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Overview

SAS/OR 9.22 continues the improvements that were delivered starting with SAS/OR 9.2. Several
new and enhanced features expand the scale and scope of problems that SAS/OR software can
address. These enhancements also make it easier for you to use the SAS/OR capabilities. Brief
descriptions of these new features are presented in the following sections.

Highlights of Enhancements in SAS/OR 9.22

Highlights of the changes include the following:

e You can customize the format of the time axis on the Gantt chart.

You can import and convert Microsoft Project data that has been saved in XML format.

The CLP procedure is now production with the exception of the scheduling related constraints.

The OPTMODEL procedure supports named problems to enable easy manipulation of multiple
subproblems.
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e The IPNLP and NLPU solvers support new techniques for large-scale optimization.

e SAS Simulation Studio 1.5 is a new graphical application for discrete event simulation
and is included with SAS/OR software. Documentation is available at the following link:
http://support.sas.com/documentation/onlinedoc/simstudio/index.html

More information about the changes and enhancements is provided in this chapter. Details can be
found in the relevant volumes of the SAS/OR 9.22 User’s Guide and in the SAS Simulation Studio 1.5
User’s Guide.

Highlights of Enhancements in SAS/OR 9.2

Some users are moving directly from SAS/OR 9.1.3 to SAS/OR 9.22. The following are some of the
major enhancements that were introduced in SAS/OR 9.2:

e The MPSOUT= option directs procedures to save input problem data in an MPS-format SAS
data set. The MPSOUT= option is available in the LP, NETFLOW, and OPTLP procedures.

e The IIS= option for the LP solver enables you to identify, for an infeasible linear program,
constraints and variable bounds that form an irreducible infeasible set (ILS). The IIS= option is
available in the OPTLP and OPTMODEL procedures.

e The value “2” for the PRINTLEVEL= option directs procedures to produce an ODS table
called “ProblemStatistics” in addition to the “ProblemSummary” and “SolutionSummary”
ODS tables that are produced for PRINTLEVEL=1. The PRINTLEVEL=2 option is available
in the INTPOINT, OPTLP, and OPTMILP procedures.

o The %SASTOMSP macro converts data sets that are used by the CPM and PM procedures
into an MDB file that is readable by Microsoft Project.

e Several call routines in the GA procedure were replaced by new call routines.
e The CLP procedure features improved algorithms for the “all-different” constraint in addition

to several extensions to the edge-finder algorithm for resource-constrained scheduling.

For more information, see support.sas.com/whatsnewor92.

SAS/OR Documentation

SAS/OR software is documented in the following volumes:

o SAS/OR User’s Guide: Bills of Material Processing

o SAS/OR User’s Guide: Constraint Programming


http://support.sas.com/documentation/cdl/en/ormpug/59679/HTML/default/whatsnew92.htm
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SAS/OR User’s Guide: Local Search Optimization

SAS/OR User’s Guide: Mathematical Programming

SAS/OR User’s Guide: Project Management

SAS/OR User’s Guide: QSIM Application

SAS Simulation Studio 1.5: User’s Guide

Online help can also be found under the corresponding classification.

The GANTT Procedure

The GANTT procedure produces a Gantt chart, which is a graphical tool for representing schedule-
related information. PROC GANTT provides support for displaying multiple schedules, precedence
relationships, calendar information, milestones, reference lines, labeling, and so on. New in SAS/OR
9.22 is the TIMEAXISFORMAT= option in the CHART statement which provides the capability
to customize the format of the time axis on the Gantt chart for up to three rows. Each row can be
formulated using a predefined SAS format or a user-defined format.

Microsoft Project Conversion Macros

The SAS macro %MSPTOSAS converts Microsoft Project 98 (and later) data into SAS data sets
that can be used as input for project scheduling with SAS/OR software. This macro generates the
necessary SAS data sets, determines the values of the relevant options, and invokes the SAS/OR PM
procedure with the converted project data. The %MSPTOSAS macro enables you to use Microsoft
Project for the input of project data and still take advantage of the excellent SAS/OR project and
resource scheduling capabilities. New in SAS/OR 9.22 is the capability to import and convert
Microsoft Project data that has been saved in XML format. This feature is experimental.

The experimental %SASTOMSP macro converts data sets that are used by the CPM and PM
procedures into a Microsoft Access Database (MDB) file that is readable by Microsoft Project. The
macro converts information that is common to PROC CPM, PROC PM, and Microsoft Project; this
information includes hierarchical relationships, precedence relationships, time constraints, resource
availabilities, resource requirements, project calendars, resource calendars, task calendars, holiday
information, and work-shift information. In addition, the early and late schedules, the actual start
and finish times, the resource-constrained schedule, and the baseline schedule are also extracted and
stored as start-finish variables.

Execution of the %2MSPTOSAS and %SASTOMSP macros requires SAS/ACCESS® software.
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The CLP Procedure

The CLP procedure is a finite-domain constraint programming solver for solving constraint satisfac-
tion problems (CSPs) with linear, logical, global, and scheduling constraints. The CLP procedure is
production in SAS/OR 9.22 with the exception of the scheduling-related constraints.

New in SAS/OR 9.22 are the GCC and ELEMENT statements for defining global cardinality
constraints (GCC) and element constraints, respectively. The GCC statement enables you to bound
the number of times that a specific value gets assigned to a set of variables. The ELEMENT statement
enables you to define dependencies, not necessarily functional, between variables and to define
noncontiguous domains.

The USECONDATAVARS= option enables you to implicitly define numeric variables in the
CONDATA= data set. The TIMETYPE= option enables you to set the units (real time or CPU
time) of the MAXTIME= parameter. The _ORCLP_ macro variable has been enhanced to provide
more information about procedure status and solution status.

There are also several changes and enhancements to the scheduling capabilities in SAS/OR 9.22.
Support for multiple-capacity resources has been added in the RESOURCE statement and the
Activity data set. The REQUIRES statement syntax for specifying multiple resource requirements
has changed. The format of the Activity data set has changed to a more compact form with a fixed
number of variables. A new Resource data set, specified with the RESDATA= option, enables you
to define resources, resource pools, and resource attributes in compact form. The format of the
Schedule data set has been enhanced to separate time and schedule related observations. Two new
schedule-related output data sets, SCHEDTIME= and SCHEDRES=, have been added; they contain
time assignment and resource assignment information, respectively.

The OPTMODEL Procedure

The OPTMODEL procedure provides a modeling environment that is tailored to building, solving,
and maintaining optimization models. This makes the process of translating the symbolic formulation
of an optimization model into PROC OPTMODEL virtually transparent, because the modeling
language mimics the symbolic algebra of the formulation as closely as possible. PROC OPTMODEL
also streamlines and simplifies the critical process of populating optimization models with data
from SAS data sets. All of this transparency produces models that are more easily inspected for
completeness and correctness, more easily corrected, and more easily modified, whether through
structural changes or through the substitution of new data for old data.

The OPTMODEL procedure consists of the powerful OPTMODEL modeling language and access to
state-of-the-art solvers for several classes of mathematical programming problems.

Seven solvers are available to OPTMODEL, as listed in Table 1.1.
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Table 1.1 List of OPTMODEL Solvers

Problem Solver
Linear programming LP
Mixed integer programming MILP

Quadratic programming (Experimental) QP
Nonlinear programming, unconstrained NLPU

General nonlinear programming NLPC
General nonlinear programming SQP
General nonlinear programming IPNLP

In SAS/OR 9.22, the OPTMODEL procedure adds several new features. First, PROC OPTMODEL
supports named problems to enable easy manipulation of multiple subproblems. The PROBLEM
declaration declares a named problem and the USE PROBLEM statement makes it active. Objectives
can now be declared as arrays, so they can provide separate objectives for arrays of named problems.

Implicit variables, created via the IMPVAR declaration, allow optimization expressions to be referred
to by name in a model. Implicit variables can be evaluated more efficiently than by repeating the
same complex expression in multiple places.

Problem components can be accessed with aliases such as _VAR_ and _CON_, which respectively
aggregate all of the variables and constraints in a problem. This allows convenient processing of all
of the problem components of a given kind for printing, model expansion, and other purposes. The
new suffixes INAME and .LABEL can be used to track the identity of problem components.

Function and subroutine calls can use the “OF array-name[*]” syntax to pass an OPTMODEL array
to a called routine for uses such as sorting.

The NUMBER, STRING, and SET declarations allow initial values for arrays to be supplied using
an INIT clause with a list of initialization values.

The SOLVE statement supports the RELAXINT keyword to solve a problem while temporarily
relaxing the integrality restriction on variables.

Analytic derivatives are now generated for most SAS library functions. The OPTMODEL procedure
can use threading on systems with multiple processors to speed up evaluation of nonlinear Hessian
models.

Starting with SAS/OR 9.22, the IPNLP and NLPU solvers support new techniques for large-scale
optimization. The nonlinear solver IPNLP has been equipped with two new techniques. The first
technique, TECH=IPKRYLOV, is appropriate for large-scale nonlinear optimization problems that
can contain many thousands of variables or constraints or both. It uses exact second derivatives
to calculate the search directions. Its convergence is achieved by using a trust-region framework
that guides the algorithm towards the solution of the optimization problem. The second technique,
TECH=IPQN, uses a quasi-Newton method and line-search framework to solve the optimization
problem. As such it needs to calculate only the first derivatives of the objective and constraints.
This method is more appropriate for problems where the second derivatives of the objective and
constraints either are not available or are expensive to compute.

The unconstrained solver NLPU has been equipped with a new technique called TECH=CGTR.
This technique uses the conjugate gradient method to solve large-scale unconstrained and bound
constrained optimization problems.
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The OPTMILP Procedure

The OPTMILP procedure solves mixed-integer linear programming problems with a linear-
programming-based branch-and-bound algorithm that has been improved for SAS/OR 9.22. The
algorithmic improvements result from incorporating new techniques in the presolver and cutting
planes, better application of primal heuristics, an improved branch-and-bound strategy, and an
improved strategy for handling feasibility problems. Improvements to the presolver include variable
and constraint reductions based on logical implications among binary variables and generalized
variable substitutions. Two new cutting plane routines (mixed O-1 lifted inequalities and zero-half
cuts) have been added, and improvements have been made to clique, Gomory mixed integer, and
mixed integer rounding (MIR) cutting plane routines.

The resulting improvements in efficiency enable you to use PROC OPTMILP to solve larger and
more complex optimization problems in a shorter time than with previous SAS/OR releases.

SAS Simulation Studio

SAS Simulation Studio is a discrete event simulation application for modeling the operation of call
centers, supply chains, emergency rooms, and other real-world systems in which there are significant
random elements (timing and length of events, requirements, and so on). Its graphical user interface
provides a full set of tools and components for building, executing, and analyzing the data that are
generated by discrete event simulation models. SAS Simulation Studio provides extensive modeling
and analysis tools suitable for both novice and advanced simulation users.

SAS Simulation Studio integrates fully with JMP software to provide experimental design capabilities
for evaluating and analyzing your simulation models. Any of the JMP and SAS statistical analysis
tools can be used, either to analyze results after the simulation model is run or to perform embedded
analyses that occur while the simulation model is running.

SAS Simulation Studio 1.5 has been included with SAS/OR software since its release in August
2009.
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Purpose

SAS/OR User’s Guide: Constraint Programming provides a complete reference for the constraint
programming procedures in SAS/OR software. This book serves as the primary documentation for
the CLP procedure.

“Using This Book™ describes the organization of this book and the conventions used in the text
and example code. To gain full benefit from using this book, you should familiarize yourself with
the information presented in this section and refer to it when needed. The section “Additional
Documentation for SAS/OR Software” on page 10 refers to other documents that contain related
information.

Organization

Chapter 3 describes the CLP procedure. The procedure description is self-contained; you need
to be familiar with only the basic features of the SAS System and SAS terminology to use most
procedures. The statements and syntax necessary to run each procedure are presented in a uniform
format throughout this book.

The following list summarizes the types of information provided for each procedure:
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Overview provides a general description of what the procedure does.
It outlines major capabilities of the procedure and lists all
input and output data sets that are used with it.

Getting Started illustrates simple uses of the procedure using a few short
examples. It provides introductory hands-on information
for the procedure.

Syntax constitutes the major reference section for the syntax of the
procedure. First, the statement syntax is summarized. Next,
a functional summary table lists all the statements and
options in the procedure, classified by function. In addition,
the online version includes a Dictionary of Options, which
provides an alphabetical list of all options. Following these
tables, the PROC statement is described, and then all other
statements are described in alphabetical order.

Details describes the features of the procedure, including algorith-
mic details and computational methods. It also explains
how the various options interact with each other. This sec-
tion describes input and output data sets in greater detail,
with definitions of the output variables, and explains the
format of printed output, if any.

Examples consists of examples that are designed to illustrate the use
of the procedure. Each example includes a description of
the problem and lists the options that are highlighted by
the example. The example shows the data and the SAS
statements needed, and includes the output produced. You
can duplicate the examples by copying the statements and
data and running the SAS program. The SAS Sample
Library contains the code used to run the examples shown
in this book; consult your SAS Software representative for
specific information about the Sample Library.

References lists references that are relevant to the chapter.

Typographical Conventions

The printed version of SAS/OR User’s Guide: Constraint Programming uses various type styles, as
explained by the following list:

roman is the standard type style used for most text.
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UPPERCASE BOLD

VariableName

oblique

italic

monospace

Conventions for Examples 4 9

is used for SAS statements, options, and other SAS lan-
guage elements when they appear in the text. However,
you can enter these elements in your own SAS code in
lowercase, uppercase, or a mixture of the two. This style
is also used for identifying arguments and values (in the
syntax specifications) that are literals (for example, to
denote valid keywords for a specific option).

is used in the “Syntax” section to identify SAS keywords,
such as the names of procedures, statements, and options.

1s used for the names of SAS variables and data sets when
they appear in the text.

is used to indicate an option variable for which you must
supply a value (for example, DUPLICATE= dup indicates
that you must supply a value for dup).

is used for terms that are defined in the text, for emphasis,
and for publication titles.

is used to show examples of SAS statements. In most
cases, this book uses lowercase type for SAS code. You
can enter your own SAS code in lowercase, uppercase, or
a mixture of the two.

Conventions for Examples

Most of the output shown in this book is produced with the following SAS System options:

options linesize=80 pagesize=60 nonumber nodate;

Accessing the SAS/OR Sample Library

The SAS/OR sample library includes many examples that illustrate the use of SAS/OR software,
including the examples used in this documentation. To access these sample programs from the SAS
windowing environment, select Help from the main menu and then select Getting Started with
SAS Software. On the Contents tab, expand the Learning to Use SAS, Sample SAS Programs,

and SAS/OR items. Then click Samples.
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Online Documentation

This documentation is available online with the SAS System. To access SAS/OR documentation
from the SAS windowing environment, select Help from the main menu and then select SAS Help
and Documentation. (Alternatively, you can type help OR in the command line.) On the Contents
tab, expand the SAS Products and SAS/OR items. Then expand the book you want to view. You
can search the documentation by using the Search tab.

You can also access the documentation by going to http://support.sas.com/documentation.

Additional Documentation for SAS/OR Software

In addition to SAS/OR User’s Guide: Constraint Programming, you may find these other documents
helpful when using SAS/OR software:

SAS/OR User’s Guide: Bill of Material Processing
provides documentation for the BOM procedure and all bill of material postprocessing SAS
macros. The BOM procedure and SAS macros provide the ability to generate different reports
and to perform several transactions to maintain and update bills of material.

SAS/OR User’s Guide: Local Search Optimization
provides documentation for the local search optimization procedure in SAS/OR software.
This book serves as the primary documentation for the GA procedure, which uses genetic
algorithms to solve optimization problems.

SAS/OR User’s Guide: Mathematical Programming
provides documentation for the mathematical programming procedures in SAS/OR software.
This book serves as the primary documentation for the INTPOINT, LP, NETFLOW, and
NLP procedures, in addition to the newer OPTLP, OPTMILP, OPTMODEL, and OPTQP
procedures, the various solvers called by the OPTMODEL procedure, and the MPS-format
SAS data set specification.

SAS/OR User’s Guide: Project Management
provides documentation for the project management procedures in SAS/OR software. This
book serves as the primary documentation for the CPM, DTREE, GANTT, NETDRAW, and
PM procedures, as well as the PROJMAN Application, a graphical user interface for project
management.

SAS/OR User’s Guide: The QSIM Application
provides documentation for the QSIM application, which is used to build and analyze models
of queueing systems using discrete event simulation. This book shows you how to build
models using the simple point-and-click graphical user interface, how to run the models, and
how to collect and analyze the sample data to give you insight into the behavior of the system.


http://support.sas.com/documentation
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SAS/OR Software: Project Management Examples, Version 6
contains a series of examples that illustrate how to use SAS/OR software to manage projects.
Each chapter contains a complete project management scenario and describes how to use
PROC GANTT, PROC CPM, and PROC NETDRAW, in addition to other reporting and
graphing procedures in the SAS System, to perform the necessary project management tasks.

SAS Simulation Studio 1.5: User’s Guide

provides documentation for using SAS Simulation Studio, a graphical application for creating
and working with discrete-event simulation models. This book describes in detail how to build

and run simulation models and how to interact with SAS software for analysis and with JMP
software for experimental design and analysis.
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Overview: CLP Procedure

The CLP procedure is a finite-domain constraint programming solver for constraint satisfaction
problems (CSPs) with linear, logical, global, and scheduling constraints. In addition to having an
expressive syntax for representing CSPs, the CLP procedure features powerful built-in consistency
routines and constraint propagation algorithms, a choice of nondeterministic search strategies, and
controls for guiding the search mechanism that enable you to solve a diverse array of combinatorial
problems.

The scheduling-related constraints are experimental in the current version of the CLP procedure.

The Constraint Satisfaction Problem

Many important problems in areas such as artificial intelligence (AI) and operations research (OR)
can be formulated as constraint satisfaction problems. A CSP is defined by a finite set of variables
that take values from finite domains and a finite set of constraints that restrict the values that the
variables can simultaneously take.

More formally, a CSP can be defined as a triple (X, D, C):

o X ={x1,...,Xp} is a finite set of variables.

e D ={Dy,..., Dy} is afinite set of domains, where D; is a finite set of possible values that
the variable x; can take. D; is known as the domain of variable x;.

e C ={c1,...,cm} is a finite set of constraints that restrict the values that the variables can
simultaneously take.

The domains need not represent consecutive integers. For example, the domain of a variable could
be the set of all even numbers in the interval [0, 100]. A domain does not even need to be totally
numeric. In fact, in a scheduling problem with resources, the values are typically multidimensional.
For example, an activity can be considered as a variable, and each element of the domain would be
an n-tuple that represents a start time for the activity and one or more resources that must be assigned
to the activity that corresponds to the start time.

A solution to a CSP is an assignment of values to the variables in order to satisfy all the constraints.
The problem amounts to finding one or more solutions, or possibly determining that a solution does
not exist.

The CLP procedure can be used to find one or more (and in some instances, all) solutions to a CSP
with linear, logical, global, and scheduling constraints. The numeric components of all variable
domains are assumed to be integers.
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Techniques for Solving CSPs

Several techniques for solving CSPs are available. Kumar (1992) and Tsang (1993) present a good
overview of these techniques. It should be noted that the satisfiability problem (SAT) (Garey and
Johnson 1979) can be regarded as a CSP. Consequently, most problems in this class are NP-complete
problems, and a backtracking search mechanism is an important technique for solving them (Floyd
1967).

One of the most popular tree search mechanisms is chronological backtracking. However, a chrono-
logical backtracking approach is not very efficient due to the late detection of conflicts; that is, it
is oriented toward recovering from failures rather than avoiding them to begin with. The search
space is reduced only after detection of a failure, and the performance of this technique is drastically
reduced with increasing problem size. Another drawback of using chronological backtracking is
encountering repeated failures due to the same reason, sometimes referred to as “thrashing.” The
presence of late detection and “thrashing” has led researchers to develop consistency techniques that
can achieve superior pruning of the search tree. This strategy employs an active use, rather than a
passive use, of constraints.

Constraint Propagation

A more efficient technique than backtracking is that of constraint propagation, which uses consistency
techniques to effectively prune the domains of variables. Consistency techniques are based on the
idea of a priori pruning, which uses the constraint to reduce the domains of the variables. Consistency
techniques are also known as relaxation algorithms (Tsang 1993), and the process is also referred to
as problem reduction, domain filtering, or pruning.

One of the earliest applications of consistency techniques was in the Al field in solving the scene
labeling problem, which required recognizing objects in three-dimensional space by interpreting
two-dimensional line drawings of the object. The Waltz filtering algorithm (Waltz 1975) analyzes
line drawings by systematically labeling the edges and junctions while maintaining consistency
between the labels.

An effective consistency technique for handling resource capacity constraints is edge finding (Apple-
gate and Cook 1991). Edge-finding techniques reason about the processing order of a set of activities
that require a given resource or set of resources. Some of the earliest work related to edge finding
can be attributed to Carlier and Pinson (1989), who successfully solved MT10, a well-known 10x10
job shop problem that had remain unsolved for over 20 years (Muth and Thompson 1963).

Constraint propagation is characterized by the extent of propagation (also referred to as the level
of consistency) and the domain pruning scheme that is followed: domain propagation or interval
propagation. In practice, interval propagation is preferred over domain propagation because of
its lower computational costs. This mechanism is discussed in detail in Van Hentenryck (1989).
However, constraint propagation is not a complete solution technique and needs to be complemented
by a search technique in order to ensure success (Kumar 1992).
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Finite-Domain Constraint Programming

Finite-domain constraint programming is an effective and complete solution technique that embeds
incomplete constraint propagation techniques into a nondeterministic backtracking search mechanism,
implemented as follows. Whenever a node is visited, constraint propagation is carried out to attain
a desired level of consistency. If the domain of each variable reduces to a singleton set, the node
represents a solution to the CSP. If the domain of a variable becomes empty, the node is pruned.
Otherwise a variable is selected, its domain is distributed, and a new set of CSPs is generated, each
of which is a child node of the current node. Several factors play a role in determining the outcome
of this mechanism, such as the extent of propagation (or level of consistency enforced), the variable
selection strategy, and the variable assignment or domain distribution strategy.

For example, the lack of any propagation reduces this technique to a simple generate-and-test, whereas
performing consistency on variables already selected reduces this to chronological backtracking, one
of the systematic search techniques. These are also known as look-back schemas, because they share
the disadvantage of late conflict detection. Look-ahead schemas, on the other hand, work to prevent
future conflicts. Some popular examples of look-ahead strategies, in increasing degree of consistency
level, are forward checking (FC), partial look ahead (PLA), and full look ahead (LA) (Kumar 1992).
Forward checking enforces consistency between the current variable and future variables; PLA and
LA extend this even further to pairs of not yet instantiated variables.

Two important consequences of this technique are that inconsistencies are discovered early and
that the current set of alternatives that are coherent with the existing partial solution is dynamically
maintained. These consequences are powerful enough to prune large parts of the search tree,
thereby reducing the “combinatorial explosion” of the search process. However, although constraint
propagation at each node results in fewer nodes in the search tree, the processing at each node is
more expensive. The ideal scenario is to strike a balance between the extent of propagation and the
subsequent computation cost.

Variable selection is another strategy that can affect the solution process. The order in which variables
are chosen for instantiation can have a substantial impact on the complexity of the backtrack search.
Several heuristics have been developed and analyzed for selecting variable ordering. One of the more
common ones is a dynamic heuristic based on the fail first principle (Haralick and Elliot 1980), which
selects the variable whose domain has minimal size. Subsequent analysis of this heuristic by several
researchers has validated this technique as providing substantial improvement for a significant class
of problems. Another popular technique is to instantiate the most constrained variable first. Both
these strategies are based on the principle of selecting the variable most likely to fail and to detect
such failures as early as possible.

