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1. Introduction 

In recent years there has been much interest and effort extended in using longitudinal student 

achievement data to measure the influence of various educational entities on the rate of student 

academic progress for both formative and summative evaluations. These efforts have arisen from 

different historical academic quantitative initiatives. The most prominent of these approaches can 

be placed under two broad categories. Even though others have pursued various aspects of the 

work, the work of Raudenbush and Bryk (2002) and Goldstein (2003) with their approach based 

on hierarchical linear models and the work of Sanders, et al (1997) under the banner of value-

added assessment represent these two major categories. In both categories there is an attempt to 

exploit the relationships that exist among test scores over time at the student level. However, 

there are major “real world” problems that exist even within the best-constructed longitudinally 

merged database that require the analyst to make important decisions that indeed determine the 

inference space to which the resulting estimates may be applied. Some of the major issues that 

must be dealt with are: 1. how are fractured student records to be used; 2. how are data from 

different test sources to be used; 3. how are non-vertically scaled test data to be used; 4. how are 
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data from students who move among buildings to be used; 5. at the classroom level how are team 

teaching, departmentalized and self-contained classroom instruction to be accommodated. It is 

recognized that not all of these issues are germane in every application of longitudinal modeling 

for assessment purposes, but they represent examples of important issues that must be addressed.  

While measures of individual student progress already constitute an integral part of the 

process of estimating the effects of educational entities referred to above, there has been a 

growing interest in the measurement of individual student progress toward various academic 

standards for a variety of other purposes. Several different approaches have been proposed for 

doing this (some to be presented at this conference). It is this aspect that we wish to focus on 

using statistical models which, while longitudinal, might not be considered to be “growth 

models” in the traditional sense. We hope to show why these models are useful and perhaps 

superior, citing their advantages relative to some of the alternative growth models. We plan to 

emphasis the advantages in consideration of the “real world” problems mentioned above.  

2. Some Longitudinal (Growth) Models 

In the most common usage of the term presently, a “growth model” includes an explicit 

equation describing student academic growth over time — that is, “time” appears explicitly in 

the model (where, in educational applications, “time” typically represents Year and/or Grade). 

Because of the hierarchical nature of student data, recent growth models have mostly been 

hierarchical linear models (HLMs). For simplicity in describing these models, we will keep the 

hierarchy simple — students nested within schools — ignoring their nesting within classrooms 

within schools. This has been fairly common in practice because information on which teachers 

taught which students has often been unavailable to the analysts. Historically, because of 

software limitations, a “nested” model has been used, in which students were assumed to stay in 

the same school over time. Recent examples in which the nested model has been used include 

Kiplinger (2004), Doran and Izumi (2004), and Stevens (2005). More recently, software for 

“cross-classified” models has become available, allowing for the possibility that students may 

change schools from year to year. An example is Ponisciak and Bryk (2005). Both models are 

described in Raudenbush and Bryk (2002: chapter 8, p. 237-245; chapter 12, p. 389-396). We 

briefly describe each model.  
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2.1  Nested model 

Shown below is a generic nested model using the notation of Raudenbush and Bryk (2002). In 

this model, “i” identifies the student, “j” identifies the school within which the student is nested, 

and “t” is “time” (Year/Grade), often coded as t = 0, 1, 2, … The explicit growth model of a 

student’s scores over time is given in the level-1 equation; here a linear model is used. The level-

2 equations account for variation in intercepts and slopes among students within schools. 

Variable X is a student-level characteristic; in practice there may be multiple X variables: 

minority status, poverty status, special education status, initial achievement level, etc. The level-

3 equations account for variation among schools. Variable W is a school-level characteristic; in 

practice, there may be multiple W variables: percent minority, percent in poverty, mean initial 

achievement level, etc.  

   Level-1: Ytij = π0ij + π1ij·t + εtij. 

   Level-2: π0ij = β00j + β01j Xij + r0ij, 

 π1ij = β10j + β11j Xij + r1ij. 

   Level-3: β00j = γ000 + γ001 Wj + u00j, 

 β01j = γ010 + γ011 Wj + u01j, 

 β10j = γ100 + γ101 Wj + u10j, 

 β11j = γ110 + γ111 Wj + u11j. 

