classification and scorecards.
  • User-defined templates.
  • Optional batch model registration support for bulk loading.
  • General properties such as model name, type of algorithm, creation date, modification date, etc.
  • Advanced view of SAS® Enterprise Miner™ process flow diagram.
  • Model validation reports are provided for Basel II risk models, including probability of default (PD) and loss given default (LGD).
  • Provide more control in setting input and output variables to define the project.
  • Import multiple Base SAS, SAS/STAT® and SAS Enterprise Miner models, including training code, score logic, estimate tables, and target and input variables.
  • Import select SAS/STAT linear models from a SAS package file (.SPK), including LOGISTIC, GENMOD, REG, GLMSELECT, GLIMMIX and MIXED.
  • Import select SAS High-Performance Analytics Server models from a SAS package file (.SPK), including HPBIN, HPREDUCE, HPNEURAL, HPLOGISTIC and HPREG.
  • Import and export PMML model code with inputs and outputs. Create DATA step score code for PMML models for inclusion in scoring tasks, reporting and performance monitoring.
  • Register, compare, report, score and monitor models built in R.
  • Repository metadata summary report with information such as number of models, number of scoring jobs, model-aging profiles, and frequency counts of how often each target and input variable has been used across the model portfolio.
  • Model repository can be queried by attributes used to store models such as type of algorithm, input or target variables, model creator, model ID, etc.
  • Secure, reliable model storage and access administration, including backup and restore capabilities, overwrite protection, event logging, and user authentication/access privilege administration.
Analytical workflow management
  • Create custom processes for each model using SAS Workflow Studio – a Web-based client:
    • SAS Workflow Studio is used to design the model approval process that is imported and managed through the SAS Model Manager Workflow Console.
    • Provide collaboration across teams with automated notifications.
    • Define, manage and track complete analytic life cycles.
    • Enable enterprise access and collaboration with the Web interface.
    • Increase efficiency with process management capabilities.
    • Associate milestones with activities as part of the workflow process definition.
  • Perform common model management tasks using the SAS Model Manager Workflow Console:
    • Import, view and attach supporting documentation and publish models.
    • Set a project champion model and flag challenger models.
    • Publish models for scoring purposes.
    • View dashboard reports.
Scoring-logic validation before models are exported to production
  • Define test and production score jobs using required inputs and outputs:
    • Map required inputs and outputs.
    • Add SAS code.
    • View log and results tables.
    • Create interactive graphs.
  • Scoring task scheduler:
    • Schedule scoring tasks to run at certain times and dates on available servers.
    • Specify where to save the scoring task output and view job history.
    • Export models to SAS Metadata Repository.
  • Production scoring:
    • Model Scoring Task is available in SAS Data Integration Studio and SAS® Enterprise Guide®.
    • Publish models directly to SAS Real-Time Decision Manager.
  • Publish model updates to different scoring channels:
    • Notify subscribers via email.
    • Store results to a file system or post to a corporate intranet.
  • In-database model deployment:
    • Using integration with SAS Scoring Accelerator, publish and validate scoring functions for native scoring within databases.
    • Publish model scoring files using a vendor-defined function in DB2, EMC Greenplum, IBM Netezza and Teradata.
    • Publish model scoring files using the SAS Embedded Process in Aster, DB2, Oracle and Teradata.
Monitoring and reporting on model performance during test and production life cycles
  • Model performance reports:
    • Variable distribution plots, characteristic charts, stability charts, lift charts, Receiver Operating Curve (ROC) charts, Kolmogorov-Smirnov (K-S) charts and Gini charts.
    • For prediction model function that has an interval target.
    • For champion and challenger model comparisons.
  • Model comparison reports:
    • Model profile report, delta report, dynamic lift report, interval target variable report, etc.
    • Ad hoc SAS code report editor.
    • HTML, RTF, PDF and Microsoft Excel output formats.
    • Aggregated report to combine multiple reports from the Reports folds into a single report.
  • Training summary data set report showing frequency and distribution charts to validate data set variables.
  • Easy-to-use wizard for creating performance-monitoring dashboards:
    • Update all reports or update reports for projects that have new performance data.
  • Model retraining allows users to create new challenger models based on SAS Enterprise Miner models currently registered in a project, and new data and variables.
  • Perform scoring and performance monitoring on a database appliance (Teradata or EMC Greenplum) that has been configured for use with SAS High-Performance Analytics Server:
    • Calculate model performance statistics for classification and prediction models.
Overall lifecycle management of analytical models
  • Model lifecycle templates for collaborative project management:
    • Basic, standard, extended and user-defined.
    • Model Lifecycle Template editor for user-defined templates.
    • Task-oriented milestone completion and approval signoff.
  • Progress-completion status reports.