The domain distribution strategy for a selected variable is yet another area that can influence the
performance of a backtracking search. However, good value-ordering heuristics are expected to be
very problem-specific (Kumar 1992).
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The CLP Procedure

The CLP procedure is a finite-domain constraint programming solver for CSPs. In the context of
the CLP procedure, CSPs can be classified into the following two types which are determined by
specification of the relevant output data set:

o A standard CSP is characterized by integer variables, linear constraints, array-type constraints,
global constraints, and reify constraints. In other words, X is a finite set of integer variables,
and C can contain linear, array, global, or logical constraints. Specifying the OUT= option in
the PROC CLP statement indicates to the CLP procedure that the CSP is a standard type CSP.
As such, the procedure expects only VARIABLE, ALLDIFF, ELEMENT, GCC, LINCON,
REIFY, ARRAY, and FOREACH statements. You can also specify a Constraint data set by
using the CONDATA= option in the PROC CLP statement in lieu of, or in combination with,
VARIABLE and LINCON statements.

o A scheduling CSP is characterized by activities, temporal constraints, and resource requirement
constraints. In other words, X is a finite set of activities, and C is a set of temporal constraints
and resource requirement constraints. Specifying one of the SCHEDULE=, SCHEDRES=, or
SCHEDTIME-= options in the PROC CLP statement indicates to the CLP procedure that the
CSP is a scheduling type CSP. As such, the procedure expects only ACTIVITY, RESOURCE,
REQUIRES, and SCHEDULE statements. You can also specify an Activity data set by using
the ACTDATA= option in the PROC CLP statement in lieu of, or in combination with, the
ACTIVITY, RESOURCE, and REQUIRES statements. Activities can be defined using the
Activity data set or the ACTIVITY statement. Precedence relationships between activities
must be defined using the ACTDATA= data set. Resource requirements of activities can be
defined using the Activity data set or the RESOURCE and REQUIRES statements.

The output data sets contain any solutions determined by the CLP procedure. For more information
about the format and layout of the output data sets, see “Solution Data Set” on page 44 and “Schedule
Data Set” on page 49.

Consistency Techniques

The CLP procedure features a full look-ahead algorithm for standard CSPs that follows a strategy
of maintaining a version of generalized arc consistency that is based on the AC-3 consistency
routine (Mackworth 1977). This strategy maintains consistency between the selected variables and
the unassigned variables and also maintains consistency between unassigned variables. For the
scheduling CSPs, the CLP procedure uses a forward-checking algorithm, an arc-consistency routine
for maintaining consistency between unassigned activities, and energetic-based reasoning methods
for resource-constrained scheduling that feature the edge-finder algorithm (Applegate and Cook
1991). You can elect to turn off some of these consistency techniques in the interest of performance.
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Selection Strategy

A search algorithm for CSPs searches systematically through the possible assignments of values
to variables. The order in which a variable is selected can be based on a static ordering, which is
determined before the search begins, or on a dynamic ordering, in which the choice of the next
variable depends on the current state of the search. The VARSELECT= option in the PROC CLP
statement defines the variable selection strategy for a standard CSP. The default strategy is the
dynamic MINR strategy, which selects the variable with the smallest range. The ACTSELECT=
option in the SCHEDULE statement defines the activity selection strategy for a scheduling CSP. The
default strategy is the RAND strategy, which selects an activity at random from the set of activities
that begin prior to the earliest early finish time. This strategy was proposed by Nuijten (1994).

Assignment Strategy

After a variable or an activity has been selected, the assignment strategy dictates the value that is
assigned to it. For variables, the assignment strategy is specified with the VARASSIGN= option
in the PROC CLP statement. The default assignment strategy selects the minimum value from
the domain of the selected variable. For activities, the assignment strategy is specified with the
ACTASSIGN= option in the SCHEDULE statement. The default strategy of RAND assigns the time
to the earliest start time, and the resources are chosen randomly from the set of resource assignments
that support the selected start time.

Getting Started: CLP Procedure

The following examples illustrate the use of the CLP procedure in the formulation and solution of
two well-known logical puzzles in the constraint programming community.

Send More Money

The Send More Money problem consists of finding unique digits for the letters D, E, M, N, O, R, S,
and Y such that S and M are different from zero (no leading zeros) and the following equation is
satisfied:

SEND

+MORE

MONEY
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You can use the CLP procedure to formulate this problem as a CSP by representing each of the letters
in the expression with an integer variable. The domain of each variable is the set of digits O through
9. The VARIABLE statement identifies the variables in the problem. The DOM= option defines the
default domain for all the variables to be [0,9]. The OUT= option identifies the CSP as a standard
type. The LINCON statement is used to define the linear constraint SEND + MORE = MONEY,
and the restrictions that S and M cannot take the value zero. (Alternatively, you can simply specify
the domain for S and M as [1,9] in the VARIABLE statement.) Finally, the ALLDIFF statement
is specified to enforce the condition that the assignment of digits should be unique. The complete
representation, using the CLP procedure, is as follows:

proc clp dom=[0, 9] /* Define the default domain */
out=out; /* Name the output data set */

var SENDMOREMONEY; /* Declare the variables */
lincon /* Linear constraints */

/* SEND + MORE = MONEY *x/

1000*S + 100xE + 10xN + D + 1000xM + 100%xO + 10xR + E

10000xM + 1000%x0O + 100xN + 10*E + Y,

S<>0, /* No leading zeros */
M<>0;
alldiff(); /* All variables have pairwise distinct valuesx/

run;
The solution data set produced by the CLP procedure is shown in Figure 3.1.

Figure 3.1 Solution to SEND + MORE = MONEY

The unique solution to the problem determined by the CLP procedure is as follows:

9567

+1085

10652
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Eight Queens

The Eight Queens problem is a special instance of the N-Queens problem, where the objective is
to position N queens on an N xN chessboard such that no two queens attack each other. The CLP
procedure provides an expressive constraint for variable arrays that can be used for solving this
problem very efficiently.

You can model this problem by using a variable array A of dimension N, where A[i] is the row
number of the queen in column 7. Since no two queens can be in the same row, it follows that all the
Ali]’s must be pairwise distinct.

In order to ensure that no two queens can be on the same diagonal, the following should be true for
all i and j:

A[j1—Alil <> j —i
and

AL - Alil <> i —j

In other words,
Alil—i <> A[j]—]J
and

Alil+i <> A[j]+J

Hence, the (A[i] + i)’s are pairwise distinct, and the (A[i] —i)’s are pairwise distinct.

These two conditions, in addition to the one requiring that the A[i]’s be pairwise distinct, can be
formulated using the FOREACH statement.

One possible such CLP formulation is presented as follows:

proc clp out=out

varselect=fifo; /* Variable Selection Strategy */

array A[8] (Al-A8); /* Define the array A */
var (Al-A8)=[1,8]; /* Define each of the variables in the array =*/
/* Initialize domains */

/* A[i] is the row number of the queen in column ix*/

foreach (A, DIFF, O0); /% A[i] 's are pairwise distinct =*/

foreach (A, DIFF, -1); /* A[i] - i 's are pairwise distinct =*/

foreach (A, DIFF, 1); /* A[i] + i 's are pairwise distinct */
run;
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The ARRAY statement is required when you are using a FOREACH statement, and it defines the
array A in terms of the eight variables A1-A8. The domain of each of these variables is explicitly
specified in the VARIABLE statement to be the digits 1 through 8 since they represent the row
number on an 8x8 board. FOREACH(A, DIFF, 0) represents the constraint that the A[i]’s are
different. FOREACH(A, DIFF, —1) represents the constraint that the (A[i] — i)’s are different,
and FOREACH(A, DIFF, 1) represents the constraint that the (A[i] 4 i)’s are different. The
VARSELECT= option specifies the variable selection strategy to be first-in-first-out, the order in
which the variables are encountered by the CLP procedure.

The following statements display the solution data set shown in Figure 3.2:

proc print data=out noobs label;
label Al=a A2=b A3=c A4=d
AS5=e A6=f A7=g A8=h;
run;

Figure 3.2 A Solution to the Eight Queens Problem

The corresponding solution to the Eight Queens problem is displayed in Figure 3.3.

Figure 3.3 A Solution to the Eight Queens Problem
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Syntax: CLP Procedure

The following statements are used in PROC CLP:

PROC CLP options ;
ACTIVITY activity specifications ;
ALLDIFF alldiff constraints ;
ARRAY array specifications ;
ELEMENT element constraints ;
FOREACH foreach constraints ;
GCC global cardinality constraints ;
LINCON linear constraints ;
REIFY reify constraints ;

REQUIRES resource requirement constraints ;

RESOURCE resource specifications ;
SCHEDULE schedule options ;
VARIABLE variable specifications ;

Functional Summary

The statements and options available with PROC CLP are summarized by purpose in Table 3.1.

Table 3.1 Functional Summary

Description Statement Option
Assignment Strategy Options

Specifies the variable assignment strategy PROC CLP  VARASSIGN=
Specifies the activity assignment strategy (Experimental) SCHEDULE ACTASSIGN=
Data Set Options

Specifies the activity input data set (Experimental) PROC CLP  ACTDATA=
Specifies the constraint input data set PROC CLP  CONDATA=
Specifies the solution output data set PROCCLP OUT=

Specifies the resource input data set (Experimental) PROC CLP  RESDATA=
Specifies the resource assignment data set (Experimental) PROC CLP ~ SCHEDRES=
Specifies the time assignment data set (Experimental) PROC CLP  SCHEDTIME=
Specifies the schedule output data set (Experimental) PROCCLP  SCHEDULE=
General Options

Specifies the upper bound on time (seconds) PROCCLP MAXTIME=
Suppresses preprocessing PROC CLP  NOPREPROCESS
Permits preprocessing PROCCLP  PREPROCESS
Specifies the units of MAXTIME PROC CLP  TIMETYPE=
Implicitly defines Constraint data set variables PROCCLP  USECONDATAVARS=
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Table 3.1 continued
Description Statement Option
Output Control Options
Finds all possible solutions PROC CLP  FINDALLSOLNS
Specifies the number of solution attempts PROCCLP MAXSOLNS=
Indicates progress in log PROC CLP SHOWPROGRESS
Scheduling CSP-Related Statements (Experimental)
Provides activity specifications ACTIVITY
Provides resource requirement specifications REQUIRES
Provides resource specifications RESOURCE
Provides scheduling parameters SCHEDULE
Scheduling: Resource Constraints (Experimental)
Specifies the edge-finder consistency routines SCHEDULE EDGEFINDER=
Specifies the not-first edge-finder extension SCHEDULE NOTFIRST=
Specifies the not-last edge-finder extension SCHEDULE NOTLAST=
Scheduling: Temporal Constraints (Experimental)
Specifies the activity duration ACTIVITY  DURATION=
Specifies the activity finish lower bound ACTIVITY FGE=
Specifies the activity finish upper bound ACTIVITY FLE=
Specifies the activity start lower bound ACTIVITY  SGE=
Specifies the activity start upper bound ACTIVITY  SLE=
Specifies the schedule duration SCHEDULE DURATION=
Specifies the schedule finish SCHEDULE FINISH=
Specifies the schedule start SCHEDULE START=
Scheduling: Search Control Options (Experimental)
Specifies the dead-end multiplier PROCCLP DM=
Specifies the number of allowable dead-ends per restart PROC CLP  DPR=
Specifies the number of search restarts PROC CLP  RESTARTS=
Selection Strategy Options
Specifies the variable selection strategy PROC CLP  VARSELECT=
Specifies the activity selection strategy (Experimental) =~ SCHEDULE ACTSELECT=
Standard CSP Statements
Specifies the all-different constraints ALLDIFF
Specifies the array specifications ARRAY
Specifies the element constraints ELEMENT
Specifies the for-each constraints FOREACH
Specifies the global cardinality constraints GCC
Specifies the linear constraints LINCON
Specifies the reified constraints REIFY
Specifies the variable specifications VARIABLE
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PROC CLP Statement

PROC CLP options ;

The following options can appear in the PROC CLP statement.

ACTDATA=SAS-data-set

ACTIVITY=SAS-data-set
identifies the input data set that defines the activities and temporal constraints. The temporal
constraints consist of time-alignment-type constraints and precedence-type constraints. The
format of the ACTDATA= data set is similar to that of the Activity data set used by the CPM
procedure in SAS/OR software. The activities and time alignment constraints can also be
specified directly by using the ACTIVITY statement without the need for a data set. The CLP
procedure enables you to define activities by using a combination of the two specifications.

CONDATA=SAS-data-set
identifies the input data set that defines the constraints, variable types, and variable bounds.
Currently, the CONDATA data set provides support for linear constraints only.

The linear constraints can also be specified in-line by using the LINCON statement. The CLP
procedure enables you to define constraints by using a combination of the two specifications.
When defining constraints, you must define the variables by using a VARIABLE statement
or implicitly define them by specifying the USECONDATAVARS= option when using the
CONDATA= data set. Note that variable bounds can be defined by using the VARIABLE
statement, and any such definitions override those defined in the CONDATA= data set.

DM=m
specifies the dead-end multiplier for the scheduling CSP. The dead-end multiplier is used to
determine the number of dead-ends that are permitted before triggering a complete restart of
the search technique in a scheduling environment. The number of dead-ends is the product of
the dead-end multiplier, m, and the number of unassigned activities. The default value is 0.15.
This option is valid only with the SCHEDULE= option.

DOMAIN=/Ib, ub]

DOM-=/lb, ub]
specifies the global domain of all variables to be the closed interval [/b, ub]. You can override
the global domain for a variable with a VARIABLE statement or the CONDATA= data set.
The default domain is [0,00].

DPR=n
specifies an upper bound on the number of dead-ends that are permitted before PROC CLP
restarts or terminates the search, depending on whether or not a randomized search strategy is
used. In the case of a nonrandomized strategy, n is an upper bound on the number of allowable
dead-ends before terminating. In the case of a randomized strategy, n is an upper bound on the
number of allowable dead-ends before restarting the search. The DPR= option has priority
over the DM= option.
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FINDALLSOLNS
ALLSOLNS

FINDALL
attempts to find all possible solutions to the CSP. When a randomized search strategy is used,
it is possible to rediscover the same solution and end up with multiple instances of the same
solution. This is currently the case when you are solving a scheduling CSP. Therefore, this
option is ignored when you are solving a scheduling CSP.

MAXSOLNS=n
specifies the number of solution attempts to be generated for the CSP. The default value is 1. It
is important to note, especially in the context of randomized strategies, that an attempt could
result in no solution, given the current controls on the search mechanism, such as the number
of restarts and the number of dead-ends permitted. As a result, the total number of solutions
found might not match the MAXSOLNS= parameter.

MAXTIME=n

specifies an upper bound on the number of seconds that are allocated for solving the problem.
The type of time, either CPU time or real time, is determined by the value of the TIMETYPE=
option. The default type is CPU time. The time specified by the MAXTIME= option is
checked only once at the end of each iteration. Therefore, the actual running time can be
longer than that specified by the MAXTIME= option. The difference depends on how long the
last iteration takes. The default value of MAXTIME-= is co. If you do not specify this option
the procedure does not stop based on the amount of time elapsed.

NOPREPROCESS
suppresses any preprocessing that would typically be performed for the problem.

OUT=SAS-data-set
identifies the output data set that contains one or more solutions to a standard CSP, if one exists.
Each observation in the OUT= data set corresponds to a solution of the CSP. The number of
solutions that are generated can be controlled using the MAXSOLNS= option in the PROC
CLP statement.

PREPROCESS
permits any preprocessing that would typically be performed for the problem.

RESDATA=SAS-data-set
RESIN=SAS-data-set
identifies the input data set that defines the resources and their attributes such as capacity and

resource pool membership. This information can be used in lieu of, or in combination with,
the RESOURCE statement.

RESTARTS=n
specifies the number of restarts of the randomized search technique before terminating the
procedure. The default value is 3.

SCHEDRES=SAS-data-set (Experimental)
identifies the output data set that contains the solutions to scheduling CSPs. This data set
contains the resource assignments of activities.
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SCHEDTIME=SAS-data-set (Experimental)
identifies the output data set that contains the solutions to scheduling CSPs. This data set
contains the time assignments of activities.

SCHEDULE=SAS-data-set (Experimental)

SCHEDOUT=SAS-data-set (Experimental)
identifies the output data set that contains the solutions to a scheduling CSP, if any exist. This
data set contains both the time and resource assignment information. There are two types of
observations identified by the value of the OBSTYPE variable. Observation with OBSTYPE=
“TIME” corresponds to time assignment, and observation with OBSTYPE= “RESOURCE”
corresponds to resource assignment. The maximum number of solutions can be controlled by
using the MAXSOLNS= option in the PROC CLP statement.

SHOWPROGRESS
prints a message to the log whenever a solution has been found. When a randomized strategy
is used, the number of restarts and dead-ends that were required are also printed to the log.

TIMETYPE=CPU | REAL
specifies the units for the value of the MAXTIME= option. The value of this option determines
whether such time is CPU time or real time. The default value of this option is CPU.

USECONDATAVARS=0 | 1
specifies whether the numeric variables in the CONDATA= data set, with the exception of
any reserved variables, are implicitly defined or not. A value of 1 indicates they are implicitly
defined, in which case a VARIABLE statement is not necessary to define the variables in the
data set. The default value is 0. Currently, _RHS__ is the only reserved numeric variable.

VARASSIGN=keyword
specifies the value selection strategy. Currently, there is only one value selection strategy. The
MIN strategy selects the minimum value from the domain of the selected variable. To assign
activities, use the ACTASSIGN= option in the SCHEDULE statement.

VARSELECT=keyword
specifies the variable selection strategy. Both static and dynamic strategies are available.
Static strategies are as follows:

e FIFO, which uses the first-in-first-out ordering of the variables as encountered by the
procedure

e MAXCS, which selects the variable with the maximum number of constraints

Dynamic strategies are as follows:

e MINR, which selects the variable with the smallest range (that is, the minimum value of
upper bound minus lower bound)

e MAXC, which selects the variable with the largest number of active constraints

e MINRMAXC, which selects the variable with the smallest range, breaking ties by
selecting one with the largest number of active constraints
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The dynamic strategies embody the “fail first principle” (FFP) of Haralick and Elliot (1980),
which suggests that “To succeed, try first where you are most likely to fail.” The default activity
selection strategy is MINR. To set the strategy for selecting activities, use the ACTSELECT=
option in the SCHEDULE statement.

ACTIVITY Statement

ACTIVITY specification-1 <. .. specification-n> ;
An ACTIVITY specification can be one of the following types:
activity < = (< DUR=> duration < altype=aldate . .. >)>
(activity _list) < = (< DUR=> duration < altype=aldate ... >)>

where duration is the activity duration and altype is a keyword that specifies an alignment-type
constraint on the activity (or activities) with respect to the value given by aldate.

The ACTIVITY statement defines one or more activities and the attributes of each activity, such as
the duration and any temporal constraints of the time-alignment-type. The activity duration can take
nonnegative integer values. The default duration is 0.

Valid altype keywords are as follows:

SGE, start greater than or equal to aldate

SLE, start less than or equal to aldate

FGE, finish greater than or equal to aldate

e FLE, finish less than or equal to aldate

You can specify any combination of the preceding keywords. For example, to define activities A1,
A2, A3, B1, and B3 with duration 3, and to set the start time of these activities equal to 10, specify
the following:

activity (Al-A3 Bl B3) = ( dur=3 sge=10 sle=10 );

If an activity appears in more than one ACTIVITY statement, only the first activity definition is
honored. Additional specifications are ignored.

You can alternatively use the ACTDATA= data set to define activities, durations, and temporal
constraints. In fact, you can specify both an ACTIVITY statement and an ACTDATA= data set.
You must use an ACTDATA= data set to define precedence-related temporal constraints. One of
SCHEDULE=, SCHEDRES=, or SCHEDTIME= must be specified when the ACTIVITY statement
is used.
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ALLDIFF Statement

ALLDIFF (variable_list-1) <. .. (variable_list-n)> ;
ALLDIFFERENT (variable list-1) <... (variable_list-n)> ;

The ALLDIFF statement can have multiple specifications. Each specification defines a unique global
constraint on a set of variables, requiring all of them to be different from each other. A global
constraint is equivalent to a conjunction of elementary constraints.

For example, the statements

var (X1-X3) A B;
alldiff (X1-X3) (A B);

are equivalent to

X1 # X2 AND
X2 # X3 AND
X1 # X3 AND
A #+ B

If the variable list is empty, the ALLDIFF constraint applies to all the variables declared in any
VARIABLE statement.

ARRAY Statement

ARRAY specification-1 < . .. specification-n> ;
An ARRAY specification is in a form as follows:
name[dimension](variables)

The ARRAY statement is used to associate a name with a list of variables. Each of the variables
in the variable list must be defined using a VARIABLE statement or implicitly defined using the
CONDATA= data set. The ARRAY statement is required when you are specifying a constraint by
using the FOREACH statement.

ELEMENT Statement

ELEMENT element _constraint-1 <. .. element_constraint-n> ;
An element_constraint is specified in the following form:

(index variable, (integer list), variable)
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The ELEMENT statement specifies one or more element constraints. An element constraint enables
you to define dependencies, not necessarily functional, between variables. The statement

ELEMENT(/, (L), V)

sets the variable V to be equal to the /th element in the list L. The list of integers L = (v, ..., Up)
is a list of values that the variable V' can take and are not necessarily distinct. The variable / is the
index variable and its domain is considered to be [1, n]. Each time the domain of / is modified, the
domain of V is updated and vice versa.

An element constraint enforces the following propagation rules:
V=veleli,..in}

where v is a value in the list L and iy, ..., i;, are all the indices in L whose value is v.
The following statements use the element constraint to implement the quadratic function y = x?:
proc clp out=clpout;
var x=[1,5] y=[1,25];
element (x, (1, 4, 9, 16, 25), y);
run;

An element constraint is equivalent to a conjunction of reify and linear constraints. For example, the
preceding statements are equivalent to:

proc clp out=clpout;

var x=[1,5] y=[1,25] (R1-R5)=[0,1];

reify R1l: (x=1);

reify R1: (y=1);

reify R2: (x=2);

reify R2: (y=4);

reify R3: (x=3);

reify R3: (y=9);

reify R4: (x=4);

reify R4: (y=16);

reify R5: (x=5);

reify R5: (y=25);

lincon R1 + R2 + R3 + R4 + R5 = 1;
run;

Element constraints can also be used to define positional mappings between two variables. For
example, suppose the function y = x2 is defined on only odd numbers in the interval [—5, 5]. You
can model this by using two element constraints and an artificial index variable:

element (i, ( -5, -3, -1, 1, 3, 5), x)
(i, (25, 9, 1,1, 9, 25), y);

The list of values L can also be specified by using a convenient syntax of the form start TO end or
start TO end BY increment. For example, the previous element specification is equivalent to:

element (i, ( -5 to 5 by 2), x)
(1, (25, 9, 1,1, 9, 25), y);
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FOREACH Statement

FOREACH (array, type, < offset>) ;

where array must be defined by using an ARRAY statement, fype is a keyword that determines the
type of the constraint, and offset is an integer.

The FOREACH statement iteratively applies a constraint over an array of variables. The type of the
constraint is determined by fype. Currently, the only valid type keyword is DIFF. The optional offset
parameter is an integer and is interpreted in the context of the constraint type. The default value of
offset is zero.

The FOREACH statement that corresponds to the DIFF keyword iteratively applies the following
constraint to each pair of variables in the array:

variable_i + offset x i # variable_j + offsetx j Vi # j, i,j = 1,...,array_dimension

For example, the constraint that all (A[i] — i)’s are pairwise distinct for an array A is expressed as

foreach (A, diff, -1);

GCC Statement

GCC global_cardinality_constraint-1 <. .. global_cardinality constraint-n> ;
where global_cardinality_constraint is specified in the following form:
(variables) = ( (Ul, 11, ul) <... (Un, ln, un) ><DL=d/> <DU=du> )

v; is a value in the domain of one of the variables, and /; and u; are the lower and upper bounds on
the number of variables assigned to v;. The values of d! and du are the lower and upper bounds on
the number of variables assigned to values in D outside of {vy,..., v,}.

The GCC statement specifies one or more global cardinality constraints. A global cardinality

constraint (GCC) is a constraint that consists of a set of variables {x1, ..., x,} and for each value
vin D = J;_ ., Dom(x;), a pair of numbers /,, and u,. A GCC is satisfied if and only if the
number of times that a value v in D is assigned to the variables x1, ..., X, is at least /,, and at most
u ’v .

For example, the constraint that is specified with the statements

var (x1-x6) = [1, 4];
gce(x1l-x6) = ((1, 1, 2) (2, 1, 3) (3, 1, 3) (4, 2, 3));

expresses that at least one but no more than two variables in x1, . . ., X¢ can have value 1, at least one
and no more than three variables can have value 2 (or value 3), and at least two and no more than three
variables can have value 4. For example, an assignment x1 = 1,x, = 1,x3 = 2,x4 = 3,x5 = 4,
and x¢ = 4 satisfies the constraint.
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If a global cardinality constraint has common lower or upper bounds for many of the values in D,
the DL= and DU= options can be used to specify the common lower and upper bounds.