After exploratory modeling, some of the terms in the above model may be dropped (non-

significant fixed-effects, random effects with negligible variability). For example, the γ011·Wj, 

u01j, γ111·Wj, and u11j terms are often omitted, producing a final combined model such as the 

following:  

     Ytij = (γ000 + γ001 Wj + γ010 Xij + u00j + r0ij) + (γ100 + γ101 Wj + γ110 Xij + u10j + r1ij)·t + εtij. 

See Raudenbush and Bryk (2002), Kiplinger (2004), Doran and Izumi (2004), and Stevens 

(2005) for additional information and examples.  
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2.2  Cross-classified model 

Shown below is a simple, unconditional (no X or W variables), two-level cross-classified 

model. As in the nested model, the explicit growth model for a student is given by the level-1 

equation. The level-2 equations contain the random variation among students in the intercepts 

and slopes of their growth curves (the “r” variables), and it also contains the “school effects” (the 

“u” variable). It is because schools and students are crossed rather than nested that they both 

appear in the same level of this hierarchical model. Conceptually, the “school effects” are 

expressed as “deflections” of the growth curve upward or downward; i.e., they affect the 

intercept (level) of the curve but not the slope (growth rate).  

   Level-1: Ytij = π0ij + π1ij·t + εtij. 

   Level-2: π0ij = θ0 + r0i + u0j, 

 π1ij = θ1 + r1i. 

   Combined: Ytij = (θ0 + r0i + u0j) + (θ1 + r1i)·t + εtij. 

A problem with the above model is that the “school effect” disappears at the end of each 

school year. Shown below is a more realistic model which treats the school effects as 

cumulative. Such a model is conceptually no more complicated than the one above, but the 

notation is more challenging. For additional generality, the model below also includes one 

student-level characteristic (Xi) and one school-level characteristic (Wj). In this model, Dhij is a 

dummy variable with Dhij=1 if student “i” was in school “j” at time “h”, otherwise Dhij=0. 

   Level-1: Ytij = π0ij + π1ij·t + εtij. 

   Level-2: π0ij = θ0 + β0 Xi + r0i + ∑j ∑h≤t Dhij (γ0 Wj + u0j), 

  π1ij = θ1 + r1i. 

   Combined: Ytij = [θ0 + β0 Xi + r0i + ∑j ∑h≤t Dhij (γ0 Wj + u0j)]  +  [θ1 + r1i]·t  +  εtij. 

A common feature of these growth models, whether nested or cross-classified, is that the 

response variable (Y) represents a single characteristic that “grows” over time; that is, the test 

scores must be measured on a continuous vertically-linked scale. It is also necessary to specify 

an explicit growth function. Linear growth functions are quite popular because of their simplicity 
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(which is why we have used them here), but non-linear functions can also be used. In contrast, 

the approach we describe below avoids these limitations. 

3. EVAAS® Projection Methodology—A different approach 

3.1  The methodology.  The purpose of the EVAAS projection methodology is to provide an 

estimate of an individual student’s academic achievement level at some point in the future under 

the assumption that this student will have an average schooling experience in the future. (Note 

that in EVAAS applications we have occasion to obtain “predictions” both for future tests a 

student may take and for tests a student has already taken — residuals from the latter are useful 

for diagnostic purposes. It is often helpful to distinguish between the two by calling the former 

“projections” and the latter “predictions.”) The basic methodology is simply to use a student’s 

past scores to predict (“project”) some future score. At first glance, the model used to obtain the 

projections appears to be no more complex than “ordinary multiple regression,” the basic 

formula being: 

   Projected_Score  =  MY + b1(X1 − M1) + b2(X2 − M2) + ...  =  MY + xi
T b 

where MY, M1, etc. are estimated mean scores for the response variable (Y) and the predictor 

variables (Xs). However, several circumstances cause this to be other than a straightforward 

regression problem. (1) Not every student will have the same set of predictors; that is, there is a 

substantial amount of “missing data.” (2) The data are hierarchical: students are nested within 

classrooms, schools, and districts, and the regression coefficients need to be calculated in such a 

way as to properly reflect this. (3) The mean scores that are substituted into the regression 

equation also must be chosen to reflect the interpretation that will be given to the projections. As 

noted above, in EVAAS applications a projection is the score that a student would be expected to 

make assuming that the student has the average schooling experience in the future. The means 

should therefore be those of an average school within the population of schools of interest. Also, 

given this interpretation, the nesting needs to be carried only to the school level (students within 

schools); it is not necessary to carry it to the classroom level.  