Скриншоты

Screenshot
Easily perform common model management tasks using SAS Workflow Studio.

The SAS Workflow Console uses a step-by-step process to help users perform common model management tasks such as importing and viewing models, attaching documentation and publishing models. Users can select a project champion model and optionally flag challenger models.

Увеличить

Screenshot
SAS Model Manager's easy-to-use GUI.

Build more models faster with SAS Model Manager’s easy-to-use GUI.

Увеличить

Screenshot
Dashboards let you track performance across multiple projects.

Performance monitoring dashboards allow users to track the performance across multiple projects quickly, and enable teams to focus on projects that need the most immediate attention. The software includes an easy-to-use GUI to define the indicators and ranges.

Увеличить

Системные требования

Host Platforms/Server Tier
  • HP/UX on Itanium: 11iv3 (11.31)
  • IBM AIX R64 on POWER architecture 7.1
  • IBM z/OS: V1R11 and higher
  • Linux x64 (64-bit): Novell SuSE 11 SP1; Red Hat Enterprise Linux 6.1; Oracle Linux 6.1
  • Microsoft Windows on x64 (64-bit):
    Desktop: Windows 7* x64 SP1; Windows 8** x64
    Server: Windows Server 2008 x64 SP2 Family; Windows Server 2008 R2 SP1 Family; Windows Server 2012 Family
  • Solaris on SPARC: Version 10 Update 9
  • Solaris on x64 (x64-86): Version 10 Update 9; Version 11
Client Tier
  • Microsoft Windows (64-bit): Windows 7* x64 SP1; Windows 8** x64
Middle Tier
  • HP/UX on Itanium
  • IBM AIX on POWER
  • Linux x64 (x86-64)
  • Microsoft Windows x64 (x86-64)
  • Solaris (SPARC and x64)
Supported Web Browsers
  • Internet Explorer 9: Windows 7 (32-bit and x64 32-bit Web browsers)
  • Internet Explorer 10: Windows 7 and Windows 8 (32-bit and x64 32-bit Web browsers)
  • Firefox 6 and up: Windows 7 and Windows 8 (32-bit and x64 32-bit Web browsers); Linux x64: RHEL 6 and SLES 11 (32-bit Web browsers)
  • Chrome 15 and up: Windows 7 and Windows 8 (32-bit and x64 32-bit Web browsers); Linux x64: RHEL 6.1 and SLES 11 SP 1 (32-bit Web browsers)

You can also review the Third-Party Support page for details about requirements of third-party software for use with SAS 9.4.

Required/Not Included Software
  • Base SAS software
  • SAS Enterprise Model Management is an inclusive bundle that contains Base SAS, SAS/STAT and SAS Enterprise Miner software

* NOTE: Windows 7 supported editions are: Professional, Ultimate and Enterprise.
** NOTE: Supported editions include: Windows 8, Windows 8 Pro, Windows 8 Enterprise.

Хотите узнать больше?

Позвоните нам по телефону в Москве +7 (495) 937-41-51 или отправьте вопросы на адрес info@rus.sas.com.