For example, the previous specification could also be written as

gcc(x1-x6) = ((1, 1, 2) (4, 2, 3) DL=1 DU=3);

You can also specify missing values for the lower and upper bounds. The values of dl and du are
substituted as appropriate. The previous example can also be expressed as

gcc(x1-x6) = ((1, ., 2) (4, 2, .) DL=1 DU=3);

The following statements specify that each of the values in {1,..., 9} can be assigned to at most one
of the variables x1, ..., Xg:

var (x1-x9) = [0, 9];
gcc (x1-x9) = (DL=0 DU=1);

Note that the preceding global cardinality constraint is equivalent to the all-different constraint that
is expressed as:

var (x1-x9) = [0, 9];
alldiff (x1-x9);

If you do not specify the DL= and DU= options, the default lower and upper bound for any value
in D that does not appear in the (v, [, u) format is 0 and the number of variables in the constraint,
respectively.

The global cardinality constraint also provides a convenient way of defining disjoint domains for a
set of variables. For example, the following syntax limits assignment of the variables x1, ..., X9 to
even numbers between 0 and 10:

var (x1-x9) = [0, 10];
gce(x1-x9) = ((1, 0, 0) (3, O, O0) (5, 0, O) (7, O, O) (9, 0, 0));

If the variable list is empty, the GCC constraint applies to all the variables declared in any VARIABLE
statement.

LINCON Statement

LINCON linear_constraint-1 <. .. ,linear_constraint-n> ;
LINEAR linear_constraint-1 <. .. ,linear_constraint-n> ;
where linear_constraint has the form
linear_expression-I type linear_expression-r
where linear_expression has the form
<+|->linear_term-1<..., (+|-) linear_term-n>
where linear_term has the form

(variable | number< * variable >)
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The keyword fype can be one of the following:
<, <=, 5, >3, >, <>, LT, LE, EQ, GE, GT, NE

The LINCON statement allows for a very general specification of linear constraints. In particular, it
allows for specification of the following types of equality or inequality constraints:

n

Mayxji<|<|=12|>|#b fori=1....m
j=1

For example, the constraint 4x; — 3x, = 5 can be expressed as

var x1 x2;
lincon 4 » x1 - 3 » x2 = 5;

and the constraints

10x; —x, > 10
X1+ 5xy # 15

can be expressed as

var xl1 x2;
lincon 10 <= 10 * x1 - x2,
x1l + 5 » x2 <> 15;

Note that variables can be specified on either side of an equality or inequality in a LINCON statement.
Linear constraints can also be specified by using the CONDATA= data set.

Regardless of the specification, you must define the variables by using a VARIABLE statement or
implicitly by specifying the USECONDATAVARS= option.

Note that user-specified scalar values are subject to rounding based upon a platform-dependent
tolerance.

REIFY Statement

REIFY reify_constraint-1 <. .. reify_constraint-n> ;
where reify_constraint is specified in the following form:
variable : constraint

The REIFY statement associates a binary variable with a constraint. The value of the binary variable
is 1 or 0 depending on whether the constraint is satisfied or not, respectively. The constraint is
said to be reified, and the binary variable is referred to as the control variable. Currently, the only
type of constraint that can be reified is the linear constraint, which should have the same form as
linear_constraint defined in the LINCON statement. As with the other variables, the control variable
must also be defined in a VARIABLE statement or in the CONDATA= data set.
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The REIFY statement provides a convenient mechanism for expressing logical constraints, such as
disjunctive and implicative constraints. For example, the disjunctive constraint

(Bx +4y <20) v (5x —2y > 50)
can be expressed with the following statements:
var x Yy P g;
reify p: (3 * x + 4 x y < 20) q: (5 *x x — 2 * y > 50);
lincon p + q >= 1;
The binary variables p and ¢ reify the linear constraints
3x +4y <20
and
5x —2y > 50

respectively. The following linear constraint enforces the desired disjunction:

pt+q=1

The implication constraint
(Bx +4y <20) = (5x —2y > 50)
can be enforced with the linear constraint
q—-p=0
The REIFY constraint can also be used to express a constraint that involves the absolute value of a
variable. For example, the constraint
|X|=5
can be expressed with the following statements:
var x p q;

reify p: (x = 5) q: (x = =-5);
lincon p + g = 1;
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REQUIRES Statement

REQUIRES resource constraint-1 <. .. resource _constraint-n> ;
where resource_constraint is specified in the following form:
activity _specification = (resource_specification) < qty = ¢ >
where
activity_specification: (activity [ activity-1 <. . . activity-m>)
and
resource_specification: (resource-1<qty =r1> <...(, | OR) resource-l < qty=r; >>)

activity_specification is a single activity or a list of activities that requires ¢ units of the resource
identified in resource_specification. resource_specification is a single resource or a list of resources,
representing a choice of resource, along with the equivalent required quantities for each resource.
The default value of r; is 1. Alternate resource requirements are separated by a comma (,) or the
keyword OR. The gty= parameter outside the resource_specification acts as a multiplier to the gty=
parameters inside the resource_specification.

The REQUIRES statement defines the potential activity assignments with respect to the pool of
resources. If an activity is not defined, the REQUIRES statement implicitly defines the activity.

You can also define resource constraints by using the Activity and Resource data sets in lieu of, or in
conjunction with, the REQUIRES statement. Any resource constraints that are defined for an activity
by using a REQUIRES statement override all resource constraints for that activity that are defined by
using the Activity and Resource data sets.

The following statements illustrate how you would use a REQUIRES statement to specify that
activity A requires resource R:

activity A;
resource R;
requires A = (R);

In order to specify that activity A requires two units of the resource R, you would add the gry=
keyword as in the following example:

requires A = (R gqty=2);

In certain situations, the assignment might not be established in advance and there might be a set of
possible alternates that can satisfy the requirements of an activity. This scenario can be defined by
using multiple resource-specifications separated by commas or the keyword OR. For example, if the
activity A needs either two units of the resource R1 or one unit of the resource R2, you could use the
following statement:

requires A = (Rl gty=2, R2);

The equivalent statement using the keyword OR is

requires A = (Rl gty=2 or R2);
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It is important to note that resources specified in a single resource constraint are disjunctive and not
conjunctive. The activity is satisfied by exactly one of the resources rather than a combination of
resources. For example, the following statement specifies that the possible resource assignment for
activity A is either four units of R1 or two units of R2:

requires A = (Rl gty=2 or R2) qgty=2;

The preceding statement does not, for example, result in an assignment of two units of the resource
R1 and one unit of R2.

In order to model conjunctive resources by using a REQUIRES statement, such as when an activity
requires more than one resource simultaneously, you need to define multiple resource constraints.
For example, if activity A requires both resource R1 and resource R2, you can model it as follows:

requires A = (R1) A = (R2);

or

requires A
requires A

(R1);
(R2) ;

If multiple activities have the same resource requirements, you can use an activity list for specifying
the constraints instead of having separate constraints for each activity. For example, if activities A
and B require resource R1 or resource R2, the specification

requires (A B) = (R1, R2);

is equivalent to

requires A = (R1, R2);
requires B = (R1l, R2);
RESOURCE Statement

RESOURCE resource_specification-1 < ... resource_specification-n> ;
where resource_specification is specified in the following form:

resource | (resource-1 <. .. resource-m>) < =(capacity) >

The RESOURCE statement specifies the names and capacities of all resources that are available to
be assigned to any defined activities. For example, the following statement specifies that there are
two units of the resource R1 and one unit of the resource R2.

resource Rl=(2) R2;

The capacity of a resource can take nonnegative integer values. The default capacity is 1, which
corresponds to a unary resource.
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SCHEDULE Statement

SCHEDULE options ;
SCHED options ;

The following options can appear in the SCHEDULE statement.

ACTASSIGN=keyword

specifies the activity assignment strategy subject to the activity selection strategy, which
is specified by the ACTSELECT= option. After an activity has been selected, the activity
assignment strategy determines a start time and a set of resources (empty if the activity has no
resource requirements) for the selected activity. The interpretation of the assignment strategy
depends on whether the activity selection strategy has been specified as RIRAND or not. The
activity is assigned its earliest possible start time unless ACTSELECT=RJRAND; otherwise,
the activity is assigned its latest possible start time.

Figure 3.4 illustrates possible start times for a single activity, which requires one of the
resources R1, R2, R3, R4, RS, or R6. The bars depict the possible start times that are supported
by each of the resources for the duration of the activity.

Figure 3.4 Potential Activity Start Times
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For example, if ACTSELECT=LJRAND, the activity is assigned a start time of 6 and one of
R1 or R2 is assigned. On the other hand, if ACTSELECT=RJRAND, the activity is assigned a
start time of 13 and one of R4, RS, or R6 is assigned.

If the activity has any resource requirements, then the activity is assigned a set of resources as

follows:

RAND

MAXTW | MAXLS

randomly selects a set of resources that support the selected start time
for the activity.

In Figure 3.4, if the activity start time is set to 6, the strategy randomly
selects between R1 and R2. Otherwise, the strategy randomly selects
among R4, R5, and R6.

selects the set of resources that supports the assigned start time and
affords the maximum time window of availability for the activity. Ties
are broken randomly.

In Figure 3.4, if the activity start time is set to 6, the resources that
support the selected start time are R1 and R2. Since R1 has a smaller
time window, the strategy selects R2. On the other hand, if the activity
start time is set to 13, the resources that support the selected start time
are R4, RS, and R6. Because R4 has a smaller time window than RS or
R6, the strategy randomly selects between R5 and R6.

The default activity assignment strategy is RAND. For assigning variables, use the
VARASSIGN-= option in the PROC CLP statement.

ACTSELECT=keyword

specifies the activity selection strategy. The activity selection strategy can be randomized or

deterministic.

The following selection strategies use a random heuristic to break ties:

LJRAND | RAND

MAXD

MINA

MINLS

RJRAND

selects an activity at random from those that begin prior to the earliest
early finish time. This strategy was proposed by Nuijten (1994).

selects an activity at random from those that begin prior to the earliest
early finish time and that have maximum duration.

selects an activity at random from those that begin prior to the earli-
est early finish time and that have the minimum number of resource
assignments.

selects an activity at random from those that begin prior to the earliest
early finish time and that have a minimum late start time.

selects an activity at random from those that finish after the latest late
start time.
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The following are deterministic selection strategies:

DET selects the first activity that begins prior to the earliest activity finish time.
DMINLS selects the activity with the earliest late start time.

The first activity is defined according to its appearance in the following order of precedence:

1. ACTIVITY statement
2. REQUIRES statement
3. ACTDATA= data set

The default activity selection strategy is RAND. For selecting variables, use the VARSELECT=
option in the PROC CLP statement.

DURATION=dur
SCHEDDUR=qur

DUR=dur
specifies the duration of the schedule. The DURATION= option imposes a constraint that the
duration of the schedule does not exceed the specified value.

EDGEFINDER <=eftype>

EDGE <=eftype>
activates the edge-finder consistency routines for scheduling CSPs. By default, the
EDGEFINDER= option is inactive. Specifying the EDGEFINDER= option determines
whether an activity must be the first or the last to be processed from a set of activities that
require a given resource or set of resources and prunes the domain of the activity appropriately.

Valid values for the eftype keyword are FIRST, LAST, or BOTH. Note that eftype is an
optional argument, and that specifying EDGEFINDER by itself is equivalent to specifying
EDGEFINDER=LAST. The interpretation of each of these keywords is described as follows:

e FIRST: The edge-finder algorithm attempts to determine whether an activity must be
processed first from a set of activities that require a given resource or set of resources
and prunes its domain appropriately.

e LAST: The edge-finder algorithm attempts to determine whether an activity must be
processed last from a set of activities that require a given resource or set of resources and
prunes its domain appropriately.

e BOTH: This is equivalent to specifying both FIRST and LAST. The edge-finder algorithm
attempts to determine which activities must be first and which activities must be last, and
updates their domains as necessary.

There are several extensions to the edge-finder consistency routines. These extensions are
invoked by using the NOTFIRST= and NOTLAST= options in the SCHEDULE statement.
For more information about options that are related to edge-finder consistency routines, see
the section “Edge Finding” on page 50.
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FINISH=finish

END=finish

FINISHBEFORE-=finish
specifies the finish time for the schedule. The schedule finish time is an upper bound on the
finish time of each activity (subject to time, precedence, and resource constraints). If you
want to impose a tighter upper bound for an activity, you can do so either by using the FLE=
specification in an ACTIVITY statement or by using the _ALIGNDATE_ and _ALIGNTYPE_
variables in the ACTDATA= data set.

NOTFIRST=/eve/

NF=/evel
activates an extension of the edge-finder consistency routines for scheduling CSPs. By default,
the NOTFIRST= option is inactive. Specifying the NOTFIRST= option determines whether an
activity cannot be the first to be processed from a set of activities that require a given resource
or set of resources and prunes its domain appropriately.

The argument level is numeric and indicates the level of propagation. Valid values are 1, 2,
or 3, with a higher number reflecting more propagation. More propagation usually comes
with a higher performance cost; the challenge is to strike the right balance. Specifying the
NOTFIRST= option implicitly turns on the EDGEFINDER=LAST option because the latter is
a special case of the former.

The corresponding NOTLAST= option determines whether an activity cannot be the last to be
processed from a set of activities that require a given resource or set of resources.

For more information about options that are related to edge-finder consistency routines, see
the section “Edge Finding” on page 50.

NOTLAST=/evel

NL=/evel
activates an extension of the edge-finder consistency routines for scheduling CSPs. By default,
the NOTLAST= option is inactive. Specifying the NOTLAST= option determines whether an
activity cannot be the last to be processed from a set of activities that require a given resource
or set of resources and prunes its domain appropriately.

The argument level is numeric and indicates the level of propagation. Valid values are 1, 2,
or 3, with a higher number reflecting more propagation. More propagation usually comes
with a higher performance cost; the challenge is to strike the right balance. Specifying the
NOTLAST= option implicitly turns on the EDGEFINDER=FIRST option because the latter is
a special case of the former.

The corresponding NOTFIRST= option determines whether an activity cannot be the first to
be processed from a set of activities requiring a given resource or set of resources.

For more information about options that are related to edge-finder consistency routines, see
the section “Edge Finding” on page 50.
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START=start

BEGIN=start

STARTAFTER=start
specifies the start time for the schedule. The schedule start time is a lower bound on the
start time of each activity (subject to time, precedence, and resource constraints). If you
want to impose a tighter lower bound for an activity, you can do so either by using the SGE=
specification in an ACTIVITY statement or by using the _ALIGNDATE_ and _ALIGNTYPE_
variables in the ACTDATA= data set.

VARIABLE Statement

VARIABLE var_specification-1 < .. . var_specification-n> ;
VAR var_specification-1 <. .. var_specification-n> ;
A var_specification can be one of the following types:
variable < =[lower-bound <, upper-bound>]>
(variables) < =[lower-bound <, upper-bound>]>

The VARIABLE statement declares all variables that are to be considered in the CSP and, optionally,
defines their domains. Any variable domains defined in a VARIABLE statement override the global
variable domains that are defined by using the DOMAIN= option in the PROC CLP statement
in addition to any bounds that are defined by using the CONDATA= data set. If lower-bound is
specified and upper-bound is omitted, the corresponding variables are considered as being assigned
to lower-bound. The values of lower-bound and upper-bound can also be specified as missing, in
which case the appropriate values from the DOMAIN= specification are substituted.

Details: CLP Procedure

Modes of Operation

The CLP procedure can be invoked in either of the following modes:

e The standard mode gives you access to all-different constraints, element constraints, GCC con-
straints, linear constraints, reify constraints, ARRAY statements, and FOREACH statements.
In standard mode, the decision variables are one-dimensional; a variable is assigned an integer
in a solution.

e The scheduling mode gives you access to more scheduling-specific constraints, such as
temporal constraints (precedence and time) and resource constraints. In scheduling mode, the



42 4 Chapter 3: The CLP Procedure

variables are typically multidimensional; a variable is assigned a start time and possibly a
set of resources in a solution. In scheduling mode, the variables are referred to as activities,
and the solution is referred to as a schedule. Scheduling mode is experimental in the current
version of the CLP procedure.

Selecting the Mode of Operation

The CLP procedure requires the specification of an output data set to store one or more solutions to
the CSP. There are four possible output data sets: the Solution data set (specified using the OUT=
option in the PROC CLP statement), which corresponds to the standard mode of operation, and one
or more Schedule data sets (specified using the SCHEDULE=, SCHEDRES=, or SCHEDTIME=
options in the PROC CLP statement), which correspond to the scheduling mode of operation. The
mode is determined by which output data set has been specified. If an output data set is not specified,
the procedure terminates with an error message. If both types of output data sets have been specified,
the schedule-related data sets are ignored.

Constraint Data Set

The Constraint data set defines linear constraints, variable types, and bounds on variable domains.
You can use a Constraint data set in lieu of, or in combination with, a LINCON or a VARIABLE
statement (or both) in order to define linear constraints, variable types, and variable bounds. The
Constraint data set is specified by using the CONDATA= option in the PROC CLP statement.

The Constraint data set must be in dense input format. In this format, a model’s columns appear
as variables in the input data set and the data set must contain the _TYPE_ variable, at least one
numeric variable, and any reserved variables. Currently, the only reserved variable is the _RHS_
variable. If this requirement is not met, the CLP procedure terminates. The _TYPE_ variable is a
character variable that tells the CLP procedure how to interpret each observation. The CLP procedure
recognizes the following keywords as valid values for the _TYPE_ variable: EQ, LE, GE, NE, LT,
GT, LOWERBD, UPPERBD, BINARY, and FIXED. An optional character variable, _ID_, can be
used to name each row in the Constraint data set.

Linear Constraints

For the _TYPE_ values EQ, LE, GE, NE, LT, and GT, the corresponding observation is interpreted
as a linear constraint. The _RHS_ variable is a numeric variable that contains the right-hand-side
coefficient of the linear constraint. Any numeric variable other than _RHS_ that appears in a
VARIABLE statement is interpreted as a structural variable for the linear constraint.
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The TYPE_ values are defined as follows:

EQ (=) defines a linear equality of the form
n
Z ajjxj = b;
j=1
LE (<=) defines a linear inequality of the form
n
Z aijxj < b;
j=1
GE (>=) defines a linear inequality of the form

n
> aijxj = b;
Jj=1

NE (<>) defines a linear disequation of the form
n
> aijxj # bi
j=1
LT (<) defines a linear inequality of the form
n
Z ajijx; < b,‘
Jj=1

GT (>) defines a linear inequality of the form

n
ZainJ > b,‘
Jj=1

Domain Bounds

The keywords LOWERBD and UPPERBD specify additional lower bounds and upper bounds,
respectively, on the variable domains. In an observation where the _TYPE_ variable is equal to
LOWERBD, a nonmissing value for a decision variable is considered to be a lower bound for that
variable. Similarly, in an observation where the _TYPE_ variable is equal to UPPERBD, a nonmissing
value for a decision variable is considered to be an upper bound for that variable. Note that lower
and upper bounds defined in the Constraint data set are overridden by lower and upper bounds that
are defined by using a VARIABLE statement.



44 4 Chapter 3: The CLP Procedure

Variable Types

The keywords BINARY and FIXED specify numeric variable types. If the value of _TYPE_ is
BINARY for an observation, then any decision variable with a nonmissing entry for the observation
is interpreted as being a binary variable with domain {0,1}. If the value of _TYPE_ is FIXED for an
observation, then any decision variable with a nonmissing entry for the observation is interpreted
as being assigned to that nonmissing value. In other words, if the value of the variable X is ¢ in an
observation for which _TYPE_ is FIXED, then the domain of X is considered to be the singleton {c}.
The value ¢ should belong to the domain of X, or the problem is deemed infeasible.

Variables in the CONDATA= Data Set

Table 3.2 lists all the variables that are associated with the Constraint data set and their interpretations
by the CLP procedure. For each variable, the table also lists its type (C for character, N for numeric),
the possible values it can assume, and its default value.

Table 3.2 Constraint Data Set Variables

Name Type Description Allowed Values Default

_TYPE_ C Observation type  EQ, LE, GE, NE,
LT, GT, LOWERBD,
UPPERBD, BINARY,

FIXED
_RHS_ N Right-hand-side 0
coefficient
_ID_ C Observation name
(optional)
Any numeric N Structural variable
variable other
than RHS

Solution Data Set

In order to solve a standard (nonscheduling) type CSP, you need to specify a Solution data set by
using the OUT= option in the PROC CLP statement. The Solution data set contains all the solutions
that have been determined by the CLP procedure. You can specify an upper bound on the number of
solutions by using the MAXSOLNS= option in the PROC CLP statement. If you prefer that PROC
CLP determine all possible solutions instead, you can specify the FINDALLSOLNS option in the
PROC CLP statement.

The Solution data set contains as many decision variables as have been defined in the CLP procedure
invocation. Every observation in the Solution data set corresponds to a solution to the CSP. If
a Constraint data set has been specified, then any variable formats and variable labels from the
Constraint data set carry over to the Solution data set.
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Activity Data Set

You can use an Activity data set in lieu of, or in combination with, an ACTIVITY statement to define
activities and constraints that relate to the activities. The Activity data set is similar to the Activity
data set of the CPM procedure in SAS/OR software and is specified by using the ACTDATA= option
in the PROC CLP statement.

The Activity data set enables you to define an activity, its domain, temporal constraints, and resource
constraints. The temporal constraints can be either time-alignment-type or precedence-type con-
straints. The Activity data set requires at least two variables: one to determine the activity, and
another to determine its duration. The procedure terminates if it cannot find the required variables.
The activity is determined with the _ACTIVITY_ variable, which must be character, and the duration
is determined with the _DURATION_ variable, which must be numeric. You can define temporal
constraints and resource constraints by including additional variables.

Time Alignment Constraints

The _ALIGNDATE_ and _ALIGNTYPE_ variables enable you to define time-alignment-type constraints.
The _ALIGNTYPE_ variable defines the type of the alignment constraint for the activity that is named
in the _ACTIVITY_ variable with respect to the _ALIGNDATE_ variable. If the _ALIGNDATE_ variable is
not present in the Activity data set, the _ALIGNTYPE_ variable is ignored. Similarly, _ALIGNDATE_ is
ignored when _ALIGNTYPE_ is not present. The _ALIGNDATE_ variable can take nonnegative integer
values. The ALIGNTYPE_ variable can take the values shown in Table 3.3.

Table 3.3 Valid Values for the ALIGNTYPE_ Variable

Value Type of Alignment

SEQ  Start equal to

SGE  Start greater than or equal to
SLE Start less than or equal to
FEQ  Finish equal to

FGE  Finish greater than or equal to
FLE  Finish less than or equal to

Precedence Constraints

The _SUCCESSOR_ variable enables you to define precedence-type relationships between activities
by using AON (activity-on-node) format. The _SUCCESSOR_ variable is a character variable. The
_LAG_ variable defines the lag type of the relationship. By default, all precedence relationships are
considered to be finish-to-start (FS). An FS type of precedence relationship is also referred to as a
standard precedence constraint. All other types of precedence relationships are considered to be
nonstandard precedence constraints. The _LAGDUR_ variable specifies the lag duration. By default,
the lag duration is zero.
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For each (activity, successor) pair, you can define a lag type and a lag duration. Consider a pair of
activities (A, B) with a lag duration given by lagdur. The interpretation of each of the different lag
types is given in Table 3.4.

Table 3.4 Valid Values for the _LAG_ Variable

Lag Type Interpretation

FS Finish A + lagdur < Start B
SS Start A + lagdur < Start B
FF Finish A + lagdur < Finish B
SF Start A + lagdur < Finish B
FSE Finish A + lagdur = Start B
SSE Start A + lagdur = Start B
FFE Finish A + lagdur = Finish B
SFE Start A + lagdur = Finish B

The first four lag types (FS, SS, FF, and SF) are also referred to as finish-to-start, start-to-start,
finish-to-finish, and start-to-finish, respectively. The next four types (FSE, SSE, FFE, and SFE) are
stricter versions of FS, SS, FF, and SF, respectively. The first four types impose a lower bound on the
start and finish times of B, while the last four types force the start and finish times to be set equal to
the lower bound of the domain. The last four types enable you to force an activity to begin when its
predecessor is finished. It is relatively easy to generate infeasible scenarios with the stricter versions,
so you should use the stricter versions only if the weaker versions are not adequate for your problem.

Resource Constraints

The _RESOURCE_ and _QTY_ variables enable you to define resource constraints for activities.
The _RESOURCE_ variable is a character variable that identifies the resource or resource pool. The
_QTY_ variable is a numeric variable that identifies the number of units required. If the requirement
is for a resource pool, you need to use the Resource data set to identify the pool members. See the
section “Resource Data Set” on page 47 for more information.