The missing data problem can be solved by finding the covariance matrix of all the predictors 

plus the response, call it C, with submatrices CXX, CXY (and CYX = CXY
T), and CYY. The regression 

coefficients (slopes) can then be obtained as b = CXX
−1 CXY. For any given student, one can use 
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the subset of C corresponding to that student’s set of scores to obtain the regression coefficients 

for projecting that student’s Y value. Because of the hierarchical nature of the data (the second 

problem), the covariance matrix C must be a pooled-within-school covariance matrix. We obtain 

this matrix by maximum likelihood estimation using an EM algorithm (to handle missing values) 

applied to school-mean-centered data. Means for an “average school” are obtained by calculating 

school-mean scores and averaging them over schools. For brevity, we refer to the elements of C, 

along with the vector of estimated means, as the “projection parameters.” Generally, we obtain 

the projection parameters using the most recent year’s data. That is, we use students who have a 

Y value in the most recent year and X values from earlier years to get the projection parameters. 

Projections are then obtained by applying these parameters to students who have X values in the 

current year (and earlier years) but no Y value. 

Note that, unlike the growth models described above, the EVAAS methodology does not 

require vertically linked data nor does it need to assume a linear growth function (or any other 

specific growth function). Instead, what is required are good predictors of the response variable. 

The predictors need not be on the same scale with the response or with one another. Potentially, 

they could be test scores from different vendors and even in different subjects from the response. 

This gives the EVAAS methodology considerable flexibility. 

3.2  A connection to “growth models.”  Consider the following simplified two-level nested 

linear growth model where “i” identifies a student and “t” is time: 

   Level-1: Yti = π0i + π1i·t + εti. 

   Level-2: π0i = β00 + r0i, 

  π1i = β10 + r1i. 

   Combined: Yti = (β00 + r0i) + (β10 + r1i)·t + εti  =  (β00 + β10·t) + (r0i + r1i·t + εti)  =  µt + δti. 

Recall that the “projection parameters” for the EVAAS methodology consist of a vector of 

estimated means plus an estimated covariance matrix. The final combined model above has this 

same structure. The collection of µt values constitutes a vector of means, and the “errors” (δti) are 

correlated. Specifically, the error covariance matrix for the i-th student is 
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   Ci = var(δi) = Zi T Zi
T + Iσ2   where 

   σ2 = var(εti),   assumed to be the same for all “t” and “i”;  

   T = var({r0i, r1i}),   assumed to be the same for all “i”;  

   Zi has two columns: a column of “1”s (intercept column) and a column of “t”s.  

However, there are important differences between the growth model and the EVAAS model in 

the nature of the means and covariances. (1) The estimated means in the EVAAS model need not 

fall along a straight line (or follow any other specific functional form); indeed, as already noted 

they need not be on the same scale or even in the same subject. (2) The covariance matrix in the 

EVAAS model is completely unstructured while the one from the linear growth model has a 

specific structure as shown above. Nevertheless, given the structural similarity of the two models 

in those cases where either model may be applied, it is of interest to compare their performance 

in making projections. This is addressed in the next section.  

3.3  Simulation results.  In order to better evaluate the differences between the EVAAS model 

and the linear growth model, a small simulation study was done. Yti values were generated for 

2500 students on 4 occasions (i = 1, …, 2500 and t = 0, 1, 2, 3) using the nested linear growth 

model of section 3.2 with β00 = 400 and β10 = 100, producing means (µt) of 400, 500, 600, 700. In 

addition, σ2 = var(εti) = 52 = 25, τ00 = var(r0i) = 152 = 225, τ11 = var(r1i) = 52 = 25, τ01 = cov(r0i, r1i) = 

0. (Additional simulations were done in which r0i and r1i were either positively or negatively 

correlated; results were similar to those reported here.) Projections for t=3 were then obtained 

using the nested linear growth model and using the EVAAS model. For each model, the 

projected values were compared to the actual Y3i values using the mean prediction error (MPE), 

also called bias, calculated as  ∑ [projected(Y3i) − Y3i] / 2500, and using the mean squared 

prediction error (MSPE) calculated as  ∑ [projected(Y3i) − Y3i]2 / 2500. Ideally, MPE should be 

zero, indicating unbiased projections; and a smaller MSPE indicates better performance. 

Implementing the simulation highlights another difference between the EVAAS model and 

the growth model. In the EVAAS model, two different cohorts of students are required. One 

cohort, consisting of students who have already taken the t=3 test, is used to obtain the projection 

parameters. The parameters are then applied to a second cohort of students who (in actual 

applications) have not yet taken the t=3 test (although, in the simulation, we know their t=3 

scores). Consequently, in the simulation, two different sets of 2500 scores were generated for the 
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EVAAS model. In contrast, the linear growth model requires slopes and intercepts for those 

students whose t=3 scores are going to be projected. Consequently the model parameter 

estimates must come from the same cohort of students whose scores are to be projected. This is 

the second cohort of students who would not yet have taken the t=3 test. In the simulation, this 

scenario was implemented by using the t=0, 1, 2 data from the second cohort to estimate the 

growth model parameters. These parameters were then used to project the score at t=3. 

Results from this simulation are shown in the first row (“Linear-1”) of Table 1 (the other 

rows are described below). What is noteworthy here is that the two models (labeled HLM and 

EVAAS in the table) performed equally well. Both produced essentially unbiased projections 

(MPE near zero), and the MSPEs were virtually identically. Indeed, the projections themselves 

were nearly identical. The “Max Abs Diff” column shows the magnitude of the largest difference 

between the projection from the growth model and the projection for the same student from the 

EVAAS model. In this case, the projections differed by less than half a point, at the most, in a 

data set in which the t=3 scores had a standard deviation of approximately 16.6. 

The initial (“Linear-1”) simulation represents a “best case scenario” in that all the 

assumptions of the models were met. Additional simulations were done to examine the 

consequences of violating the model assumptions. An examination of the pattern of scores across 

grades (along the 50th or any other percentile) for any number of large scale, vertically linked 

standardized tests reveals that nonlinearity is the rule rather than the exception. Thus it seemed 

important to examine the consequences of nonlinearity. The data for these additional simulations 

were generated with using the model 

     Yti = µt + r0i + εti. 

As before, σ2 = var(εti) = 25 and τ00 = var(r0i) = 225. For µt, three different specifications were 

used in order to control the degree of nonlinearity. First, as a reference, a linear growth curve 

was used with µt = {400, 500, 600, 700}, the same as in the previous simulation. This is referred 

to as “Linear-2” in Table 1. It differs from “Linear-1” in that the data were generated with 

random intercepts but without random slopes, resulting in less overall variation. This resulted in 

a smaller MSPE for both models, but otherwise the results were comparable to the “Linear-1” 

results. 
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Second, a “negligibly nonlinear” growth pattern, labeled “Nonlinear-1,” was used with µt = 

{400, 505, 605, 700}. If these values are plotted against time, the nonlinearity is not evident to 

the naked eye. The results for the EVAAS model were the same as for “Linear-2.” This was 

expected since the EVAAS model does not assume linearity. For the HLM linear growth model, 

however, the results were quite different. The projections were biased, with the projected scores 

averaging about 8 points higher than the actual scores; and the MSPE was about three times as 

large as for the EVAAS model. 

Third, a “modestly nonlinear” growth pattern, labeled “Nonlinear-2,” was used with µt = 

{400, 510, 610, 700}. Again, as expected, the EVAAS model results were the same as for 

“Linear-2.” For the HLM linear growth model, the amount of bias in the projections doubled to 

over 16 points, and the MSPE grew to nearly ten times the size of the MSPE for the EVAAS 

model. 

 

Table 1.  Growth Curve Simulation Results  
  MPE 

HLM 
MPE 

EVAAS 
MSPE 
HLM 

MSPE 
EVAAS 

Max Abs 
Diff 

Linear-1 −0.19 −0.11 65.1 65.1 0.47 
Linear-2 −0.19 +0.14 32.0 32.0 0.55 

Nonlinear-1 +8.15 +0.14 98.3 32.0 8.37 
Nonlinear-2 +16.48 +0.14 303.5 32.0 17.05 

Nonlinear-1 / Linear-2 −0.19 −3.02 32.0 41.1 3.09 
Nonlinear-2 / Linear-2 −0.19 −6.19 32.0 70.2 6.25 

 

Because the HLM growth model is a special case of the EVAAS model, and because 

nonlinear growth is so commonplace, it seemed most reasonable to focus on the consequences of 

nonlinearity. Nevertheless, during the question-and-answer period following the public 

presentation of this paper, the question was raised as to whether we had “tilted” our simulations 

to favor EVAAS. In response, we have added two additional simulations which favor the linear 

growth model. While, in general, the linear growth model makes more restrictive assumptions 

than the EVAAS model, there is one assumption that the EVAAS model makes that is not made 

by the linear growth model. Recall that the EVAAS methodology requires two cohorts of 

students; one cohort is used to obtain the parameter estimates to be used in making projections in 

the second cohort. The linear growth model, in contrast, uses the same cohort (the second cohort) 
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for both parameter estimation and projection. The assumption, in using the EVAAS 

methodology, is that the same parameters (means and covariances) apply in both cohorts. 