For example, the following observations specify that activity Al needs one unit of resource R1 and
two units of resource R2:

_ACTIVITY_ _RESOURCE _ _QTY
Al R1 1
Al R2 2

Variables in the ACTDATA= Data Set

Table 3.5 lists all the variables that are associated with the ACTDATA= data set and their interpreta-
tions by the CLP procedure. For each variable, the table also lists its type (C for character, N for
numeric), its possible values, and its default value.
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Table 3.5 Activity Data Set Variables

Name Type  Description Allowed Values Default
_ACTIVITY_ C Activity name
_DURATION_ N Duration Nonnegative integers 0
_SUCCESSOR_ C Successor name
_LAG_ C Lag type FS, SS, FF, SF, FS
FSE, SSE, FFE, SFE
_LAGDUR _ N Lag duration 0
_ALIGNDATE_ N Alignment date
_ALIGNTYPE_ C Alignment type SGE, SLE, SEQ,
FGE, FLE, FEQ
_RESOURCE _ C Resource name
_QTY_ N Resource quantity Nonnegative integers 1

Resource Data Set

The Resource data set is used in conjunction with the ACTDATA= data set to define resources,
resource capacities, and alternate resources. The Resource data set contains at most four variables:
_RESOURCE_, _CAPACITY_, _POOL_, and _SUBQTY_. The Resource data set is specified by
using the RESDATA= option in the PROC CLP statement.

The _RESOURCE_ variable is a required character variable that defines resources. The
_CAPACITY_ variable is a numeric variable that defines the capacity of the resource; it takes
only nonnegative integer values. In the absence of alternate resources, the _RESOURCE_ and
_CAPACITY_ variables are the only variables that you need in a data set to define resources and
their capacities.

The following Resource data set defines resource R1 with capacity 2 and resource R2 with capacity 4:

_RESOURCE _ _CAPACITY_
R1 2
R2 4

Now suppose that you have an activity whose resource requirements can be satisfied by any one of a
given set of resources. The Activity data set does not directly allow for a disjunctive specification.
In order to do this you need to specify an abstract resource, referred to as a resource pool, in the
_RESOURCE_ variable and use the Resource data set to identify the resources that can be substituted
for this resource pool. You can do this using the _POOL_ and _SUBQTY_ variables. The _POOL._
variable is a character variable that identifies a resource pool to which the _RESOURCE_ variable
belongs. The _SUBQTY_ variable is a numeric variable that identifies the number of units of
_RESOURCE_ that can substitute for one unit of the resource pool. The _SUBQTY_ variable takes
only nonnegative integer values. Each resource pool corresponds to as many observations in the
Resource data set as there are members in the pool. A _RESOURCE_ can have membership in more
than one resource pool. The resource and resource pool are distinct entities in the Resource data set;
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that is, a _RESOURCE __ cannot have the same name as a _POOL_ in the Resource data set and vice
versa.

For example, consider the following Activity data set:

Obs _ACTIVITY_ _DURATION_ _RESOURCE_
1 A 1 R1
2 B 2 RP1
3 Cc 1 RP2

and Resource data set:

Obs _RESOURCE__ _CAPACITY_ _POOL_ _SUBQTY__
1 R1 2 RP1 1
2 R2 1 RP1 1
3 R1 2 RP2 2
4 R2 1 RP2 1

Activity A requires the resource R1. Activity B requires the resource RP1, which is identified as a
resource pool in the Resource data set with members R1 and R2. Since the value of _SUBQTY_is 1
for both resources, activity B can be satisfied with one unit of R1 or one unit of R2. Observations
3 and 4 in the Resource data set define resource pool RP2. Activity C requires resource pool RP2,
which translates to requiring two units of R1 or one unit of R2 (since the value of _SUBQTY_ is 2 in
observation 3 of the Resource data set). Resource substitution is not a sharable substitution; it is all
or nothing. For example, if activity A requires two units of RP1 instead, the substitution is two units
of R1 or two units of R2. The requirement cannot be satisfied using one unit of R1 and one unit of
R2.

Variables in the RESDATA= Data Set

Table 3.6 lists all the variables that are associated with the RESDATA= data set and their interpreta-
tions by the CLP procedure. For each variable, the table also lists its type (C for character, N for
numeric), its possible values, and its default value.

Table 3.6 Resource Data Set Variables

Name Type  Description Allowed Values Default
_RESOURCE_ C Resource name

_CAPACITY_ N Resource capacity Nonnegative integers 1
_POOL_ C Resource pool name

_SUBQTY_ N Number of units of resource that Nonnegative integers 1

can substitute for one unit of the
resource pool
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Schedule Data Set

In order to solve a scheduling type CSP, you need to specify one or more schedule-related output
data sets by using one or more of the SCHEDULE=, SCHEDTIME=, or SCHEDRES= options in
the PROC CLP statement.

The Schedule data set is specified with the SCHEDULE= option in the PROC CLP statement and is
the only data set that contains both time and resource assignment information for each activity.

The SCHEDULE-= data set always contains the following five variables: SOLUTION, ACTIVITY,
DURATION, START, and FINISH. The SOLUTION variable gives the solution number to which each
observation corresponds. The ACTIVITY variable identifies each activity. The DURATION variable
gives the duration of the activity. The START and FINISH variables give the scheduled start and finish
times for the activity. There is one observation that contains the time assignment information for
each activity that corresponds to these variables.

If any resources have been specified, the data set contains three more variables: OBSTYPE, RE-
SOURCE, and QTY. The value of the OBSTYPE variable indicates whether an observation represents
time assignment information or resource assignment information. Observations that correspond
to OBSTYPE=“TIME” provide time assignment information, and observations that correspond to
OBSTYPE=“RESOURCE” provide resource assignment information. The RESOURCE variable
and the QTY variable constitute the resource assignment information and identify the resource and
quantity, respectively, of the resource that is assigned to each activity.

The values of RESOURCE and QTY are missing for time assignment observations, and the values of
DURATION, START, and FINISH are missing for resource assignment observations.

If an Activity data set has been specified, the formats and labels for the _ACTIVITY_ and _DURA-
TION_ variables carry over to the ACTIVITY and DURATION variables, respectively, in the Schedule
data set.

In addition to or in lieu of the SCHEDULE= data set, there are two other schedule-related data
sets that together represent a logical partitioning of the Schedule data set with no loss of data. The
SCHEDTIME-= data set contains the time assignment information, and the SCHEDRES= data set
contains the resource assignment information.

Variables in the SCHEDULE= Data Set

Table 3.7 lists all the variables that are associated with the SCHEDULE= data set and their interpre-
tations by the CLP procedure. For each variable, the table also lists its type (C for character, N for
numeric), and its possible values.
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Table 3.7 Schedule Data Set Variables

Name Type  Description Values

SOLUTION N Solution number  Positive integers

OBSTYPE C Observation type ~ TIME, RESOURCE

ACTIVITY C Activity name

DURATION N Duration Nonnegative integers, missing when
OBSTYPE=“RESOURCE”

START N Start time Missing when OBSTYPE="RESOURCE”

FINISH N Finish time Missing when OBSTYPE=“RESOURCE”

RESOURCE C Resource name Missing when OBSTYPE="TIME”

QTY N Resource quantity Nonnegative integers, missing when

OBSTYPE=“TIME”

SCHEDRES= Data Set

The SCHEDRES= data set contains the resource assignments for each activity. There are four
variables: SOLUTION, ACTIVITY, RESOURCE, and QTY, which are identical to the same variables
in the SCHEDULE-= data set. The observations correspond to the subset of observations in the
SCHEDULE-= data set with OBSTYPE=“RESOURCE.”

SCHEDTIME= Data Set

The SCHEDTIME-= data set contains the time assignments for each activity. There are five variables:
SOLUTION, ACTIVITY, DURATION, START, and FINISH, which are identical to the same variables
in the SCHEDULE-= data set. The observations correspond to the subset of observations in the
SCHEDULE-= data set with OBSTYPE="“TIME.”

Edge Finding

Edge-finding (EF) techniques are effective propagation techniques for resource capacity constraints
that reason about the processing order of a set of activities that require a given resource or set of
resources. Some of the typical ordering relationships that EF techniques can determine are whether
an activity can, cannot, or must execute before (or after) a set of activities that require the same
resource or set of resources. This in turn determines new time bounds on the start and finish times.
Carlier and Pinson (1989) are responsible for some of the earliest work in this area, which resulted in
solving MT10, a 10x10 job shop problem that had remained unsolved for over 20 years (Muth and
Thompson 1963). Since then, there have been several variations and extensions of this work (Carlier
and Pinson 1990; Applegate and Cook 1991; Nuijten 1994; Baptiste and Le Pape 1996).
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The edge-finding consistency routines are invoked by specifying the EDGEFINDER= or EDGE=
option in the SCHEDULE statement. Specifying EDGEFINDER=FIRST computes an upper bound
on the activity finish time by detecting whether a given activity must be processed first from a set
of activities that require the same resource or set of resources. Specifying EDGEFINDER=LAST
computes a lower bound on the activity start time by detecting whether a given activity must
be processed last from a set of activities that require the same resource or set of resources.
Specifying EDGEFINDER=BOTH is equivalent to specifying both EDGEFINDER=FIRST and
EDGEFINDER=LAST.

An extension of the edge-finding consistency routines is determining whether an activity cannot be
the first to be processed or whether an activity cannot be the last to be processed from a given set
of activities that require the same resource or set of resources. The NOTFIRST= or NF= option in
the SCHEDULE statement determines whether an activity must not be the first to be processed. In
similar fashion, the NOTLAST= or NL= option in the SCHEDULE statement determines whether an
activity must not be the last to be processed.

Macro Variable _ORCLP_

The CLP procedure defines a macro variable named _ORCLP_. This variable contains a character
string that indicates the status of the CLP procedure upon termination. The various terms of the
macro variable are interpreted as follows.

STATUS
indicates the procedure status at termination. It can take one of the following values:

OK The procedure terminated successfully.
DATA_ERROR An input data error occurred.
IO_ERROR A problem in reading or writing data occurred.

MEMORY_ERROR Insufficient memory is allocated to the procedure.
SEMANTIC_ERROR The use of semantic action is incorrect.

SYNTAX_ERROR The use of syntax in incorrect.

ERROR The status cannot be classified into any of the preceding categories.

If the procedure terminates normally or if an I/O error is detected while closing a data set, the
following terms are added to the macro variable.
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SOLUTION_STATUS
indicates the solution status at termination. It can take one of the following values:

ALL_SOLUTIONS All solutions are found.

INFEASIBLE The problem is infeasible.

SOLN_LIMIT_REACHED The required number of solutions specified with the
MAXSOLN= option is reached.

TIME_LIMIT_REACHED The execution time limit specified with the
MAXTIME-= option is reached.

RESTART_LIMIT_REACHED The number of restarts specified with RESTARTS=

option is reached.

ABORT The procedure is stopped by user before any other stop
criteria is reached.

SOLUTIONS_FOUND
indicates the number of solutions that are found. This term is not applicable if
SOLUTION_STATUS has a value of INFEASIBLE.

MIN_MAKESPAN
indicates the minimal makespan of the solutions that are found. The makespan is the maximum
of the activity finish times or the completion time of the last job to leave the system. This term
is applicable only to scheduling problems with at least one solution.

SOLUTION_TIME
indicates the time (in seconds) taken to solve the problem.

Examples: CLP Procedure

This section contains several examples that illustrate the capabilities of the different logical constraints
and showcase a variety of problems that can be solved by the CLP procedure. The first seven examples
feature a standard constraint satisfaction problem (CSP):

o “Example 3.1: Logic-Based Puzzles” illustrates the capabilities of the ALLDIFFERENT
constraint in solving the popular logical puzzle, Sudoku. This example also contains a variant
of Sudoku which illustrates the capabilities of the GCC constraint.

e “Example 3.2: Alphabet Blocks Problem” illustrates the use of the GCC constraint in solving
the alphabet blocks problem, a popular combinatorial problem.

o “Example 3.3: Work-Shift Scheduling Problem” illustrates the capabilities of the ELEMENT
constraint in modeling the cost information in a work-shift scheduling problem in order to find
a minimum cost schedule.
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e “Example 3.4: A Nonlinear Optimization Problem” illustrates how you can use the ELEMENT
constraint to represent nonlinear functions and nonstandard variable domains, including
noncontiguous domains.

e “Example 3.5: Car Painting Problem” involves limited sequencing of the cars in an assembly
process in order to minimize the number of paint purgings and features the REIFY constraint.

e “Example 3.6: Scene Allocation Problem” schedules the shooting of different scenes of a
movie in order to minimize production costs. This problem uses the GCC and LINEAR
constraints.

e “Example 3.7: Car Sequencing Problem” relates to sequencing the cars on an assembly line
with workstations for installing specific options subject to the demand constraints for each set
of options and the capacity constraints of each workstation.

The next four examples feature scheduling CSPs and use the scheduling constraints in the CLP
procedure:

e “Example 3.8: Round-Robin Problem” illustrates solving a single round robin tournament.

e “Example 3.9: Resource-Constrained Scheduling with Nonstandard Temporal Constraints”
illustrates nonstandard precedence constraints in scheduling the construction of a bridge.

e “Example 3.10: Scheduling with Alternate Resources” illustrates a job scheduling problem
with alternate resources. An optimal solution is determined by activating the edge-finding
consistency techniques for this example.

e “Example 3.11: 10x10 Job Shop Scheduling Problem” illustrates a well-known 10x10 job
shop scheduling problem and features edge-finding along with the edge-finding extensions
‘not first” and ‘not last’ in order to determine optimality.

It is often possible to formulate a problem both as a standard CSP and also as a scheduling CSP.
Depending on the nature of the constraints, it might even be more advantageous to formulate a
scheduling problem as a standard CSP and vice versa:

e “Example 3.12: Scheduling a Major Basketball Conference” illustrates this concept by
modeling the problem of scheduling a major basketball conference as a standard CSP. The
ELEMENT constraint plays a key role in this particular example.

Example 3.1: Logic-Based Puzzles

There are many logic-based puzzles that can be formulated as CSPs. Two such instances are shown
in this example.
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Sudoku

Sudoku is a logic-based, combinatorial number-placement puzzle played on a partially filled 9x9
grid. The objective is to fill the grid with the digits 1 to 9, so that each column, each row, and each of
the nine 3x3 blocks contain only one of each digit. Figure 3.5 shows an example of a Sudoku grid.

Figure 3.5 An Example of an Unsolved Sudoku Grid

5 7 1
7 9 3
6
3 1 5
9 8 2
1 2 4
2 6 9
4 8
8 1 5

This example illustrates the use of the ALLDIFFERENT constraint to solve the above Sudoku
problem.

The data set indata contains the partially filled values for the grid and is used to create the set of
macro variables C;; (i =1...9,j =1...9), where C;; is the value of cell (i, j) in the grid when
specified, and missing otherwise.

data indata;
input C1-C9;
datalines;
.5 . .7 . .1

run;

$macro store_initial_ values;
/* store initial values into macro variable C_i_j %/
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data _null_;
set indata;
array C{9};
do j=1to 9;

i=_N;
call symput (compress('C_'||put(i,best.)||'_'||put(j, best.)),
put (C[]j] ,best.));
end;
run;

$mend store_initial_ values;

$store_initial_values;

Let the variable X;; (i = 1...9,j = 1...9) represent the value of cell (i, j) in the grid. The
domain of each of these variables is [1,9]. Three sets of all-different constraints are used to
set the required rules for each row, each column, and each of the 3x3 blocks. The constraint
ALLDIFF(X;1 — X;9) forces all values in row i to be different, the constraint ALLDIFF(X1; — Xo;)
forces all values in column j to be different, and the constraint ALLDIFF(X;;) (i =1,2,3;j =
1,2,3),(i =1,2,3;j =4,5,6),...,(i =17,8,9;j = 7,8,9)) forces all values in each block to
be different.

The following statements solve the Sudoku puzzle:

$macro solve;
proc clp out=outdata;

/* Declare variables */
/* Nine row constraints =*/
$do i = 1 %to 9;
var (X &i._1-X &i._9) = [1,9];
alldiff(X &i._1-X &i._9);
%$end;

/* Nine column constraints x/
%do j = 1 %to 9;

alldiff(
$do i = 1 %to 9;
X &i._ &3
%$end;
)i
%$end;

/* Nine 3x3 block constraints =/
%do s = 0 %$to 2;
$do t = 0 %to 2;
alldiff (
%do i = 3x&s + 1 %to 3x&s + 3;
%do j = 3x&t + 1 %to 3x&t + 3;
X &i._&j
%$end;
%$end;
)i
%$end;
%$end;
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/* Initialize variables to cell values */
/* X i _j =C_i_j if C_i_j is non-missing */
$do i =1 %to 9;
$do j = 1 %to 9;
%$if &&C_&i._&j ne . %then %do;
lincon X &i._&j = &&C_&i._&j;
%$end;
%$end;
%$end;

run;

$put &_ORCLP_;
$mend solve;
%$solve

Output 3.1.1 shows the solution.

Output 3.1.1 Solution of the Sudoku Grid

9 8 5 3 2 7 6 4 1

6 7 1 5 9 4 2 3 8

The basic structure of the classical Sudoku problem can easily be extended to formulate more
complex puzzles. One such example is the Pi Day Sudoku puzzle.

Pi Day Sudoku

Pi Day is a celebration of the number 7 that occurs every March 14. In honor of Pi Day, Brainfreeze
Puzzles (Riley and Taalman 2008) celebrates this day with a special 12x12 grid Sudoku puzzle. The
2008 Pi Day Sudoku puzzle is shown in Figure 3.6.



Figure 3.6 Pi Day Sudoku 2008
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3 5 1 9|5
1 3 1136
2
5 5 1
9 5
5|8 3 6
5 55|83
5 1
2 1 5 9
6 4 3
1|5 5
5|5 6 8

The rules of this puzzle are a little different from the standard Sudoku. First, the blocks in this
puzzle are jigsaw regions rather than 3x3 blocks. Each jigsaw region consists of 12 contiguous cells.
Second, the first 12 digits of 7 are used instead of the digits 1-9. Each row, column, and jigsaw
region contains the first 12 digits of 7 (314159265358) in some order. In particular, there are two 1s,

two 3s, three 5s, no 7s, and one 2, 4, 6, 8, and 9.

The data set raw contains the partially filled values for the grid and, similar to the Sudoku problem, is
used to create the set of macro variables C;; (i = 1,...,12,j =1,...,12) where C;; is the value
of cell (i, j) in the grid when specified, and missing otherwise.

data raw;

input Cl1-C12;

datalines;
3 . 1 5

1 3
5 . 1 .
. 9 5
5 8 .

5 8 .
. . 5
2 . 5 1

6 4
1 5 .
5 5 4

run;

4

3

N

w
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$macro cdata;
/* store each pre-filled value into macro variable C_i_j */
data _null_;
set raw;
array C{12},;
do j =1 to 12;
i=_N_;
call symput (compress('C_'||put(i,best.)||'_"||put(j, best.)),
put (C[j], best.));
end;
run;
$mend cdata;
%$cdata;

As in the Sudoku problem, let the variable X;; represent the value of the cell that corresponds to row
i and column j. The domain of each of these variables is [1, 9].

For each row, column, and jigsaw region, a GCC statement is specified to enforce the condition that
it contains exactly the first twelve digits of .

In particular, the variables in row r, r = 1,...,12 are X;1,...,Xr12. The SAS macro
%CONS_ROW(R) enforces the GCC constraint that row r contains exactly two 1s, two 3s, three 5s,
no 7s, and one of each of the other values:

$macro cons_row(r);
/* Row r must contain two 1l's, two 3's, three 5's, no 7's, */
/* and one for each of other values from 1 to 9. */
gcc(X_&r._1-X &r._12) =
( (1, 2, 2) (3, 2, 2) (5, 3, 3) (7, 0, 0) DL=1 DU=1 );
$mend cons_row;

The variables in column ¢ are X, ..., X12.. The SAS macro %CONS_COL/(C) enforces a similar
GCC constraint for each column c.

$macro cons_col(c);
/* Column c¢ must contain two 1l's, two 3's, three 5's, */
/* no 7's, and one for each of other values from 1 to 9. */
gcc( $do r = 1 %to 12;
X _&r._&c.
%$end;
) = ((1, 2, 2) (3, 2, 2) (5, 3, 3) (7, 0, 0) pL=1 DU=1);
$mend cons_col;

Generalizing this concept further, the SAS macro %CONS_REGION(VARS) enforces the GCC
constraint for the jigsaw region that is defined by the macro variable VARS.

$macro cons_region (vars);
/* Jigsaw region that contains &vars must contain two 1l's, x/
/* two 3's, three 5's, no 7's, and one for each of other */
/* values from 1 to 9. */
gcc(&vars.) = ((1, 2, 2) (3, 2, 2) (5, 3, 3) (7, 0, 0) DL=1 DU=1);
$mend cons_region;
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The following SAS statements incorporate the preceding macros to define the GCC constraints in
order to find all solutions of the Pi Day Sudoku 2008 puzzle:

$macro pds (solns=allsolns,varsel=MINR,maxt=900);

proc clp out=pdsout &solns
varselect=&varsel /* Variable selection strategy =*/
maxtime=&maxt; /* Time limit */

/* Variable X_i_j represents the grid of ith row and jth column. */
var (
%do i = 1 %to 12;
X &i. 1 - X &i._12
%$end;
) = [1,9];

/* X i j =C_i_j if C_i_j is non-missing */
$do i = 1 %$to 12;
$do j = 1 %to 12;
%$if &&C_&i._&j ne . %then %do;
lincon X &i._&j = &&C_&i._&j;
$end;
%$end;
%$end;

/* 12 Row constraints: */

$do r = 1 %to 12;
%$cons_row (&r) ;

%$end;

/* 12 Column constraints: x/

$do ¢ = 1 %to 12;
%$cons_col (&c) ;

%$end;

/* 12 Jigsaw region constraints: */
/* Each jigsaw region is defined by the macro variable &vars. */

/* Region 1: x/
%$let vars = X 1 1 - X1 3 X 2 1-X23

X 31X 32X 41X42X51ZX52;
%$cons_region (&vars.);

/* Region 2: x/
%$let vars = X 1 4 - X 1 9X 2 4 -X209;
%$cons_region (&vars.);

/* Region 3: x/
%$let vars = X 1 10 - X 1 12 X 2 10 - X 2 12

X 311 X 3 .12 X 4 11 X 4 12 X 5 11 X 5_12;
%$cons_region (&vars.);

/* Region 4: x/
%$let vars = X 3 3 - X 3 6 X 4 3 - X 4.6 X53-XD5_6;
%$cons_region (&vars.);
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/* Region 5: =/
%$let vars = X 3.7 - X 310 X 4.7 - X 4 10 X 5.7 - X 5.10;
%$cons_region(&vars.);

/* Region 6: */

%$let vars = X _6_1 -
X 8.1 -

%$cons_region(&vars.);

X 63X 71 _
X 83X 91

/* Region 7: */
%let vars = X 6.4 X 6. 5 X 7 4 X7 5X84%X8°5

X_ 9.4 X 95X 104 X105 X 11 4 X 11_5;
%$cons_region(&vars.);

/* Region 8: */

%$let vars = X 6_6 X
X 9 6 X_

$cons_region(&vars.);

6_7 X 7 6 X 7_7 X 86 X 817

9 7 X 10_6 X 10 _7 X 11 _6 X 11_7;
/* Region 9: */

%let vars = X 6_8 X X 78X 7 9 X 88X 89

6_9
X_ 9.8 X 9 9 X 10.8 X109 x 11 _8 X 11_9;
%$cons_region(&vars.);

/* Region 10: =*/

%$let vars = X 6_10 - X 6_12 X 7_10 - X 7_12
X 8.10 - X 8 12 X 9 10 - X 9 _12;

%$cons_region(&vars.);

/* Region 11: =x/
%$let vars = X 101 - X 10 3 X 11 1 - X 11 3 X 12 1 - X 12_6;
%$cons_region(&vars.);

/* Region 12: x/
%$let vars = X 10_10 - X 10_12 X 11 10 - X 11_12 X 12 7 - X_12_12;
%$cons_region(&vars.);

run;

$put &_ORCLP_;

$mend pds;
$pds;

The only solution of the 2008 Pi Day Sudoku puzzle is shown in Output 3.1.2.