In the two additional simulations, this assumption was violated by using a model to generate 

cohort one that differed from that used to generate cohort two. Cohort two was generated using 

the “Linear-2” specifications. As a result, the assumptions of the linear growth model were met; 

and as the last two rows of Table 1 show, the linear growth model results matched those of the 

“Linear-2” simulation (row two of Table 1). Cohort one, however, was generated from a 

nonlinear model, either “negligibly nonlinear (“Nonlinear-1”) or “modestly nonlinear” 

(“Nonlinear-2”). Thus, the EVAAS parameter estimates were “anticipating” nonlinear growth, 

but the students to whom they were applied to get projections displayed linear growth. As a 

consequence, the EVAAS model results were biased, but the amount of bias was smaller than 

that of the linear growth model when applied to nonlinear data. Also, as expected, the MSPEs for 

the EVAAS model were higher than for the linear growth model; but, again, the increase in 

MSPE was much smaller than that which occurred with the linear growth model under 

nonlinearity. Specifically, the EVAAS MSPE was larger than the linear growth model MSPE by 

about 28% (for “Nonlinear-1”) to 220% (“Nonlinear-2”). Recall that in the “reverse” situation 

when cohort two had nonlinear growth (rows 3 and 4 of Table 1), the linear growth model MSPE 

was larger than the EVAAS MSPE by about 307% (“Nonlinear-1”) to 948% (“Nonlinear-2”). 

To summarize: When the assumptions of the models are met, they performed equally well (in 

these simulations). When the assumptions of one model were violated, but the assumptions of the 

other model were met, the “correct” model performed better. However, in these simulations, the 

EVAAS model seemed to be more robust in the presence of a violation of assumptions than did 

the linear growth model. Finally, as to the realism of the violations of assumptions, nonlinear 

growth seems to be commonplace in most of the vertically scaled tests with which we are 

familiar. Thus, the consequences of nonlinearity are of particular concern. On the other hand, the 

possibility that the means and covariances might change non-negligibly from one cohort to the 

next seems to us less plausible, at least in the case of a large district with a relatively stable 

student population. For a smaller district undergoing considerable demographic change, this 

would be more of a concern and would merit careful monitoring. 



 11

3.4  EVAAS Projection Advantages.  There are a number of features of the EVAAS projection 

methodology that are attractive. 

• Unlike growth curve models, there is no requirement that the tests scores (Ys and Xs) be 

vertically linked; indeed they need not even be from the same test company or even in the 

same subject! The important feature is that the X-values be good predictors of the Y-value. 

This provides an enormous amount of flexibility in the choice of what could be projected and 

which predictors (Xs) to use in making the projections (see Section 4). 

• Even in the case when the Xs and Ys are vertically linked, there is no assumption required 

about the overall shape of the growth curve. Use of the covariance matrix (C) does carry 

with it the implicit assumption of linear relationships between pairs of scores but no 

assumption of linearity, or any other shape, over time. 

• Missing values are easily handled so that different students can have different sets of 

predictors. 

• Massive data sets are readily accomodated. For example, for one of our applications (for the 

state of Tennessee), we are able to provide projections for every student in the state to a 

variety of endpoints, ranging from next year’s test scores to high school end-of-course test 

scores to college entrance exam scores. 

4. Using Projections to Enhance NCLB and Other Important Educational Objectives 

The motivation for using projections in conjunction with NCLB is this: having students who 

are currently below proficiency but who are “on track” to be proficient at some future point 

should not be held against a school (or district), especially if that school has done a good job of 

accelerating students toward proficiency. In effect, this carries the “adequate yearly progress” 

idea to the student level. Projections provide a convenient way to identify whether or not a 

student is on track to be proficient. However, several decisions must be made in order to use 

projections for this purpose. 

First, specific future assessments must be chosen as the basis for projecting eventual 

proficiency. These assessments must include Mathematics and Reading (and eventually Science) 

since the focus of NCLB is proficiency in those subjects. As an example of such assessments, in 

Tennessee there are high school “gateway” tests in Mathematics (Algebra I), Reading (English 
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II) and Science (Biology I) which students must pass to graduate. These provide reasonable 

future points at which to assess projected proficiency. Because of Tennessee's long history of 

annual testing, it is possible to begin projecting student results on these gateway tests as early as 

fourth grade! 

Second, “eventual proficiency” must be defined. A simple definition is: if the projected score 

is above the proficiency cutpoint, the student is considered to be on track to being proficient. 

Third, one must decide how projected proficiency could get counted in the NCLB percent 

proficient calculations. Here is one possibility that demonstrates how this could be applied.  If a 

student’s projected score is above the proficiency standard for an approved academic endpoint, 

then this student will be deemed to be “proficient.” After all students’ projected scores are 

evaluated in this manner, then all of the approved AYP rules can be applied, including the 

requirements for meeting the standards for all subgroups. 

Although the individual student projections are increasingly applicable to the NCLB safe 

harbor discussion, one of the original intentions for providing this student level information was 

to encourage educators to consider the academic needs of  individual students rather than groups 

of students. The availability of projections to varying endpoints, serves as a reminder to 

educators that some students are underserved educationally if the only expectation for them is 

minimal proficiency. Proficiency in the next grade may be the direst academic need for a student 

or a school with disproportionately more students at lower achievement levels, but it should 

never be interpreted as a blanket expectation for all students within those schools. Students with 

demonstrated higher levels of academic attainment deserve a schooling experience that enables 

appropriate academic progress, even beyond the minimum proficiency determination. Students 

whose academic growth is sustained each year at an appropriate level are better prepared for 

advanced high school course work and have a greater likelihood of college or entry level work 

success. 

One specific use of the individual student projections is an indicator for determining course 

assignment. In urban areas, access within the district to the projections can accelerate the 

guidance necessary to enroll students who transfer frequently within the district.  For example, 

students who demonstrate sufficiently high probabilities of success in algebra in grade six should 

be encouraged to complete algebra before grade nine and to continue with rigorous coursework 
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across the high school years. Particularly in schools serving poor or minority students, lack of 

availability of advanced curricula for adequately prepared students in middle grades contributes 

to widening achievement gaps. Sixth grade student projections to algebra proficiency provide a 

heads-up regarding the number of algebra classes necessary to meet the academic needs of the 

school’s population.  

Another contributor to widening achievement gaps has to do with students’ inability to view 

themselves as potentially successful college students some time in the future. Special mentoring 

programs to enhance counseling support are another use of the student projections. In these 

instances, the student projections provide a communication vehicle for principals, teachers and 

guidance counselors to demonstrate to students and parents the importance of rigorous courses 

for students who are academically prepared to be successful in these courses. 

5. Discussion/Conclusions 

The terms “growth model” and “value added model” are often loosely used interchangeably. 

However, a clearer distinct between the two terms can be drawn if the intent of the use of the 

analytical results from the subsequent data analyses are implied. If the intent is to use student 

longitudinal data to account for prior academic achievement levels to enable a fairer, more 

objective measure of the influence of various educational entities on the rate of student progress, 

then the term “value-added model” is most often used. If however, the intent is to use the 

longitudinal analyses to provide estimates of future performance for individual students then the 

terms “growth model” or “projection model” would be favored. 

Regardless of the use of the longitudinal data, either for “growth or projection models” or for 

“value-added models,” several non-trivial analytical problems have to be addressed: 

• How to accommodate fractured student records without introducing major biases in the 

resulting analyses by either eliminating the data for students with missing data, or by 

using overly simplistic imputation procedures? 

• How to exploit all of the longitudinal data for each student when all of the historical data 

are not on the same scale? 
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• How to provide educational policy makers more flexibility in the use of historical data 

when testing regimes have changed over time?  Note: As we have worked with many 

districts within many states, very few have maintained the same testing regime 

consistently over years. 

Considering all of these factors, we have deliberately chosen to pursue our projection modeling 

efforts because many of the other proposed growth models lack the flexibility and robustness to 

accommodate the reality of the data structures that presently exist and are likely to be present in 

the future. Additionally, it is with this same recognition that all of our value-added models have 

been engineered to have this same flexibility and robustness. 
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