Example 3.2: Alphabet Blocks Problem 4 61

Output 3.1.2 Solution to Pi Day Sudoku 2008

Pi Day Sudoku 2008
Obs c1 c2 c3 c4 cs cé c7 cs co c10 c11 c12
1 3 2 5 1 5 4 6 3 1 8 9 5
2 4 1 5 2 3 8 5 9 5 1 3 6
3 6 1 4 5 9 3 5 8 3 1 2 5
4 5 3 3 1 8 5 9 2 5 6 4 1
5 8 9 2 6 5 1 1 5 4 3 3 5
6 5 8 1 5 2 9 4 3 3 5 6 1
7 1 5 3 8 1 6 2 4 9 5 5 3
8 9 4 5 3 5 1 5 6 8 2 1 3
9 2 3 6 5 1 5 3 1 5 4 8 9
10 3 6 8 9 4 5 1 5 1 3 5 2
11 1 5 1 3 6 3 8 5 2 9 5 4
12 5 5 9 4 3 2 3 1 6 5 1 8
The corresponding completed grid is shown in Figure 3.7.
Figure 3.7 Solution to Pi Day Sudoku 2008
3/ 2|5|11|5|/4,6|3]1]8|9]|5
411|523 |85|/9|5]1|3]|6
6|14/, 5/ 9,3|5| 8383|125
5/3|8|/1|8 /5|9 2|5|6|4]1
8,912, 6 5/1|1|54]3|3|5
5/8|(1]15|2|]9|4]13[8|5)|6]|1
1153|8116 [|(214[9]5|5]|3
9/4|5|3 5|1/ 5]16,8|]2|1]3
2/3|6|5|1]53|1/5|]4|8]9
3/ 6|/8|19|4|5|1]5[1]3|5]|2
115|118, 6|3 [8|l5[2]9|5]|4
5/5/9/4/3/2|3|1,6|]5|1]8

Example 3.2: Alphabet Blocks Problem

This example illustrates usage of the global cardinality constraint (GCC). The alphabet blocks
problem consists of finding an arrangement of letters on four alphabet blocks. Each alphabet block
has a single letter on each of its six sides. Collectively, the four blocks contain every letter of the
alphabet except Q and Z. By arranging the blocks in various ways, the following words should be
spelled out: BAKE, ONYX, ECHO, OVAL, GIRD, SMUG, JUMP, TORN, LUCK, VINY, LUSH,
and WRAP.
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You can formulate this problem as a CSP by representing each of the 24 letters with an integer
variable. The domain of each variable is the set {1, 2, 3, 4} that represents block1 through block4.
The assignment ‘A = 1’ indicates that the letter ‘A’ is on a side of block1. Each block has six sides;
hence each value v in {1, 2, 3, 4} has to be assigned to exactly six variables so that each side of a
block has a letter on it. This restriction can be formulated as a global cardinality constraint over all
24 variables with common lower and upper bounds set equal to six.

Moreover, in order to spell all of the words listed previously, the four letters in each of the 12 words
have to be on different blocks. Another GCC statement that specifies 12 global cardinality constraints
is used to enforce these conditions. You can also formulate these restrictions with 12 all-different
constraints. Finally, four linear constraints (as specified with LINCON statements) are used to break
the symmetries that blocks are interchangeable. These constraints preset the blocks that contain the
letters ‘B’, ‘A’, ‘K’, and ‘E’ as block1, block2, block3, and block4, respectively.

The complete representation of the problem is as follows:

proc clp out=out;
/* Each letter except Q and Z is represented with a variable. */
/* The domain of each variable is the set of 4 blocks, */
/* or {1, 2, 3, 4} for short. */
var A BCDEFGHIJKLMNOPRSTUVWXY) = [1,4];

/* There are exactly 6 letters on each alphabet block */
gcc (ABCDEFGHIJKLMNOPRSTUVWIXY) = (

(1, 6, 6)
(2, 6, 6)
(3, 6, 6)
(4, 6, 6) );
/* Note 1: Since lv=uv=6 for all v=1,...,4; the above global

cardinality constraint can also specified as:
gcc ABCDEFGHIJKLMNOPRSTUVWZXY) =(DL=6 DU=6);
*/

/* The letters in each word must be on different blocks. */

gce (B A K E) = (DL=0 DU=1)
(ON Y X) = (DL=0 DU=1)
(EC HO) = (DL=0 DU=1)
(O VAL) = (DL=0 DU=1)
(6 I R D) = (DL=0 DU=1)
(SMUG) = (DL=0 DU=1)
(J UMP) = (DL=0 DU=1)
(T 0 R N) = (DL=0 DU=1)
(L UCK) = (DL=0 DU=1)
(VINY) = (DL=0 DU=1)
(L U S H) = (DL=0 DU=1)
(W R A P) = (DL=0 DU=1);

/* Note 2: These restrictions can also be enforced by ALLDIFF constraints:
alldiff (BAKE) (ONYX) (ECHO) (OVAL)
(GIRD) (SMUG) (JUMP) (T ORN)
(LUCK) (VINY) (LUSH) (WRAP);
*/



Example 3.3: Work-Shift Scheduling Problem 4 63

/* Breaking the symmetry that blocks can be interchanged by setting
the block that contains the letter B as blockl, the block that
contains the letter A as block2, etc. */

lincon B =

lincon

lincon

’
= ’

4

[ I
[NV NI

lincon = 4,
run;

The solution to this problem is shown in Output 3.2.1.

Output 3.2.1 Solution to Alphabet Blocks Problem

Solution to Alphabet Blocks Problem

Block Sidel Side2 Side3 Side4 Side5 Side6
1 B F I o U W
2 A C D J N S
3 H K M R v X
4 E G L P T Y

Example 3.3: Work-Shift Scheduling Problem

This example illustrates the use of the GCC constraint in finding a feasible solution to a work-shift
scheduling problem and then using the element constraint to incorporate cost information in order to
find a minimum cost schedule.

Six workers (Alan, Bob, John, Mike, Scott, and Ted) are to be assigned to three working shifts. The
first shift needs at least one and at most four people; the second shift needs at least two and at most
three people; and the third shift needs exactly two people. Alan does not work on the first shift;
Bob works only on the third shift. The others can work any shift. The objective is to find a feasible
assignment for this problem.

You can model the minimum and maximum shift requirements with a GCC constraint and formulate
the problem as a standard CSP. The variables W1-W6 identify the shift to be assigned to each of the
six workers: Alan, Bob, John, Mike, Scott, and Ted.

proc clp out=clpout;
/* Six workers (Alan, Bob, John, Mike, Scott and Ted)
are to be assigned to 3 working shifts. */
var (Wl-we6) = [1,3];

/* The first shift needs at least 1 and at most 4 people;
the second shift needs at least 2 and at most 3 people;
and the third shift needs exactly 2 people. */

gcc (W1-wé6) = ( (1, 1, 4) (2, 2, 3) (3, 2, 2));
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/* Alan doesn't work on the first shift. */
lincon W1 <> 1;

/* Bob works only on the third shift. =/
lincon W2 = 3;
run;

The resulting assignment is shown in Output 3.3.1.

Output 3.3.1 Solution to Work-Shift Scheduling Problem

Solution to Work-Shift Scheduling Problem

Obs Wl w2 W3 w4 W5 w6

1 2 3 1 1 2 3

A Gantt chart of the corresponding schedule is displayed in Output 3.3.2.

Output 3.3.2 Work-Shift Schedule

Example 3: Feasible Work-Shift Assignment

Job Name Shift 1 Shift 2 Shift 3

1 Alan
Bob
John
Mike

Scott

o u A W N

Ted

Now suppose that every work-shift assignment has a cost associated with it and that the objective of
interest is to determine the schedule with minimum cost.

The costs of assigning the workers to the different shifts are given in Table 3.8. A dash “-” in position
(i, j) indicates that worker i can not work on shift ;.
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Table 3.8 Costs of Assigning Workers to Shifts
Shift 1 Shift2 Shift 3

Alan - 12 10
Bob - - 6
John 16 8 12
Mike 10 6 8
Scott 6 6 8
Ted 12 4 4

Based on the cost structure in Table 3.8, the schedule derived previously has a cost of 54. The
objective now is to determine the optimal schedule—one that results in the minimum cost.

Let the variable C; represent the cost of assigning worker i to a shift. This variable is shift-dependent
and is given a high value (for example, 100) if the worker cannot be assigned to a shift. The costs
can also be interpreted as preferences if desired. You can use an element constraint to associate the
cost C; with the shift assignment for each worker. For example, C1, the cost of assigning Alan to a
shift, can be determined by the constraint ELEMENT (W1, (100, 12, 10), Cy).

By adding a linear constraint ) ;_; C; < obj, you can limit the solutions to feasible schedules that
cost no more than obj.

You can then create a SAS macro %CALLCLP with obj as a parameter that can be called iteratively
from a search routine to find an optimal solution. The SAS macro %MINCOST(/b,ub) uses a
bisection search to find the minimum cost schedule among all schedules that cost between /b and ub.
Although a value of ub = 100 is used in this example, it would suffice to use ub = 54, the cost of
the feasible schedule determined earlier.

$macro callclp (obj);
$put The objective value is: &obj..;
proc clp out=clpout;
/* Six workers (Alan, Bob, John, Mike, Scott and Ted)
are to be assigned to 3 working shifts. */
var (W1l-We6) [1,3]1;
var (Cl1-C6) [1,100];

/* The first shift needs at least 1 and at most 4 people;
the second shift needs at least 2 and at most 3 people;
and the third shift needs exactly 2 people. */

gcc (Wi-wé6) = ( (1, 1, 4) (2, 2, 3) (3, 2, 2));

/* Alan doesn't work on the first shift. */
lincon W1 <> 1;

/* Bob works only on the third shift. =*/
lincon W2 = 3;
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/* Specify the costs of assigning the workers to the shifts.
Use 100 (a large number) to indicate an assignment
that is not possible.x*/

element (W1, (100, 12, 10), C1l);

element (W2, (100, 100, 6), C2);

element (W3, ( 16, 8, 12), C3);

element (W4, ( 10, 6, 8), Cc4);

element (W5, ( 6, 6, 8), C5);

element (W6, ( 12, 4, 4), C6);

/* The total cost should be no more than the given objective value. */
lincon C1 + C2 + C3 + C4 + C5 + C6 <= &obj;

run;

/* when a solution is found, */

/* & _ORCLP_ contains the string SOLUTIONS_FOUND */

%$if %index (& _ORCLP_, SOLUTIONS_FOUND) %then %let clpreturn=SUCCESSFUL;
$mend;

/* Bisection search method to determine the optimal objective value */
$macro mincost (1lb, ub);
$do %$while (&lb<é&ub-1);
$put Currently lb=&lb, ub=&ub..;
%let newobj=%eval ( (&lb+&ub) /2);
%$let clpreturn=NOTFOUND;
%$callclp (&newobj) ;
%$if &clpreturn=SUCCESSFUL %then %let ub=&newobj;
%else %let lb=&newobj;
%$end;
%$callclp (&ub) ;
$put Minimum possible objective value within given range is &ub.;
$put Any value less than &lb makes the problem infeasible. ;
proc print;
run;
$mend;

/* Find the minimum objective value between 1 and 100. x*/
$mincost (1b=1, ub=100);

The cost of the optimal schedule, which corresponds to the solution shown in the following output,
is 40.

Solution to Optimal Work-Shift Scheduling Problem
Obs Wl w2 W3 w4 W5 Wé Cl c2 c3 c4 C5 cé

1 3 3 2 2 1 2 10 6 8 6 6 4

The minimum cost schedule is displayed in the Gantt chart in Output 3.3.3.
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Output 3.3.3 Work-Shift Schedule with Minimum Cost

Example 3: Optimal Work-Shift Assignment
Minimum Cost Schedule: $40
Job Name Shift 1 Shift 2 Shift 3
| | |

$10
1 Alan 840
$6 - $35
2 Bob L7 $30

$8 P
3 John 7 $25
. $6/// $20
4 Mike e $15
$6 P

5 Scott e $10
e o4 $5
6 Ted |- $0

Example 3.4: A Nonlinear Optimization Problem

This example illustrates how you can use the element constraint to represent almost any function
between two variables in addition to representing nonstandard domains. Consider the following
nonlinear optimization problem:

maximize f(x) = x; 4 5xp —2%3

X1 — Sxo» + x%
mod(x1,4) + .25x»

50

subject to 15

=
=

X1 . integers in [—5, 5], x5 : odd integers in [—5, 9], x3 : integers in [1, 10].

You can use the CLP procedure to solve this problem by introducing four artificial variables y;—y4
to represent each of the nonlinear terms. Let y; = x?, Yo =2%3, y3 = x%, and y4 = mod(x1, 4).
Since the domains of x; and x, are not consecutive integers that start from 1, you can use element
constraints to represent their domains by using index variables z; and z3, respectively. For example,
either of the following two ELEMENT constraints specifies that the domain of x, is the set of odd
integers in [—5, 9]:

element (z2, (-5,-3,-1,1,3,5,7,9),x2)
element (z2, (-5 to 9 by 2),x2)
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Any functional dependencies on x; or x can now be defined using z; or z,, respectively, as the
index variable in an element constraint. Since the domain of x3 is [1, 10], you can directly use x3 as
the index variable in an element constraint to define dependencies on x3.

For example, the following constraint specifies the function y; = xf, x1 € [-5,5]
element (z1, (-125,-64,-27,-8,-1,0,1,8,27,64,125) ,y1)

The nonlinear optimization problem can now be reduced to a set of element and linear constraints. By
expressing the objective function as a linear constraint f(x) > obj where obj is a supplied parameter,
you can find a solution with objective value of at least obj.

In a manner similar to that of Example 3.3, you can create a SAS macro %CALLCLP with parameter
obj that can be called iteratively from a search method such as %FINDMAX to determine the optimal
value of the objective function, as follows:

$macro callclp(obj);
$put The objective value is: &obj..;
proc clp out=clpout;
var x1=[-5, 5] x2=[-5, 9] x3=[1, 10] (yl-y4) (zl1l-z2);

/* Use element constraint to represent non-contiguous domains */
/* and nonlinear functions. */
element

/* Domain of x1 is [-5,5] x/
(z1l, ( -5 to 5), x1)

/* Functional Dependencies on x1 */

/* yl = x143 */

(z1, (-125, -64, -27, -8, -1, O, 1, 8, 27, 64, 125), yl)
/* y4 = mod(x1l, 4) x/

(z1, (-1, o0, -3, -2, -1, 0,1, 2, 3, 0, 1), y4)

/* Domain of x2 is the set of odd numbers in [-5, 9] */
(z2, (-5 to 9 by 2), x2)

/* Functional Dependencies on x3 */

/* y2 = 2*%3 */

(x3, (2, 4, 8, 16, 32, 64, 128, 256, 512, 1024), y2)
/* y3 = x3*2 %/

(x3, (1, 4, 9, 16, 25, 36, 49, 64, 81, 100), y3);

lincon
/* Objective function: x143 + 5 % x2 - 2*x%3 x/
yl + 5 * x2 - y2 >= &obj,

/* x1 — .5 * x2 + x372 <=50 */
x1l - .5 » x2 + y3 <= 50,

/* mod(xl, 4) + .25 * x2 >= 1.5 %/
y4d + .25 * x2 >= 1.5;
run;
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/* when a solution is found, */

/* & _ORCLP_ contains the string SOLUTIONS_FOUND */

%$if %index (&_ORCLP_, SOLUTIONS_FOUND) %then %let clpreturn=SUCCESSFUL;
$mend;

/* Bisection search to determine the optimal objective value. */
$macro findmax (lb, ub);
%do %while (&lb<&ub-1);
$put Currently lb=&lb, ub=&ub..;
%let newobj=%eval((&lb+&ub)/2);
%$let clpreturn=NOTFOUND;
%$callclp (&newobj) ;
%1if &clpreturn=SUCCESSFUL %then %let lb=&newobj;
%else %$let ub=&newobj;
%$end;
$callclp(&1b);
$put Maximum possible objective value within given range is &lb.;
$put Any value greater than &lb makes the problem infeasible.;
proc print;
run;
$mend;

/*Find the maximum objective value between -200 and 200. x/
$findmax (1b=-200, ub=200);

Output 3.4.1 shows the solution that corresponds to the optimal objective value of 168.

Output 3.4.1 Nonlinear Optimization Problem Solution

Obs x1 x2 x3 yl y2 v3 vé4 z1 z2

1 5 9 1 125 2 1 1 11 8

Example 3.5: Car Painting Problem

The car painting process is an important part of the automobile manufacturing industry. Purging (the
act of changing colors in the assembly process) is expensive due to the added cost of wasted paint
and solvents involved with each color change in addtion to the extra time required for the purging
process. The objective in the car painting problem is to sequence the cars in the assembly in order to
minimize paint changeover (Sokol 2002; Trick 2004).

There are 10 cars in a sequence. The order for assembly is 1, 2, ..., 10. A car must be painted within
three positions of its assembly order. For instance, car 5 can be painted in positions 2 through 8
inclusive. Cars 1, 5, and 9 are red; 2, 6, and 10 are blue; 3 and 7 green; and 4 and 8 are yellow. The
initial sequence 1, 2, ..., 10 corresponds to the color pattern RBGYRBGYRB and has 9 purgings.
The objective is to find a solution that minimizes the number of purgings.
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This problem can be formulated as a CSP as follows. The variables S; and C; represent the ID
and color, respectively, of the car in slot i. An element constraint relates the car ID to its color.
An all-different constraint ensures that every slot is associated with a unique car ID. Two linear
constraints represent the constraint that a car must be painted within three positions of its assembly
order. The binary variable P; indicates whether a paint purge takes place after the car in slot i is
painted. Finally, a linear constraint is used to limit the total number of purgings to the required
number.

The following %CAR_PAINTING macro determines all feasible solutions for a given number of
purgings, which is specified as a parameter to the macro:

$macro car_painting(purgings);
proc clp out=car_ds findall;

$do i = 1 %to 10;
var S&i = [1, 10]; /* which car is in slot &i.=*x/
var C&i = [1, 4]; /* which color the car in slot &i is.x/
/* Red=1; Blue=2; Green=3; Yellow=4 *x/
element (S&i, (1, 2, 3, 4, 1, 2, 3, 4, 1, 2), C&i);
%$end;

/* A car can be painted only once. */
alldiff (S1-sS10);

/* A car must be painted within 3 positions of its assembly order. =*/
$do i = 1 %$to 10;

lincon S&i-&i>=-3;

lincon S&i-&i<=3;
$end;

$do i = 1 %to 9;
var P&i = [0, 1]; /* Whether there is a purge after slot &ix/
reify P&i: (C&i <> C%eval (&i+l));

%$end;

/* Calculate the number of purgings. =*/
lincon 0
%do i = 1 %to 9;
+ P&i
$end;
<=&purgings ;
run;

$mend;
%$car_painting(5)

The problem is infeasible for four purgings. The CLP procedure finds 87 possible solutions for
the five purgings problem. The solutions are sorted by the total distance all cars are moved in the
sequencing, which ranges from 12 to 22 slots. The first 15 solutions are displayed in the Gantt chart
in Output 3.5.1. Each row represents a solution, and each color transition represents a paint purge.
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Output 3.5.1 Car Painting Schedule with Five Purgings

Solutions with Five Purgings
Solution Distance 1 2 3 4 5 6 7 8 9 10
| | | | | | | | | | |
Car1:red Car5:red Car3:green Car7: green Car2:blue Car6:blue Car 4:yellow Car 8: yellow Car 9: red Car 10: blue
1 12
Car1:red Car5:red Car2: blue Car6: blue Car3:green Car7: green Car 4: yellow Car 8: yellow Car 9: red Car 10: blue
2 12
Car1:red Car2: blue Car6:blue Car3:green Car7:green Car 4: yellow Car 8: yellow Car5:red  Car 9: red Car 10: blue
3 12
Car1:red Car2: blue Car6:blue Car4: yellow Car 8: yellow Car 3: green Car 7: green Car5:red  Car 9: red Car 10: blue
4 12
Car1:red Car2: blue Car3:green Car7.green Car5:red Car9:red Car 4 yellow Car 8: yellow Car 6: blue Car 10: blue
5 12
Car1:red Car2: blue Car3:green Car7: green Car 4:yellow Car 8: yellow Car5:red Car9:red Car6: blue Car 10: blue
6 12
Car1:red Car5:red Car3:green Car7: green Car2: blue Car6:blue Car 4:yellow Car 8: yellow Car 10: blue Car 9: red
7 14
Car1:red Car5:red Car2: blue Car6: blue Car7:green Car3: green Car 4: yellow Car 8: yellow Car 9: red Car 10: blue
8 14
Carl:red Car5:red Car6:blue Car2: blue Car3:green Car7: green Car 4: yellow Car 8: yellow Car 9: red Car 10: blue
9 14
Carl:red Car5:red Car2: blue Car6: blue Car3:green Car7: green Car 4: yellow Car 8: yellow Car 10: blue Car 9: red
10 14
Car1:red Car5:red Car2: blue Car3:green Car7:green Car 4: yellow Car 8: yellow Car 6: blue Car 10: blue Car 9: red
11 14
Carl:red Car5:red Car2: blue Car4: yellow Car8:yellow Car 3: green Car 7: green Car 6: blue Car 10: blue Car 9: red
12 14
Car1:red Car5:red Car2: blue Car3:green Car7:green Car4: yellow Car 8: yellow Car9:red Car6: blue Car 10: blue
13 14
Car1:red Car5:red Car2: blue Car4: yellow Car8:yellow Car3: green Car7: green Car9:red Car6: blue Car 10: blue
14 14
Car1:red Car2: blue Car6:blue Car7: green Car3:green Car 4: yellow Car 8: yellow Car5:red  Car 9: red Car 10: blue
15 14

Example 3.6: Scene Allocation Problem

The scene allocation problem consists of deciding when to shoot each scene of a movie in order to
minimize the total production cost (Van Hentenryck 2002). Each scene involves a number of actors,
and at most five scenes a day can be shot. All actors who appear in a scene must be present on the
day the scene is shot. Each actor has a daily rate for each day spent in the studio, regardless of the
number of scenes in which he or she appears on that day. The goal is to minimize the production
costs of the studio.
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The actor names, daily fees, and the scenes they appear are given in the SCENE data set shown in
Output 3.6.1. The variables S_Varl, ..., S_Var9 indicate the scenes in which the actor appears. For
example, the first observation indicates that Patt’s daily fee is 26481 and that Patt appears in scenes

2,5,7,10,11, 13,15, and 17.

Output 3.6.1 The Scene Data Set

D

a

N i

u A 1

m c v

o b t F

b e o e

s r r e
1 1 Patt 26481
2 2 Casta 25043
3 3 Scolaro 30310
4 4 Murphy 4085
5 5 Brown 7562
6 6 Hacket 9381
7 7 Anderson 8770
8 8 McDougal 5788
9 9 Mercer 7423
10 10 Spring 3303
11 11 Thompson 9593

0
0
0

R RS
MR
whR o |

o

12
12
12
14
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12

0

L I I

10
10
10
13
17
13

15

0

uR o g

11
13
14
15

18

18

0

aoR M|

13
16
16

12
16

0

NR e |

15
19
17

15

0

oK |

17

18

16

0

oR M|

18

There are nineteen scenes and at most five scenes can be filmed in one day, so at least four days are
needed to schedule all the scenes ({%] = 4). Let Sj _k be a binary variable that equals 1 if scene j
is shot on day k. Let Ai_k be another binary variable that equals 1 if actor i is present on day k.

The following %SCENECLP macro invokes the CLP procedure. It includes two sets of GCC
constraints: one to make sure each scene is shot exactly once, and one to limit the number of scenes
shot per day to be at least four and at most five. There are also three sets of LINCON constraints:
one to indicate that an actor must be present if any of his or her scenes are shot that day, one for
breaking symmetries to improve efficiency, and one to limit the total production cost to be less than

or equal to the given objective.

$macro sceneclp (obj);

$put The objective value is:

&obj. .;

proc clp out=out varselect=maxc;

/* Declare variables. */
%do k=1 %to 4; /* 4 days
sdo j=1 %to 19; /x 19
var S&j._&k=[0,1];
%$end;
$do i=1 %to 11; /% 11
var A&i._&k=[0,1];
%$end;
%$end;

*/

scenes *x/

/* Indicates if scene j is shot on day k.

actors x*/

*/

/* Indicates if actor i is present on day k.x*/
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/* Every scene is shot exactly once.x/
%$do j=1 %to 19;

gece (
$do k=1 %to 4;
S&j._&k
%$end;

)=(C (1, 1, 1) );
$end;

/* At least 4 and at most 5 scenes are shot per day. */
%do k=1 %to 4;

gec (
%$do j=1 %to 19;
S&j._s&k
%$end;

)=( (1, 4, 5) );
%$end;

/* Actors for a scene must be present on day of shooting.=x/
$do k=1 %to 4;
%$do j=1 %to 19;
%do i=1 %to 11;
%$if (&&A&i._S&3j>0) %Sthen %do;
lincon S&j._ &k <= A&i._g&k;
%$end;
%$end;
%$end;
%$end;

/* Symmetry breaking constraints. Without loss of any generality, we %/
/* can assume Scenel to be shot on day 1, Scene2 to be shot on day 1 */
/* or day 2, and Scene3 to be shot on either day 1, day 2 or day 3. =*/

lincon S1.1 =1, s1.2 =0, s1.3 =0, Ss1.4 =0,
S2.3 =0, s2.4 =0, S3_4 = 0;
/* If Scene2 is shot on day 1, */

/* then Scene3 can be shot on day 1 or day 2. */
lincon S2_1 + S3_3 <= 1;

/* minimize total cost =*/
lincon &obj >=
%$do i=1 %to 11; /* 11 actors =/
%do k=1 %to 4; /* 4 days */
&&Cost&ixA&i. &k +
$end;
%$end;
0;
run;

/* when a solution is found, */

/* & _ORCLP_ contains the string SOLUTIONS_FOUND */

%$if %index (&_ORCLP_, SOLUTIONS_FOUND) %then %let clpreturn=SUCCESSFUL;
$mend sceneclp;
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The %FINDMIN macro uses a bisection search method to compute the minimal cost. The %SCENE
macro reads the SCENE data set and produces three sets of macro variables: Namei is the name of
the ith actor; Costi is the daily cost of the ith actor; and Ai_S;j = 1 if actor i appears in scene j,
and 0 otherwise.

/* Bisection search method to determine the optimal objective value =*/
$macro findmin(lb, ub);
$do %while (&lb<é&ub-1) ;
$put Currently lb=&lb, ub=&ub..;
%let newobj=%eval((&lb+&ub)/2);
%$let clpreturn=NOTFOUND;
%$sceneclp (obj=&newobj) ;
%$1if &clpreturn=SUCCESSFUL %then %let ub=&newobj;
%$else %let lb=&newobj;
%$end;
%$sceneclp (obj=&ub) ;
$put The minimum objective value within given range is &ub..;
$put Any value less than &ub makes the problem infeasible. ;
$mend findmin;

$macro scene;

/* Ai_Sj=1 if actor i appears in scene j */
/* Ai_Sj=0 otherwise */
/* Initialize to 0 */

%$do i=1 %to 11; /* 11 actors */
%do j=1 %to 19; /* 19 scenes */
$let A&i._S&j=0;

%$end;
%$end;
data _null_;

set scene;
call symput ("Name"||strip(_n_), Actor); /* read actor name x*/
call symput ("Cost"||strip(_n_), DailyFee); /* read actor cost =*/
/* read whether an actor appears in a scene */
%$do i=1l %to 9; /* 9 scene variables in the data set =*/

if S _Var&i > 0 then

call symput ("A"||strip(_n_)||"_S"||strip(S_Var&i), 1);
%$end;
run;
/* Find the minimum objective value. */
/* Lowerbound: every actor appears on one day. */
/* Upperbound: every actor appears on all four days. */

%$findmin (137739, 550956);

/* Generate the Gantt charts */
$gantt_gen;

$mend scene;
%$scene;

The optimal production cost is found to be 334,144. The corresponding actor schedules and scene
schedules are displayed in Output 3.6.2 and Output 3.6.3, respectively.
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Output 3.6.2 Scene Allocation Problem: Actor Schedules

Scene Allocation Problem
Optimal Schedule by Actor

Day 1 Day 2 Day 3 Day 4

Scenes Scenes Scenes Scenes
Actor 1 6 14 18 2 5 8 12 153 9 10 16 17 4 7 11 13 19
Patt e 6 O O OO0 e e ee e O
Casta ONE BN BN BEONN BN BNORN BN
Scolaro ORE BN BN J e 6 & 0 O
Murphy ®e O o0 O o O 0O e O
Brown e O 0O e 0 e OO0 e
Hacket e O O @ ® O O @ O o O 0O e O
Anderson | O @ @ O O @ O O O
McDougal | © @ O @ ONN JEGEE BN BN J  J O
Mercer O @ @ O O O ® O O O O
Spring O @ O O O @ O O O
Thompson | © @ O @ O 0O 0 e e
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Output 3.6.3 Scene Allocation Problem: Scene Schedules

Scene Allocation Problem
Optimal Schedule by Scene

Scene 1 2 3 4

Hacket
Patt, Murphy, Brown, Hacket
Scolaro, Brown, McDougal, Mercer
Casta, Mercer
Patt, Anderson, McDougal, Mercer, Spring
Scolaro, Anderson, McDougal, Spring, Thompson
Patt, Casta
Murphy, Mercer
Casta, Scolaro, McDougal, Mercer, Thompson
Patt, Casta, Scolaro, McDougal

10

Patt
11

12 Murphy, Brown, Hacket, McDougal, Thompson

13 Patt, Casta, Murphy, Hacket

Scolaro, Anderson
14

15 Patt, Murphy, McDougal, Thompson

16 Casta, Scolaro, McDougal, Mercer

Patt, Scolaro, Brown
17

18 Scolaro, Hacket, McDougal, Thompson

Casta
19

Example 3.7: Car Sequencing Problem

This problem is an instance of a category of problems known as the car sequencing problem. There
is a considerable amount of literature related to this problem (Dincbas, Simonis, and Van Hentenryck
1988; Gravel, Gagne, and Price 2005; Solnon et al. 2008).

A number of cars are to be produced on an assembly line where each car is customized with a
specific set of options such as air-conditioning, sunroof, navigation, and so on. The assembly line
moves through several workstations for installation of these options. The cars cannot be positioned
randomly since each of these workstations have limited capacity and need time to set up the options
as the assembly line is moving in front of the station. These capacity constraints are formalized using
constraints of the form m out of N, which indicates that the workstation can install the option on m
out of every sequence of N cars. The car sequencing problem is to determine a sequencing of the
cars on the assembly line that satisfies the demand constraints for each set of car options and the
capacity constraints for each workstation.

This example comes from Dincbas, Simonis, and Van Hentenryck (1988). Ten cars need to be
customized with five possible options. A class of car is defined by a specific set of options; there are
six classes of cars.
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The instance data are presented in Table 3.9.

Table 3.9 The Instance Data

Option Capacity Car Class

Name  Type m/N 1 2 4 5 6
Option 1 1 172 1 0 0 0 1 1
Option 2 2 2/3 0 01 1 0 1
Option 3 3 1/3 1 00 01 O
Option 4 4 2/5 1 1.0 1 0 0
Option 5 5 1/5 0O 01 0 0 O
Number of Cars 11 2 2 2 2

For example, car class 4 requires installation of option 2 and option 4, and two cars of this class are
required. The workstation for option 2 can process only two out of every sequence of three cars. The
workstation for option 4 has even less capacity—two out of every five cars.

The instance data for this problem is used to create a SAS data set, which in turn is processed to
generate the SAS macro variables shown in Table 3.10 that are used in the CLP procedure. The
assembly line is treated as a sequence of slots, and each car must be allocated to a single slot.

Table 3.10 SAS Macro Variables

Macro Variable Description Value

Ncars Number of cars (slots) 10

Nops Number of options 5

Nclss Number of classes 6

Max_1-Max_5 For each option, the maximum num- 12121
ber of cars with that option in a block

Blsz_1-Blsz_5 For each option, the block size to 23355
which the maximum number refers

class_l—class_6 Index number of each class 123456

cars_cls_l—cars_cls_6 Number of cars in each class 112222

list_1-list_5

Class indicator list for each option;
for example, classes 1, 5, and 6 that
require option 1 (list_I)

list_1=1,0,0,0,1,1
list_2=0,0,1,1,0,1
list_3=1,0,0,0,1,0
list_4=1,1,0,1,0,0
list_5=0,0,1,0,0,0

cars_opts_l—cars_opts_5

Number of cars for each option
(cars_opts_1 represents the number
of cars that require option 1)

56342

The decision variables for this problem are shown in Table 3.11.



78 4 Chapter 3: The CLP Procedure

Table 3.11 The Decision Variables

Variable Definition Description

S_1-S_10=[1,6] S i is the class of cars as-
signed to slot i.

011 1_5=[0,1] O_i_j=1 if the class assigned

_1-0_1_
... 0_10_1-0_10_5=[0,1] to slot i needs option j.

In the following SAS statments, the workstation capacity constraints are expressed using a set of
linear constraints for each workstation. The demand constraints for each car class are expressed
using a single GCC constraint. The relationships between slot variables and option variables are
expressed using an element constraint for each option variable. Finally, a set of redundant constraints
are introduced to improve the efficiency of propagation. The idea behind the redundant constraint
is the following realization: if the workstation for option j has capacity r out of s, then at most
r cars in the sequence (n — s + 1),...,n can have option j where n is the total number of cars.
Consequently at least n; — r cars in the sequence 1, ...,n — s must have option j, where n ; is the
number of cars with option j. Generalizing this further, at least n; — k x r cars in the sequence
1,...,(n —k x s) must have option j, k = 1,..., |n/s].

$macro car_sequencing (outdata);
proc clp out=&outdata varselect=minrmaxc findall,;

/* Declare Variables x/
var
/* Slot variables: Si - class of car assigned to Slot i =*/
$do i = 1 %to &Ncars;
S _&i = [1, &Nclss]
%$end;

/* Option variables: 0ij
— indicates if class assigned to Sloti needs Option j %/
$do i = 1 %to &Ncars;
%do j = 1 %to &Nops;
O_&i._&j = [0, 1]
%$end;
$end;

’

/* Capacity Constraints: for each option j =*/
/* Installed in at most Max_j cars out of every sequence of BlSz_j cars */
%do j = 1 %$to &Nops;
%do i = 0 %$to %eval (&Ncars-&&BlSz_&3j);
lincon 0
%do k=1 %to &&BlSz_&j;
+ O_%eval (&i+&k)_&j
$end;
<=&&Max_&j;
%$end;
%$end;
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/* Demand Constraints: for each class i */

/* Exactly cars_cls_i cars */

gcc (S_1-S_&Ncars) = (
%do i = 1 %$to &Nclss;

(&&class_&i, &&cars_cls_&i,

%$end;
)i

&&cars_cls_é&i)

/* Element Constraints: For each slot i and each option j */
/* relate the slot variable to the option variables. */
/* O_i_j is the S_i th element in list_j. */

%do i = 1 %to &Ncars;
%$do j = 1 %to &Nops;

element (S_&i, (&&list_&j),

%$end;
%$end;

0_&i._&3);

/* Redundant Constraints to improve efficiency - for every */

/* option j.

*/

/* At most &&Max_&Jj out of every sequence of &&BlSz_&3j cars */

/* requires option j.

*/

/* All the other slots contain at least cars_opt_j — Max j */

/* cars with option j
%do j = 1 %to &Nops;

*/

$do i = 1 %to %eval (&Ncars/&&BlSz_&3j);

%$do k=1 %to %eval (&Ncars-&ix&&BlSz_&j);

>= %eval (&&cars_opts_&j—&ix&&Max_&Jj);

lincon 0
+ O_&k._s&j
%$end;
%$end;
%$end;
run;
$mend;

%$car_sequencing (sequence_out);

This problem has six solutions, as shown in Output 3.7.1.
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Output 3.7.1 Car Sequencing

Car Sequencing Problem

Assembly Sequence for All Six Solutions

Solution 1 2 3 4 5 6 7 8 9 10
I I I I I I I I I I
Class 1 Class 2 Class 6 Class 3 Class 5 Class 4 Class 4 Class 5 Class 3 Class 6
T ] I ]
Class 1 Class 3 Class 6 Class 2 Class 5 Class 4 Class 3 Class 5 Class 4 Class 6
2 ]
Class 1 Class 3 Class 6 Class 2 Class 6 Class 4 Class 5 Class 3 Class 4 Class 5

w

Class 5 Class 4 Class 3 Class 5 Class 4 Class 6 Class 2 Class 6 Class 3 Class 1

4

Class 6 Class 3 Class 5 Class 4 Class 4 Class 5 Class 3 Class 6 Class 2 Class 1
5

Class 6 Class 4 Class 5 Class 3 Class 4 Class 5 Class 2 Class 6 Class 3 Class 1
6

Example 3.8: Round-Robin Problem

Round-robin tournaments (and variations of them) are a popular format in the scheduling of many
sports league tournaments. In a single round-robin tournament, each team plays every other team
just once. In a double round-robin (DRR) tournament, each team plays every other team twice: once
at home and once away.

This particular example deals with a single round-robin tournament by modeling it as a scheduling
CSP. A special case of a double round-robin tournament can be found in Example 3.12, “Scheduling
a Major Basketball Conference” and features a different modeling approach.

Consider 14 teams that participate in a single round-robin tournament. Four rooms are provided for
the tournament. Thus, (124) = 91 games and {%] = 23 time slots (rounds) need to be scheduled.
Since each game requires two teams, a room, and an available time slot, you can regard each game
as an activity, the two teams and the room as resources required by the activity, and the time slot as

defined by the start and finish times of the activity.

In other words, you can treat this as a scheduling CSP with activities ACT_i_j wherei < j, and
resources TEAMI1 through TEAM14 and ROOM1 through ROOMA4. For a given i and j, activity
ACT_i_j requires the resources TEAMi, TEAM, and one of ROOMI1 through ROOM4. The
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resulting start time for activity A_i_j is the time slot for the game between TEAMi and TEAM j
and the assigned ROOM is the venue for the game.

The following SAS macro, %ROUND_ROBIN, uses the CLP procedure to solve this problem. The
%ROUND_ROBIN macro uses the number of teams as a parameter.

The ACTDATA= data set defines all activities ACT_i_j with duration one. The RESOURCE
statement declares the TEAM and ROOM resources. The REQUIRES statement defines the resource
requirements for each activity ACT_i_j. The SCHEDULE statement defines the activity selection
strategy as MINLS, which selects an activity with minimum late start time from the set of activities
that begin prior to the earliest early finish time.

$macro round_ robin (nteams);
%let nrounds = %eval ($sysfunc(ceil ((&nteams * (&nteams - 1)/2)/4)));

data actdata;
do i =1 to &nteams - 1;
do j =1+ 1 to &nteams;
_activity_ = compress('ACT_'||put(i,best.)||'_'||put(j, best.));
_duration_ = 1;
output;
end;
end;
run;

proc clp actdata = actdata schedule = schedule;
schedule dur = &nrounds actselect=minls;
resource (TEAM1-TEAM&nteams) ;
resource (ROOM1-ROOM4) ;
requires
%do i = 1 %to &nteams - 1;
%do j = &i + 1 %to &nteams;
ACT _&i._&j = ( TEAM&i )
ACT _&i._&j ( TEAM&J )
ACT _&i._ &3 ( ROOM1, ROOM2, ROOM3, ROOM4)
%$end;
%$end;

’

run;
proc sort data=schedule;
by start finish;
run;
$mend round_robin;
$round robin (14);
The resulting team schedule is displayed in Output 3.8.1. The vertical axis lists the teams, and the

horizontal axis indicates the time slot of each game. The color of the bar indicates the room the game
is played in, while the text above each bar identifies the opponent.
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Output 3.8.1 Round Robin Team Schedule

Number Above Bar Indicates Opponent
Team 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
| | | | | | | | | | | | | | | | | | | | | | | |
12 14 3 5 7 10 8 9 11 13 2 6 4
1 [ | [ | | | |
6 8 11 4 13 9 5 14 12 3 7 10 1
2 [ | | | [ | [ | [ |
8 14 10 13 1 12 9 11 4 2 5 6 7
3 E e [ | [ |
14 7 8 2 11 5 10 12 3 13 6 9 1
4 [ | [ | [ | [ | ] [ | [ |
9 14 1 7 4 2 12 10 13 6 3 8 11
5 | ] | | | [ | [ |
2 11 10 14 7 5 4 8 12 3 13 1 9
6 | | [ | |
4 9 1 5 12 13 6 10 14 2 11 3 8
7 | 1 | |
3 2 9 4 12 1 13 6 10 5 7 11 14
8 Il m .
13 5 8 7 3 2 1 12 14 11 4 10 6
o |ININEN Il B [ | Il [ |
3 11 13 6 1 12 4 5 14 7 8 2 9
10 | [ | [ |
2 10 6 4 13 14 3 1 9 7 12 8 5
1 | [ | Il [ |
1 13 3 8 7 10 5 9 4 2 6 11 14
12 | [ ] | | | [ |
9 3 12 10 2 11 7 8 5 4 1 14 6
13 |1l [ | e | e | [ | |
4 3 5 1 11 6 2 10 9 7 13 12 8
14 [ [ | [ [ |
Rooms
- 1 - 2
3 4

Another view of the complete schedule is the room schedule, which is shown in Output 3.8.2. The
vertical axis lists each room, and the horizontal axis indicates the time slot of each game. The
numbers inside each bar identify the team pairings for the corresponding room and time slot.
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Output 3.8.2 Round Robin Room Schedule

Numbers In Bar Indicate Pairings
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Example 3.9: Resource-Constrained Scheduling with Nonstandard
Temporal Constraints

This example illustrates a real-life scheduling problem and is used as a benchmark problem in the
constraint programming community. The problem is to schedule the construction of a five-segment
bridge. (See Output 3.9.1.) It comes from a Ph.D. dissertation on scheduling problems (Bartusch
1983).
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Output 3.9.1 The Bridge Problem
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The project consists of 44 tasks and a set of constraints that relate these tasks. Table 3.12 displays
the activity information, standard precedence constraints, and resource constraints. The sharing of a
unary resource by multiple activities results in the resource constraints being disjunctive in nature.

Table 3.12 Data for Bridge Construction

Activity Description Duration Predecessors Resource
pa beginning of project 0
al excavation (abutment 1) 4 pa excavator
a2 excavation (pillar 1) 2 pa excavator
a3 excavation (pillar 2) 2 pa excavator
a4 excavation (pillar 3) 2 pa excavator
as excavation (pillar 4) 2 pa excavator
a6 excavation (abutment 2) 5 pa excavator
pl foundation piles 2 20 a3 pile driver
p2 foundation piles 3 13 a4 pile driver
ue erection of temporary housing 10 pa
sl formwork (abutment 1) 8 al carpentry
s2 formwork (pillar 1) 4 a2 carpentry
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Table 3.12 continued

Activity Description Duration Predecessors Resource
s3 formwork (pillar 2) 4 pl carpentry
s4 formwork (pillar 3) 4 p2 carpentry
85 formwork (pillar 4) 4 as carpentry
s6 formwork (abutment 2) 10 a6 carpentry
bl concrete foundation (abutment 1) 1 sl concrete mixer
b2 concrete foundation (pillar 1) 1 s2 concrete mixer
b3 concrete foundation (pillar 2) 1 s3 concrete mixer
b4 concrete foundation (pillar 3) 1 s4 concrete mixer
b5 concrete foundation (pillar 4) 1 s5 concrete mixer
b6 concrete foundation (abutment 2) 1 s6 concrete mixer
abl concrete setting time (abutment 1) 1 bl
ab2 concrete setting time (pillar 1) 1 b2
ab3 concrete setting time (pillar 2) 1 b3
ab4 concrete setting time (pillar 3) 1 b4
ab5 concrete setting time (pillar 4) 1 b5
ab6 concrete setting time (abutment 2) 1 b6
ml masonry work (abutment 1) 16 abl bricklaying
m?2 masonry work (pillar 1) 8 ab2 bricklaying
m3 masonry work (pillar 2) 8 ab3 bricklaying
m4 masonry work (pillar 3) 8 ab4 bricklaying
m5 masonry work (pillar 4) 8 ab5 bricklaying
mo6 masonry work (abutment 2) 20 ab6 bricklaying
1 delivery of the preformed bearers 2 crane
tl positioning (preformed bearer 1) 12 ml, m2,1 crane
2 positioning (preformed bearer 2) 12 m2, m3, 1 crane
t3 positioning (preformed bearer 3) 12 m3, m4, 1 crane
t4 positioning (preformed bearer 4) 12 m4, m5, 1 crane
t5 positioning (preformed bearer 5) 12 m3, m6, 1 crane
ua removal of the temporary housing 10
vl filling 1 15 tl caterpillar
v2 filling 2 10 t5 caterpillar
pe end of project 0 t2,t3, t4, vl, v2, ua

Output 3.9.2 shows a network diagram that illustrates the precedence constraints in this problem.
Each node represents an activity and gives the activity code, truncated description, duration, and
the required resource, if any. The network diagram is generated using the SAS/OR NETDRAW
procedure.
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Output 3.9.2 Network Diagram for the Bridge Construction Project
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The following constraints are in addition to the standard precedence constraints:

1. The time between the completion of a particular formwork and the completion of its corre-
sponding concrete foundation is at most four days:

f(si)> f(bi)—4, i=1,---,6

2. There are at most three days between the end of a particular excavation (or foundation piles)
and the beginning of the corresponding formwork:

flai) = s(si)—3, i =1,2,56
and

f(pl) > 5(s3) =3

f(p2) = s(s4) -3

3. The formworks must start at least six days after the beginning of the erection of the temporary
housing:

s(si) > s(ue)+6, i=1,---,6

4. The removal of the temporary housing can start at most two days before the end of the last
masonry work:

s(ua) > f(mi)—2, i=1,---,6

5. The delivery of the preformed bearers occurs exactly 30 days after the beginning of the project:

s(1) = s(pa) + 30

The following DATA step defines the data set bridge, which encapsulates all of the precedence
constraints and also indicates the resources that are required by each activity. Note the use of the
reserved variables _ACTIVITY_, _SUCCESSOR_, _LAG_, and _LAGDUR_ to define the activity and
precedence relationships. The list of reserved variables can be found in Table 3.5. The latter two
variables are required for the nonstandard precedence constraints listed previously.

data bridge;
format _ACTIVITY_ $3. _DESC_ $34. _RESOURCE_ $14.
_SUCCESSOR_ $3. _LAG_ $3. ;
input _ACTIVITY_ & _DESC_ & _DURATION_ _RESOURCE_ &
_SUCCESSOR_ & _LAG_ & _LAGDUR_;

_QTY = 1;

datalines;
al excavation (abutment 1) 4 excavator sl
a2 excavation (pillar 1) 2 excavator s2
a3 excavation (pillar 2) 2 excavator pl
a4 excavation (pillar 3) 2 excavator P2
ab excavation (pillar 4) 2 excavator s5
a6 excavation (abutment 2) 5 excavator s6
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s3 formwork (pillar 2) 4 carpentry b3 . .
s3 formwork (pillar 2) 4 carpentry pl sf -3
s4 formwork (pillar 3) 4 carpentry b4 . .
s4 formwork (pillar 3) 4 carpentry P2 sf -3
s5 formwork (pillar 4) 4 carpentry b5 . .
s5 formwork (pillar 4) 4 carpentry a5 sf -3
s6 formwork (abutment 2) 10 carpentry bé . .
s6 formwork (abutment 2) 10 carpentry a6 sf -3
tl positioning (preformed bearer 1) 12 crane vl
t2 positioning (preformed bearer 2) 12 crane pe
t3 positioning (preformed bearer 3) 12 crane pe
t4 positioning (preformed bearer 4) 12 crane pe
t5 positioning (preformed bearer 5) 12 crane v2
ua removal of the temporary housing 10 . pe
ue erection of temporary housing 10 .
ue erection of temporary housing 10 . sl ss 6
ue erection of temporary housing 10 . s2 ss 6
ue erection of temporary housing 10 . s3 ss 6
ue erection of temporary housing 10 . s4 ss 6
ue erection of temporary housing 10 . s5 ss 6
ue erection of temporary housing 10 . s6 ss 6
vl filling 1 15 caterpillar pe
v2 filling 2 10 caterpillar pe

4

The CLP procedure is then invoked by using the following statements with the SCHEDTIME=
option.

/* invoke PROC CLP */

proc clp actdata=bridge schedtime=schedtime_bridge;
schedule finish=104;

run;

The FINISH= option is specified to find a solution in 104 days, which also happens to be the optimal
makespan.

The schedtime_bridge data set contains the activity start and finish times as computed by the CLP
procedure. Since an activity gets assigned to at most one resource, it is possible to represent the
complete schedule information more concisely by merging the schedtime_bridge data set with the
bridge_info data set, as shown in the following statements.

/* Create Consolidated Schedule =*/
proc sql;
create table bridge_info as
select distinct _ACTIVITY_ as ACTIVITY format $3. length 3,
_DESC_ as DESCRIPTION, _RESOURCE_ as RESOURCE from bridge;

proc sort data=schedtime_bridge;
by ACTIVITY;
run;

data schedtime_bridge;
merge bridge_info schedtime_bridge;
by ACTIVITY;

run;
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proc sort data=schedtime_bridge;
by START FINISH;

run;

proc print data=schedtime_bridge noobs width=min;;

title

run;

'Bridge Construction Schedule'’;

Output 3.9.3 shows the resulting merged data set.

Output 3.9.3 Bridge Construction Schedule

n o

W oo Jo Ul dbWDNRKR

NDNDNMDMDMDMDMDMMMMRFEFRRPRPRPRPRPRRRRRRE
WO JdJo U d WNEFROUWVOOWNOOUGEBMWDRO

KHH<<HAQOQODPY

a4
ue
a5
p2
a2
s5
a3
b5
s2
ab5
al
m5
b2
ab2
s4
pl
b4
a6
sl
ab4
m2
bl
s6
abl
m4

t4
ml

Bridge Construction Schedule

ZO0HHUYH®@YWOWMADUD

beginning of project

excavation (pillar 3)

erection of temporary housing
excavation (pillar 4)

foundation piles 3

excavation (pillar 1)

formwork (pillar 4)

excavation (pillar 2)

concrete foundation (pillar 4)
formwork (pillar 1)

concrete setting time (pillar 4)
excavation (abutment 1)

masonry work (pillar 4)

concrete foundation (pillar 1)
concrete setting time (pillar 1)
formwork (pillar 3)

foundation piles 2

concrete foundation (pillar 3)
excavation (abutment 2)

formwork (abutment 1)

concrete setting time (pillar 3)
masonry work (pillar 1)

concrete foundation (abutment 1)
formwork (abutment 2)

concrete setting time (abutment 1)

masonry work (pillar 3)

delivery of the preformed bearers

positioning (preformed bearer 4)
masonry work (abutment 1)

HOQO»®McaAoOwnM®EX

excavator

excavator
pile driver
excavator
carpentry
excavator
concrete mixer
carpentry

excavator
bricklaying
concrete mixer

carpentry

pile driver
concrete mixer
excavator
carpentry

bricklaying
concrete mixer
carpentry

bricklaying
crane
crane
bricklaying

ZO0HHOQHEOW®W

I N e e e e e i e o T T T e e e S T SR SR SR STy =

ZOoOHHAP®XNWAO

[ =
wWNDONO

BHHOOBKEMARNDANDN

2

o

B 0 R 0 WUl K

10

0 =

12
16

H P AaAun

J oo DN O OO

WWWNRNNNMNMNNNHERERRBRRERRRBERREBH
AN O OMMOWMIJIOOWWWVWUUUuANNEREODO

mnHZHM

N O

10

15

10

11
14
12
16
20
15
16
19
35
20
24
27
21
28
28
37
29
36
32
48
52




Example 3.9: Resource-Constrained Scheduling with Nonstandard Temporal Constraints 4 91

Output 3.9.3 continued

Bridge Construction Schedule
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30 bé6 concrete foundation (abutment 2) concrete mixer 1 1 37 38
31 s3 formwork (pillar 2) carpentry 1 4 37 41
32 ab6é concrete setting time (abutment 2) 1 1 38 39
33 b3 concrete foundation (pillar 2) concrete mixer 1 1 41 42
34 ab3 concrete setting time (pillar 2) 1 1 42 43
35 m3 masonry work (pillar 2) bricklaying 1 8 52 60
36 tl1 positioning (preformed bearer 1) crane 1 12 52 64
37 mé6 masonry work (abutment 2) bricklaying 1 20 60 80
38 t2 positioning (preformed bearer 2) crane 1 12 64 76
39 vl filling 1 caterpillar 1 15 64 79
40 ua removal of the temporary housing 1 10 78 88
41 t5 positioning (preformed bearer 5) crane 1 12 80 92
42 v2 filling 2 caterpillar 1 10 92 102
43 t3 positioning (preformed bearer 3) crane 1 12 92 104
44 pe end of project 1 0 104 104

A Gantt chart of the schedule in Output 3.9.3, produced using the SAS/OR GANTT procedure, is
displayed in Output 3.9.4. Each activity bar is color coded according to the resource associated with
it. The legend identifies the name of the resource that is associated with each color.
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Output 3.9.4 Gantt Chart for the Bridge Construction Project
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Example 3.10: Scheduling with Alternate Resources

This example shows an interesting job shop scheduling problem that illustrates the use of alternative
resources. There are 90 jobs (J1-J90), each taking either one or two days, that need to be processed
on one of ten machines (M0-M9). Not every machine can process every job. In addition, certain
jobs also require one of seven operators (OP0-OP6). As with the machines, not every operator can
be assigned to every job. There are no explicit precedence relationships in this example.

The machine and operator requirements for each job are shown in Output 3.10.1. Each row in the
graph defines a resource requirement for up to three jobs that are identified in the columns Job1-Job3
to the left of the chart. The horizontal axis of the chart represents the resources and is split into two
regions by a vertical line. The resources to the left of the divider are the machines, Mach0—Mach9, and
the resources to the right of the divider are the operators, Oper0—Oper6. For each row on the chart, a
bar on the chart represents a potential requirement for the corresponding resource listed above.

Each of the jobs listed in columns Job1-Job3 can be processed on one of the machines in Mach0-
Mach9 and requires the assistance of one of the operators in Oper0—Oper6 while being processed. An
eligible resource is represented by a bar, and the length of the bar indicates the duration of the job.

For example, row five specifies that job number 7 can be processed on machine 6, 7, or 8 and
additionally requires either operator 5 or operator 6 in order to be processed. The next row indicates
that jobs 8 and 9 can also be processed on the same set of machines. However, they do not require
any operator assistance.
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Output 3.10.1 Machine and Operator Requirements
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The CLP procedure is invoked by using the following statements with DUR=12 in the SCHEDULE
statement to obtain a 12-day solution that is also known to be optimal. In order to obtain the optimal
solution, it is necessary to invoke the edge-finding consistency routines, which are activated with the
EDGEFINDER option in the SCHEDULE statement. The activity selection strategy is specified as
DMINLS, which selects the activity with the earliest late start time. Activities with identical resource
requirements are grouped together in the REQUIRES statement.

proc clp dom=[0,12] restarts=500 dpr=6 showprogress
schedtime=schedtime_altres schedres=schedres_altres;
schedule start=0 dur=12 actselect=dminls edgefinder;
activity (J1-J20 J24-330 J34-J40 J48-J50 J54-J60

J68-J70 J74-380 J85-J90) = (1) /* one day jobs x/

(J21-J23 J31-J33 J41-J47 J51-J53 J61-J67

J71-J73 J81-J84) = (2); /* two day jobs x/
resource (MO-M9) (OPO0-OP6);

requires
/* machine requirements */
(J85) = (MO)
(J1 J20 J21 J22 J38 J39 J45 J46 J65 J66) = (MO, M1)
(J19 J2 J58 J59 J60 J78 J79 J80) = (MO, M1, M2)
(J86) = (M1)
(J11) = (M1, M2)
(J3) = (M1, M2, M3)
(J23 J40 J87) = (M2)
(J47 J48 J67 J68) = (M2, M3)
(J30 J31 J88) = (M3)
(J17 J18 J51 J52 J72 J73) = (M3, M4)
(J4 J5 J6) = (M3, M4, M5)
(J89) = (M4)
(J28 J29 J32 J33 J49 J50 J69) = (M4, M5)
(J70 J71 J90) = (M5)
(J15 J16 J53 J54) = (M5, M6)

(J26 J27 J34 J35 J41 J42 J61 J62 J74 J75 J81 J82) = (M6, M7)
(37 J8 J9) = (M6, M7, M8)

(J10 J12 J13 J14 J55 J56 J57) = (M7, M8, M9)

(J24 J25 J36 J37 J43 J44 J63 J64 J76 J77 J83 J84) = (M8, M9)

/* operator requirements x*/
(J53 J88) = (OPO)
(J38 J39 J49 J50 J69 J70) = (OPO, OP1)
(J1 J2 J21 J22 J23 J3 J71 J72 J73) = (OP0O, OP1l, OP2)
(J11 J12 Ji13 Ji4) = (OpP0O, OP1l, OP2, OP3)
(J89) = (OP1)
(J51 J52) = (OP1l, OP2)
(J40 J90) = (OP2)
(J47 J48 J67 J68) = (OP2, OP3)
(J4 J5 J6) = (OP2, OP3, OP4, OP5)
(J85) = (OP3)
(J29 J30 J31 J32 J58 J59 J78 J79) = (OP3, OP4)
(J86) = (OP4)
(J45 J46 J65 J66) = (OP4, OPS)
(J15 J16 J17) = (OP4, OP5, OP6)
(J87) = (OP5)
(J27 J28 J33 J34 J60 J61 J7 J74 J80 J81l) = (OP5, OP6)
(J41 J54) = (OP6);
run;
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The resulting schedule is shown in a series of Gantt charts that are displayed in Output 3.10.2 and
Output 3.10.3. In each of these Gantt charts, the vertical axis lists the different jobs, the horizontal
bar represents the start and finish times for each of the jobs, and the text above each bar identifies the
machine that the job is being processed on. Output 3.10.2 displays the schedule for the operator-
assisted tasks (one for each operator), while Output 3.10.3 shows the schedule for automated tasks

(that is, those tasks that do not require operator intervention).

Output 3.10.2 Operator-Assisted Jobs Schedule
Schedule for Operator OP0O

Machine Identified Above Bar

ACTIVITY 0 1 2 3 4 5 6 7 8 9 10 11 12
MO
J22 |
M5
J53 |
M3
J73 |
M1
J2 L
M8
J14 ]
M1
J38 |
M4
J49 ]
M4
J69 |
M3
J88 ]
Schedule for Operator OP1
Machine Identified Above Bar
ACTIVITY 0 1 2 3 4 5 6 7 8 10 11 12
M1
J21 |
M3
J52 |
M5
J71 |
MO
a3 |
M9
J12 I
MO
J39 |
M5
J50 ]
M5
J70 |
M4
J89 I
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Output 3.10.2 continued
Schedule for Operator OP2

Machine Identified Above Bar

ACTIVITY 0 1 2 3 4 5 6 7 8 9 10 11 12

J23
J51
J72
J3

J13
J40
J48
J68
Joo

M4
M4
M2
M7
M2
M3
M3
M5

Schedule for Operator OP3

Machine Identified Above Bar

ACTIVITY 0 1 2 3 4 5 6 7 8 9 10 11 12

J31
Ja7
J67
J4

J11
J29
J58
J79
J85

M2
M2
M5
M2
M4
MO
MO
MO

Schedule for Operator OP4

Machine Identified Above Bar

ACTIVITY 0 1 2 3 4 5 6 7 8 9 10 11 12

J32
J46
J66
J6

J15
J30
J59
J78
J86

MO
M4
M5
M3
M2
M1
M1
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Output 3.10.2 continued
Schedule for Operator OP5

Machine Identified Above Bar

ACTIVITY 0 1 2 3 4 5 6 7 8 9 10 11 12

J33 I

J45 I

J65 I

J5 L]

J16 I

J27 I

J60 I

J87 I

J74 I

Schedule for Operator OP6

Machine Identified Above Bar

ACTIVITY 0 1 2 3 4 5 6 7 8 9 10 11 12

Ja1 I

J61 I

J81 I

J7 L]

J17 I

J28 I

J34 I

J54 I

J8o I
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Output 3.10.3 Automated Jobs Schedule

ACTIVITY

J42
J43
Ja4
J62
J63
J64
J82
J83
J84
J10
J8

Jo

J18
J19
J20
J24
J25
J26
J35
J36
J37
J55
J56
J57
J75
J76
J77

0 1 2

Schedule for Automated Tasks

3 4 2 6 / 8 ° L 12

M6
M8
M9

M6
M8
M9

M7
M8
M9

M7

M9

M8
M7
M8
M9

A more interesting Gantt chart is that of the resource schedule by machine, as shown in Output 3.10.4.

This chart displays the schedule for each machine. Every row corresponds to a machine. Every bar
on each row consists of multiple segments, and every segment represents a job that is processed on
the machine. Each segment is also coded according to the operator assigned to it. The mapping
of the coding is indicated in the legend. It is evident that the schedule is optimal since none of the
machines or operators are idle at any time during the schedule.
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Output 3.10.4 Machine Schedule

Scheduling With Alternate Resources
Schedule By Machine

Machine 0 1 2 3 4 5 6 7 8 9 10 11
1 1 1 1 1 1 1 1 1 1 1 1
J22 J45 J66 J1 J20 J39 J58 J79 J85

MO I —— I 4 .

M1 J21 J46 J65 J2 J19 J38 J60 J78 J86
I s
J23 Ja7 J67 J3 J11 J40 J59 J87 J80

M2 |
J31 J52 J73 J5 J18 J30 J48 J68 J88

M3 I L]
J33 J51 J72 J6 J17 J29 J49 J69 J89

M4 ] | ]
J32 J53 J71 J4 J15 J28 J50 J70 J90

M5 | |
Ja2 J62 J81 J8 J16 J27 J34 J54 J74

M6 \ \ I
Ja1 J61 J82 J7 J13 J26 J35 J55 J75

M7 I 0909 e \ \ \ \
Ja3 J63 J83 J9 J14 J25 J37 J57 J76

M8 \ [ [ [ || \ \ \
Ja4 J64 J84 J10 J12 J24 J36 J56 J77

M9 \ [ [ [ || \ \ \

Operator Required

T 1 NA HEEEEEE OP0 NN OP1 OP2
OP3 OP4 HEEEEEE OP5 I OP6

Example 3.11: 10x10 Job Shop Scheduling Problem

This example is a job shop scheduling problem from Lawrence (1984). This test is also known as
LAT19 in the literature, and its optimal makespan is known to be 842 (Applegate and Cook 1991).
There are 10 jobs (J1-J10) and 10 machines (M0-M9). Every job must be processed on each of the
10 machines in a predefined sequence. The objective is to minimize the completion time of the last
job to be processed, known as the makespan. The jobs are described in the data set raw by using the
following statements.
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/* jobs specification x*/
data raw (drop=i mid);
do i=1 to 10;
input mid _DURATION_ @;
_RESOURCE_=compress ('M' | |put (mid,best.));

output;
end;
datalines;
2 44 3 5 5 58 4 97 0 9 7 84 8 77 9 96 1 58 6 89
4 15 7 31 1 87 8 57 O 77 3 85 2 81 5 39 9 73 6 21
9 82 6 22 4 10 3 70 1 49 0 40 8 34 2 48 7 80 5 71
1 91 2 17 7 62 5 75 8 47 4 11 3 7 6 72 9 35 0 55
6 71 1 9 3 75 0 64 2 94 8 15 4 12 7 67 9 20 5 50
7 70 5 93 8 77 2 29 4 58 6 93 3 68 1 57 9 7 0 52
6 87 1 63 4 26 5 6 2 82 3 27 7 56 8 48 9 36 0 95
0 36 5 15 8 41 9 78 3 76 6 84 4 30 7 76 2 36 1 8
5 88 2 81 3 13 6 82 4 54 7 13 8 29 9 40 1 78 0 75
9 88 4 54 6 64 7 32 0 52 2 6 8 54 5 82 3 6 1 26

~.

Each row in the DATALINES section specifies a job by 10 pairs of consecutive numbers. Each
pair of numbers defines one task of the job, which represents the processing of a job on a machine.
For each pair, the first number identifies the machine it executes on, and the second number is the
duration. The order of the 10 pairs defines the sequence of the tasks for a job.

The following statements create the Activity data set actdata, which defines the activities, durations,
and precedence constraints:

/* create the Activity data set =*/
data actdata (drop= i j);
format _ACTIVITY $8. _SUCCESSOR_ $8.;
set raw;
_QTY = 1;
i=mod(_n_-1,10)+1;
j=int ((_n_-1)/10)+1;
_ACTIVITY_ = compress('J'||put(j,best.)||'P'||put(i,best.));
JOB=3j;
TASK=i;
if i LT 10 then
_SUCCESSOR_ = compress('J'||put(j,best.)||'P'||put((i+l), best.));
else
_SUCCESSOR_ = ' ';
output;
run;

Had there been sufficient machine capacity, the jobs could have been processed according to a
schedule as shown in Output 3.11.1. The minimum makespan would be 617—the time it takes to
complete Job 1.
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Output 3.11.1 Gantt Chart: Schedule for the Unconstrained Problem

10X10 Job Shop Scheduling Problem
Unconstrained Schedule
JOB 0 60 120 180 240 300 360 420 480 540 600 660
| | | | | | | | | | | |
1 [ ] [ I
2 b .
3 I A .
4 ' NN ——
5 I I H I
6 | [ | [
7 I | B
8 IS EE e 1
o | [ B
10 | B s
20 617
Machine Required
e MO M1 M2 M3 M4
I M5 I V6 I M7 I M8 I V9

This schedule is infeasible when there is only a single instance of each machine. For example, at
time period 20, the schedule requires two instances of each of the machines M6, M7, and M9.

In order to solve the resource-constrained schedule, the CLP procedure is invoked by using the
following statements:

proc clp domain=[0,842]
actdata=actdata
schedout=sched_jobshop
dpr=50
restarts=150
showprogress;
schedule dur=842 edgefinder nf=1 nl=1;
run;

The edge-finder algorithm is activated with the EDGEFINDER option in the SCHEDULE statement.
In addition, the edge-finding extensions for detecting whether a job cannot be the first or cannot
be the last to be processed on a particular machine are invoked with the NF= and NL= options,
respectively, in the SCHEDULE statement. The default activity selection and activity assignment
strategies are used. A restart heuristic is used as the look-back method to handle recovery from
failures. The DPR= option specifies that a total restart be performed after encountering 50 failures,
and the RESTARTS= option limits the number of restarts to 150.
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The resulting 842-time-period schedule is displayed in Output 3.11.2. Each row represents a job.
Each segment represents a task (the processing of a job on a machine), which is also coded according
to the executing machine. The mapping of the coding is indicated in the legend. Note that no machine
is used by more than one job at any point in time.

Output 3.11.2 Gantt Chart: Optimal Resource-Constrained Schedule

10X10 Job Shop Scheduling Problem
Constrained Schedule
JOB 0 60 120180240300360420480540600660720780840900
| | | | | | | | | | | | | | | |
1 [ [ ] I
2 N I [ N I a
3 [ | ] | [ ]
4 N = [ ] [ B
5 Il [ [ '
6 I I N e
7 [ | BN B
g8 |IH I [ [ |
o I [ ] DN e
10 | N [ |
842
Machine Required
e MO M1 M2 M3 M4
I M5 I V6 I M7 I M8 I V9

Example 3.12: Scheduling a Major Basketball Conference

Example 1.8 illustrated how you could use the CLP procedure to solve a single round-robin problem
by modeling it as a scheduling CSP. This example illustrates an alternate way of modeling and
solving a well-known double round-robin problem using the CLP procedure. This example is based
on the work of Nemhauser and Trick (1998) and deals with scheduling the Atlantic Coast Conference
(ACC) Men’s Basketball games for the 1997-1998 season.

A temporally dense double round-robin (DDRR) for n teams is a double round-robin in which the
n(n — 1) games are played over a minimal number of dates or time slots. If n is even, the number of
slots is 2(n — 1) and each team plays in every time slot. If n is odd, the number of slots is 2n and
(n — 1) teams play in each time slot. In the latter case, each time slot has a team with a bye, and
each team has two byes for the season.
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The Atlantic Coast Conference (ACC) 1997-1998 men’s basketball scheduling problem as described
in Nemhauser and Trick (1998) and Henz (2001) is a DDRR that consists of the following nine teams
with their abbreviated team name and team number shown in parentheses: Clemson (Clem 1)), Duke
(Duke 2), Florida State (FSU 3), Georgia Tech (GT 4), Maryland (UMD 5), North Carolina (UNC 6)
NC State (NCSU 7) Virginia (UVA 8), and Wake Forest (Wake 9).

The general objective is to schedule the DDRR to span the months of January and February and
possibly include a game in December or March or both. In general, each team plays twice a week—
typically Wednesday and Saturday. Although the actual day might differ, these two time slots are
referred to as the “weekday slot” and the “weekend slot.” Since there are an odd number of teams,
there is a team with a bye in each slot and four games in each slot, resulting in a schedule that
requires 18 time slots or nine weeks. The last time slot must be a weekend slot, which implies the
first slot is a weekday slot. The first slot, denoted slot 1, corresponds to the last weekday slot of
December 1997, and the final slot, slot 18, corresponds to the first weekend slot of March 1998. Each
team plays eight home games and eight away games, and has two byes.

In addition there are several other constraints that must be satisfied. This example uses the following
criteria employed by Nemhauser and Trick (1998) as presented by Henz (2001).

1. Mirroring: The dates are grouped into pairs (r1, 72), such that each team gets to play against
the same team in dates 1 and 2 . Such a grouping is called a mirroring scheme. A separation
of nine slots can be achieved by mirroring a round-robin schedule; while this separation is
desirable, it is not possible for this problem.

Nemhauser and Trick fix the mirroring scheme to

m = (1,8),(2,9), (3, 12), (4,13), (5, 14), (6, 15), (7, 16), (10, 17), (11, 18)

in order to satisfy the constraints that UNC and Duke play in time slots 11 and 18. (See
criterion 9.)

2. Initial and final home and away games: Every team must play at home on at least one of
the first three dates. Every team must play at home on at least one of the last three dates. No
team can play away on both of the last two dates.

3. Home/away/bye pattern: No team can have more than two away games in a row. No team
can have more than two home games in a row. No team can have more than three away games
or byes in a row. No team can have more than four home games or byes in a row.

4. Weekend pattern: Of the nine weekends, each team plays four at home, four away, and has
one bye.

5. First weekends: Each team must have home games or byes on at least two of the first five
weekends.

6. Rival matches: Every team except FSU has a traditional rival. The rival pairs are Clem-GT,
Duke-UNC, UMD-UVA, and NCSU-Wake. In the last date, every team except FSU plays
against its rival, unless it plays against FSU or has a bye.

7. Popular matches in February: The following pairings must occur at least once in dates 11
to 18: Duke-GT, Duke-Wake, GT-UNC, UNC-Wake.
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8. Opponent sequence: No team plays in two consecutive away dates against Duke and UNC.
No team plays in three consecutive dates against Duke, UNC, and Wake (independent of the
home or away status).

9. Idiosyncrasies: UNC plays its rival Duke in the last date and in date 11. UNC plays Clem in
the second date. Duke has a bye in date 16. Wake does not play home in date 17. Wake has a
bye in the first date. Clem, Duke, UMD and Wake do not play away in the last date. Clem,
FSU, and GT do not play away in the first date. Neither FSU nor NCSU has a bye in last date.
UNC does not have a bye in the first date.

Previous work for solving round-robin problems, including that of Nemhauser and Trick (1998) and
Henz (2001), have used a general three-phase framework for finding good schedules.

1. pattern generation

2. pattern set generation

3. timetable generation

A pattern is a valid sequence of home, away, and bye games for a given team for the entire season.
For example, the following is a valid pattern:

AHBAHHAHAAHBHAAHHA

For this example, patterns that satisfy criterion 1 through criterion 5 and some constraints in
criterion 9 are generated using the CLP procedure with the SAS macro %PATTERNS.

/****************************************************************/

/* First, find all possible patterns. Consider only time */
/* constraints at this point. A pattern should be suitable */
/* for any team. Do not consider individual teams yet. */

/****************************************************************/
$macro patterns();

proc clp out=all_patterns findall,;
/* For date 1 to 18. */
%$do j = 1 %$to 18;
var h&j = [0, 1]; /* home =*/
var a&j [0, 1]; /* away */
var b&j [0, 1]; /* bye =*/

/* A team is either home, away, or bye. */
lincon h&j + a&j + b&j=1;
%$end;
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/* */
/* Criterion 1 - Mirroring Scheme */
/* */
/* The dates are grouped into pairs (j, jl), such that each */
/* team plays the same opponent on dates j and jl. */
/* A home game on date j will be an away game on date jl */
%do j = 1 %to 18;
$do jl $eval (&j+1) %to 18;

$if &j=1 and &3jl=8 ) or ( &j=2 and &3jl=9 ) or
&j=3 and &jl=12 ) or ( &j=4 and &3jl=13 ) or
&j=5 and &jl=14 ) or ( &j=6 and &jl=15 ) or
&j=7 and &jl1=16 ) or ( &3j=10 and &jl=17 ) or
&j=11 and &jl=18 ) S%then

lincon h&j = a&jl, a&j = h&jl, b&j = b&jl;;

~~ e~~~

%$end;
%$end;
/* */
/* Criterion 2 - Initial and Final Home and Away Games */
/* */

/* Every team must play home on at least one of the first three dates. */
lincon hl + h2 + h3 >= 1;

/* Every team must play home on at least one of the last three dates. */
lincon hl6 + hl7 + hl8 >= 1;

/* No team can play away on both last two dates. */
lincon al7 + al8 < 2;

/* */
/* Criterion 3 - Home/Away/Bye Pattern */
/ * */

%do j = 1 %to 16;
/* No team can have more than two away matches in a row.x/
lincon a&j + a%eval(&j+l) + a%eval(&j+2) < 3;
/* No team can have more than two home matches in a row.x/
lincon h&j + h%eval(&j+l) + h%eval(&j+2) < 3;

%$end;

/* No team can have more than three away matches or byes in a row.x*/
%do j = 1 %to 15;
lincon a&j + b&j + a%eval (&j+1) + b%eval(&j+1) + a%eval (&j+2)
+ b%eval (&j+2) + a%eval (&j+3) + b%eval (&j+3) < 4;
%$end;

/* No team can have more than four home matches or byes in a row.=*x/
%do j = 1 %to 14;
lincon h&j + b&j + h%eval (&j+l) + b%eval(&j+1l) + h%eval (&j+2)
+ b%eval (&j+2) + h%eval(&j+3) + b%eval(&j+3) + h%eval (&j+4)
+ b%eval (&j+4) < 5;
%$end;
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/* */
/* Criterion 4 - Weekend Pattern */
/* */

/* Each team plays four weekends at home. */
lincon 0 %do j = 2 %to 18 %by 2; +hé&j %$end; =4;
/* Each team plays four weekends away. */
lincon 0 %do j = 2 %to 18 %by 2; +a&j %end; =4;
/* Each team has 1 weekend with a bye */
lincon 0 %do j = 2 %to 18 %by 2; +b&j %$end; =1;

/* */
/* Criterion 5 - First Weekends */
/* */
/* Each team must have home games or byes on at least two */
/* of the first five weekends. */

lincon 0 %do j = 2 %to 10 %by 2; + h&j + b&j %end; >=2;

/* */
/* Criterion 9 - (Partial) */
/* */
/* The team with a bye in date 1 does not play away on the */
/* last date or home in date 17 (Wake) */
/* The team with a bye in date 16 does not play away in */
/* date 18 (Duke) */

lincon bl + al8 < 2, bl + hl7 < 2, bl6 + al8 < 2;
run;
$mend;

%patterns;

The %PATTERNS macro generates 38 patterns. The next step is to find a subset of patterns with
cardinality equal to the number of teams that would collectively support a potential assignment to
all of the teams. For example, each of the 18 time slots must correspond to four home games, four
away games, and one bye. Furthermore, pairs of patterns that do not support a potential meeting date
between the two corresponding teams are excluded. The following %PATTERN_SETS macro uses
the CLP procedure with the preceding constraints to generate 17 possible pattern sets.

[rkhkkkdkhrhhhhrhhhkhrkhhhhrhkhhkhrkhkhkkhhhkkrhhkkrhkrkhkkrkkrkkrkrkkrkrr/
/* Determine all possible "pattern sets" considering only time */

/* constraints. */
/* Individual teams are not considered at this stage. */
/* xi - binary variable indicates pattern i is in pattern set */

/*****************************************************************/
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$macro pattern_sets();

data _null_;
set all_patterns;
%do i=1 %to 38;
if _n =&i then do;
%$do j=1 %to 18;
call symput ("h&i._&3j", put(h&j,best.));
call symput ("a&i._&j", put(a&j,best.));
call symput ("b&i._&j", put(b&j,best.));
%$end;
end;
%$end;
run;

proc clp out=pattern_sets findall;
/* xi=1 if pattern i belongs to pattern set x*/
var (x1-x38)= [0, 1];

/* Exactly nine patterns per patterns set x*/
lincon 0 %do i = 1 %to 38; + x&i %end;=9;

/* time slot constraints =*/
$do j = 1 %to 18;
/* Four home games per time slot */
lincon 0 %do i = 1 %to 38; + &&hé&i._&j*x&i %end; =4;
/* Four away games per time slot */
lincon 0 %do i = 1 %$to 38; + &&a&i._&j*x&i %end; =4;
/* One bye per time slot =*/
lincon 0 %do i = 1 %to 38; + &&bé&i._&j*x&i %end; =1;
%$end;

/* Exclude pattern pairs that do not support a meeting date =*/
$do i = 1 %to 38;
$do il = %eval(&i+l) %$to 38;
%$let count=0;
%do j=1 %to 18;
%$if ( (&&hé&i._&3j=0 or &&a&il._&3j=0) and
(&&a&i._ &j=0 or &&hé&il._&3j=0)) S%Sthen %do;
%$let count=%eval (&count+l);
%$end;
%$end;
%$if (&count=18) %then %do;
lincon x&i+x&il<=1;
%$end;
%$end;
%$end;
run;

$mend;

$pattern_sets;
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The %PATTERN_SETS macro generates 17 pattern sets. The final step is to add the individual team
constraints and match up teams to the pattern set in order to come up with a schedule for each team.
The schedule for each team indicates the opponent for each time slot (0 for a bye) and whether it
corresponds to a home game, away game, or a bye.

The following SAS macro %TIMETABLE uses the pattern set index as a parameter and invokes the
CLP procedure with the individual team constraints to determine the team schedule.

/*********************************************************************/

/* Assign individual teams to pattern set k */
/* Teams: 1 Clem, 2 Duke, 3 FSU, 4 GT, 5 UMD, 6 UNC, 7 NCSU, 8 UVA, x/
/* 9 Wake */

/*********************************************************************/
$macro timetable (k) ;

proc clp out=ACC_ds_&k varselect=minrmaxc findall;

$do j = 1 %to 18;
/* alpha(i,j): Team i's opponent on date j ( 0 = bye ). */
$do i = 1 %to 9;
var alpha&i._&j = [0, 9];
%$end;

/* Timetable constraint 1 */
/* Opponents in a time slot must be distinct =*/
alldiff ( %do i = 1 %to 9; alpha&i._&j %end; );

/* Timetable constraint 2 */
$do i = 1 %to 9;
$do il = 1 %to 9;
/* indicates if teams i and il play in time slot j */
var X&i._&il._&3j = [0, 1];
reify X&i._&il._&j: (alpha&i._&3j = &il);

/* team i plays il iff team il plays i */
%if (&il > &i ) %then %do;
lincon X&i._&il._&j = X&il._&i._&j;
%$end;
$end;
%$end;
%$end;
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/* Mirroring Scheme at team level. */
/* The dates are grouped into pairs (3j, jl) such that each */
/* team plays the same opponent in dates j and jl. */
/* One of these should be a home game for each team. */

$do i = 1 %to 9;
$do j = 1 %to 18;
%$do jl = %eval(&j+l) %to 18;
%$if ( &j=1 and &jl=8 ) or ( &j=2 and &jl=9 ) or
( &J=3 and &jl1=12 ) or ( &j=4 and &jl=13 ) or
( &J=5 and &jl1=14 ) or ( &j=6 and &3jl=15 ) or
( &J=7 and &jl1=16 ) or ( &j=10 and &jl=17 ) or
( &j=11 and &j1=18 ) %then %do;
lincon alphaé&i._&j=alpha&i._&jl,
/* H and A are matrices that indicate home */
/* and away games */
H&i._&j=A&i._s&jl,
H&i._&jl=A&i._&j;
%$end;
%$end;
%$end;
%$end;

/* Timetable constraint 3 x/
/* Each team plays every other team twice */
$do i =1 %to 9;
%$do il = 1 %to 9;
%if &il ne &i %then %do;
lincon 0 %do j = 1 %to 18; + X&i._&il._&j %end; = 2;
%$end;
%$end;
%$end;

/* Timetable constraint 4 =/
/* Teams do not play against themselves x*/
$do j = 1 %to 18;
$do i =1 %to 9;
lincon alpha&i._ &j<>&i;
lincon X&i._&i._&3j = 0; /% redundant =*/
%$end;
%$end;

/* Timetable constraint 5 x/
/* Setup Bye Matrix x*/
/* alpha&i._&j=0 means team &i has a bye on date &j. */
%do j = 1 %to 18;
$do i =1 %to 9;
var B&i._&j = [0, 1]; /*Bye matrix*/
reify B&i._&j: ( alpha&i. _&j = 0 );
%$end;
%$end;
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/* Timetable constraint 6 */
/* alpha&i._&3j=&il implies teams &i and &il play on date &j */
/* It must be a home game for one, away game for the other «/
%do j = 1 %to 18;
$do i = 1 %to 9;
%$do il = 1 %to 9;
/* reify control variables.x/
var U&i._&il._&j = [0, 1] Ve&i._g&il._&j = [0, 1];

/* if &i is home and &il is away. */
reify Usi. &il. &3j: ( H&i._&3j + A&il._&j
/* if &il is home and &i is away. */
reify Vei. &il._&j: ( A&i._&3j + H&il. &j = 2);

2);

/* Necessary condition if &i plays &il on date j */
lincon X&i._&il._&j <= U&i._&il. &3j + V&i._&il._ &3j;
%$end;
%$end;
%$end;

/* Timetable constraint 7 */
/* Each team must be home, away or have a bye on a given date */
%do j = 1 %$to 18;
$do i = 1 %to 9;
/* Team &i is home (away) at date &j. */
var H&i._&j = [0, 1] A&i._&j = [0, 1];
lincon H&i. _&3j + A&i._&7j + B&i._&j = 1;
$end;
%$end;

%do i = 1 %to 9;
%$do il = %eval (&i+l) %to 9;

/* Timetable constraint 8 */

/* */
/* Criterion 6 — Rival Matches *x/
/* */
/* The final weekend is reserved for 'rival games' x*/
/* unless the team plays FSU or has a bye *x/

%$if ( &i=1 and &il=4 ) or ( &i=2 and &il=6 ) or
( &i=5 and &il=8 ) or ( &i=7 and &il=9 ) %then %do;
lincon X&i._&il. 18 + B&i._ 18 + X&i._3.18 = 1;

/* redundant =/
lincon X&il. &i._18 + B&il._ 18 + X&il._ 3 .18 = 1;
%$end;
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/* Timetable constraint 9 */

/* */
/* Criterion 7 - Popular Matches */
/* */
/* The following pairings are specified to occur at */
/* least once in February. */

%$if ( &i=2 and &il=4 ) or ( &i=2 and &il=9 ) or
( &1=4 and &il=6 ) or ( &i=6 and &il=9 ) %then %do;

lincon 0 %do j = 11 %to 18; + X&i._&il._&j %end; >= 1;
/* redundant */
lincon 0 %do j = 11 %to 18; + X&il._&i._&j %end; >= 1;

%$end;

%$end;
%$end;

/* Timetable constraint 10 x/

/* */
/* Criterion 8 - Opponent Sequence */
/* */
%do i = 1 %to 9;
/* No team plays two consecutive away dates against */
/* Duke (2) and UNC (6) */

%do j = 1 %to 17;
var Q&i._26_&3j = [0, 1] P&i._26_&j = [0, 1];
reify Q&i. 26_&j: ( X&i._ 2 &j + X&i._6_&j =1 );
reify P&i._26_&7j: ( X&i._2_ %eval(&j+l) + X&i._6_%eval(&j+1l) =1 );
lincon Q&i._26_&j + A&i._&j + P&i._26_&7j + A&i._%eval(&j+l) < 4;

%$end;
/* No team plays three consecutive dates against */
/* Duke (2), UNC(6) and Wake (9). */

%do j = 1 %to 16;
var L&i._269_&j [0, 1] M&i._269_&3j = [0, 1]
N&i._ 269 &3 = [0, 1];
reify L&i._ 269 &j: ( X&i._ 2 &j + X&i._6_&j + X&i. 9 &3 =1);
reify M&i. 269 &j: ( X&i._2 %eval(&j+1l) + X&i._6_%eval (&j+1) +
X&i._9_ %eval(&j+1) =1 );
reify N&i. _269_&3j: ( X&i._ 2 %eval (&j+2) + X&i._ 6_%eval (&j+2) +
X&i._9_ %eval(&j+2) =1 );
lincon L&i._269_&3j + M&i._269_&3 + N&i._269_&3j < 3;
%$end;
%$end;
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/* Timetable constraint 11 x/

/* */
/* Criterion 9 - Idiosyncratic Constraints */
/* */

/* UNC plays Duke in date 11 and 18 %/
lincon alpha6_11 = 2 ;

lincon alpha6_18 = 2 ;

/* UNC plays Clem in the second date. */
lincon alpha6_2 =1 ;

/* Duke has a bye in date 16. */

lincon B2_16 =1 ;

/* Wake does not play home in date 17. =*/
lincon H9_17 = 0 ;

/* Wake has a bye in the first date. x/
lincon B9 1 =1 ;

/* Clem, Duke, UMD and Wake do not play away in the last date. =*/
lincon A1 18 = 0 ;

lincon A2_18 = 0 ;
lincon A5_18 = 0 ;
lincon A9_18 = 0 ;

/* Clem, FSU, and GT do not play away in the first date. */
lincon A1 1 =0 ;

lincon A3 1 0 ;

lincon A4_1 = 0 ;

/* FSU and NCSU do not have a bye in the last date. */
lincon B3_18 0 ;

lincon B7_18 0 ;

/* UNC does not have a bye in the first date. x/

lincon B6_1 = 0 ;

/* Timetable constraint 12 x/

/* */
/* Match teams with patterns. *x/
/* */

%do i = 1 %to 9; /* For each team x/
var p&i=[1,9];
%do j=1 %to 18; /*x For each date x*/
element ( p&i, (&&col&k._h &j), H&i._&j )
( p&i, (&&col&k._a &j), A&i._ &3 )
( p&i, (&&col&k._b &j), B&i._&j );
%$end;
%$end;
run;

$mend;
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/**************************************************************/

/* Try all possible pattern sets to find all valid schedules. */
/**************************************************************/

$macro find_ schedules;
proc transpose data=pattern_sets out=trans_good; run;

data _temp;
set trans_good;
set all_patterns;
run;

proc sql noprint;
%do k = 1 %to 17; /* For each pattern x/
%do j=1 %to 18; /*x For each date */
select h&j into :colé&k._h _&j

separated by ',' from _temp where col&k=1l;
select a&j into :colé&k._a_&j
separated by ',' from _temp where col&k=1l;
select b&j into :colé&k._b_&j
separated by ',' from _temp where col&k=1;
%$end;
%$end;

run;
data all; run;

%do k = 1 %to 17; /* For each pattern set =*/
$timetable (k=&k) ;

data all;
set all ACC_ds_s&k;
run;
%$end;

data all;

set all;

if n =1 then delete;
run;

$mend;

$find_ schedules;

The %FIND_SCHEDULES macro invokes the % TIMETABLE macro for each of the 17 pattern sets
and generates 179 possible schedules including the one that was eventually used by the ACC, which
is displayed in Output 3.12.1.
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Output 3.12.1 ACC Basketball Tournament Schedule
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ACTIVITY variable standard CSP statements, 24
schedule data set, 49 standard mode, 41

_ACTIVITY_ variable syntax, 23
activity data set, 45 table of syntax elements, 23

_ALIGNDATE __ variable consistency techniques, 18
activity data set, 40, 41, 45 constraint data set, 18, 25, 42, 44

alignment type _ID_ variable, 42, 44
FEQ, 45 _RHS_ variable, 27, 42, 44
FGE, 28, 45 _TYPE_ variable, 42-44
FLE, 28, 45 constraint programming
SEQ, 45 finite domain, 17
SGE, 28, 45 constraint propagation, 16
SLE, 28, 45 constraint satisfaction problem (CSP), 15

_ALIGNTYPE_ variable backtracking search, 16
activity data set, 40, 41, 45 constraint propagation, 16

array specification, 29 definition, 15

assignment strategy, 19 scheduling CSP, 18
activity, 37 solving techniques, 16
MAXLS, 38 standard CSP, 18
options, 23
RAND, 19, 38 data set options, 23
variable, 27 dead-end multiplier, 25

domain, 15, 25

backtracking search, 16 bounds, 43

distribution strategy, 17

CLP procedure duration, 39
activity data set, 18, 45, 46 DURATION variable
assignment strategy, 19, 23 schedule data set, 49
consistency techniques, 18 DURATION variable
constraint data set, 18, 42 a activity data set, 45
data set options, 23
details, 41 edge finding, 50
functional summary, 23 edge-finder algorithm
general options, 23 not first, 40
getting started, 19 not last, 40
macro variable _ORCLP_, 51 edge-finder routine, 39
options classified by function, 23 element constraints
output control options, 24 specifying, 29
overview, 15, 18 examples, 19
resource data set, 48 10x10 job shop scheduling problem, 100

resource-constrained scheduling, 50 alphabet blocks problem, 61
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Eight Queens, 21 _ORCLP_ macro variable, 51
logic-based puzzles, 53 output control options, 24
Pi Day Sudoku, 56 output data set, 26, 27, 49
resource constrained scheduling with
nonstandard temporal constraints, 83 precedence constraints, 45
Round-Robin Problem, 80 preprocessing, 26
Scene Allocation Problem, 71 propagators for resource capacity constraints, 50
Scheduling a Major Basketball Conference,

resource data set, 26, 48
resource requirements, 35, 36
restarts, 26

_RHS_ variable
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scheduling with alternate resources, 93
Send More Money, 19

Sudoku, 54 .

Work-Shift Scheduling, 63 constraint data set, 27, 42, 44

Work-Shift Scheduling: Finding a Feasible satisfiability problem (SAT), 16
Assignment, 63 schedule

duration, 39
finish time, 40
start time, 41
schedule data set, 42, 49
ACTIVITY variable, 49
DURATION variable, 49
FINISH variable, 49
SOLUTION variable, 49
START variable, 49
scheduling CSP, 18
search control options, 24

finish time, 40
FINISH variable
schedule data set, 49
finite-domain constraint programming, 17
functional summary
CLP procedure, 23

_ID_ variable
constraint data set, 42, 44
input data set, 25, 26, 42, 45

lag type, 45 selection strategy, 19

FF, 46 activity, 38

FFE, 46 DET, 39

FS, 46 DMINLS, 39

FSE, 46 FIFO, 27

SF, 46 LJRAND, 38

SFE, 46 MAXC, 28

SS, 46 MAXCS, 27

SSE, 46 MAXD, 38
_LAG_ variable MINA, 38

activity data set, 45 MINLS, 38
_LAGDUR_ variable MINR, 19, 28

activity data set, 45 MINRMAXC, 28
linear constraints, 42 options, 24

specifying, 25, 32, 42 RAND, 19, 38
look-ahead schemas, 17 RJRAND, 38
look-back schemas, 17 value, 27

variable, 27

macro variable solution data set, 42, 44

_ORCLP_, 51 SOLUTION variable
modes of operation, 41 schedule data set, 49

standard CSP, 18
not first, 40 start time, 41
not last, 40 START variable
schedule data set, 49

online documentation, 10 _SUCCESSOR_ variable

options classified by function, see functional activity data set, 45

summary syntax tables, 23
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table of syntax elements, see functional summary
termination criteria, 26, 27
_TYPE_ variable

constraint data set, 42-44

variable selection, 17
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ACTASSIGN= option

SCHEDULE statement, 19, 27, 37
ACTDATA= option

PROC CLP statement, 18, 25, 28, 40, 41, 45,

46

ACTIVITY statement, 18, 25, 28, 40, 41, 45
ACTIVITY= option, see ACTDATA= option
ACTSELECT= option

SCHEDULE statement, 19, 28, 38
ALLDIFF statement, 18, 29
ALLSOLNS option, see FINDALLSOLNS option
ARRAY statement, 18, 29

BEGIN= option, see START= option

CONDATA= option
PROC CLP statement, 18, 25, 33,42, 44

DET selection strategy, 39
DM-= option

PROC CLP statement, 25
DMINLS selection strategy, 39
DOM-= option, see DOMAIN= option
DOMAIN= option

PROC CLP statement, 25
DPR= option

PROC CLP statement, 25
DUR-= option, see DURATION= option
DURATION= option

SCHEDULE statement, 39

EDGE-= option, see EDGEFINDER= option
EDGEFINDER= option

SCHEDULE statement, 39
ELEMENT statement, 29
END= option, see FINISH= option

FEQ alignment type, 45
FF lag type, 46
FFE lag type, 46
FGE alignment type, 28, 45
FIFO selection strategy, 27
FINDALL option, see FINDALLSOLNS option
FINDALLSOLNS option
PROC CLP statement, 26
FINISH= option
SCHEDULE statement, 40
FINISHBEFORE-= option, see FINISH= option
FLE alignment type, 28, 45

FOREACH statement, 18, 29, 31
FS lag type, 46
FSE lag type, 46

GCC statement, 31

LINCON statement, 18, 25, 32, 42
LJRAND selection strategy, 38

MAXC selection strategy, 28
MAXCS selection strategy, 27
MAXD selection strategy, 38
MAXLS assignment strategy, 38
MAXSOLNS= option

PROC CLP statement, 26, 27
MAXTIME= option

PROC CLP statement, 26, 51
MINA selection strategy, 38
MINLS selection strategy, 38
MINR selection strategy, 19, 28
MINRMAXC selection strategy, 28

NF= option, see NOTFIRST= option
NL= option, see NOTLAST= option
NOPREPROCESS

PROC CLP statement, 26
NOTFIRST= option

SCHEDULE statement, 40
NOTLAST= option

SCHEDULE statement, 40

OUT= option
PROC CLP statement, 18, 26, 42, 44

PREPROCESS
PROC CLP statement, 26

PROC CLP statement, 25, see TIMETYPE=

option, see MAXTIME= option

ACTDATA= option, 18, 25, 28, 40, 41, 45
CONDATA= option, 18, 25, 33,42, 44
DM-= option, 25
DOMAIN= option, 25
DPR= option, 25
FINDALLSOLNS option, 26
MAXSOLNS= option, 26, 27
MAXTIME-= option, 26, 51
NOPREPROCESS, 26
OUT= option, 18, 26, 42, 44
PREPROCESS, 26
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RESDATA= option, 26
RESTARTS= option, 26
SCHEDOUT= option, 27
SCHEDRES= option, 26, 49
SCHEDTIME-= option, 27, 49
SCHEDULE-= option, 18, 28, 42, 49
SHOWPROGRESS option, 27
TIMETYPE= option, 27
USECONDATAVARS= option, 27
VARASSIGN= option, 19, 27, 38
VARSELECT= option, 19, 27, 39

RAND assignment strategy, 19, 38
RAND selection strategy, 19, 38
REDATA= option

PROC CLP statement, 48
REIFY statement, 18, 33
REQUIRES statement, 18, 35
RESDATA= option

PROC CLP statement, 26, 47
RESDATA=option, see RESIN= option
RESOURCE statement, 18, 26, 36
RESTARTS= option

PROC CLP statement, 26
RJRAND selection strategy, 38

SCHEDDUR= option, see DURATION= option
SCHEDOUT= option, see SCHEDULE= option
PROC CLP statement, 27
SCHEDRES= option
PROC CLP statement, 26, 49
SCHEDTIME-= option
PROC CLP statement, 27, 49
SCHEDULE statement, 18, 37
ACTASSIGN= option, 19, 27, 37
ACTSELECT= option, 19, 28, 38
DURATION= option, 39
EDGEFINDER= option, 39
FINISH= option, 40
NOTFIRST= option, 40
NOTLAST= option, 40
START= option, 41
SCHEDULE-= option
PROC CLP statement, 18, 28, 42, 49
SEQ alignment type, 45
SF lag type, 46
SFE lag type, 46
SGE alignment type, 28, 45
SHOWPROGRESS option
PROC CLP statement, 27
SLE alignment type, 28, 45
SS lag type, 46
SSE lag type, 46
START= option

SCHEDULE statement, 41
STARTAFTER= option, see START= option

TIMETYPE= option
PROC CLP statement, 27

USECONDATAVARS= option
PROC CLP statement, 27

VARASSIGN= option

PROC CLP statement, 19, 27, 38
VARIABLE statement, 18, 25, 27, 29, 33, 41, 42
VARSELECT= option

PROC CLP statement, 19, 27, 39
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